首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the effects of AMPA/kainate receptor agonists on GABA(A) receptor subunit mRNA expression in vitro in cultured rat cerebellar granule cells (CGCs). Kainate (KA) (100 microM) and high K(+) (25 mM) dramatically up-regulated delta subunit mRNA expression to 500-700% of that in control cells grown in low K(+) (5 mM). KA or high K(+) had no effect on the expression of the other major GABA(A) receptor subunits alpha1, alpha6, beta2, beta3 or gamma2. Up-regulation of delta mRNA was also detected with the AMPA receptor-selective agonist CPW-399 and to a lesser extent with the KA receptor-selective agonist ATPA. AMPA/kainate receptor-selective antagonist DNQX completely inhibited KA-, CPW-399- and ATPA-induced delta mRNA up-regulation indicating that the effects were mediated via AMPA and KA receptor activation. NMDA receptor-selective antagonist MK-801 inhibited 76% of the KA- and 57% of the CPW-399-induced delta up-regulation suggesting that KA and CPW-399 treatments may induce glutamate release resulting in NMDA receptor activation, and subsequently to delta mRNA up-regulation. In CGCs, delta subunit is a component of extrasynaptic alpha6betadelta receptors that mediate tonic inhibition. Up-regulation of delta during prolonged glutamate receptor activation or cell membrane depolarization may be a mechanism to increase tonic inhibition to counteract excessive excitation.  相似文献   

2.
Glutamate receptor types were examined at the chromatophore synapses of the squids Alloteuthis subulata and Loligo vulgaris, where nerve-induced muscle contraction causes chromatophore expansion. Immunoblotting with antibody raised against a squid AMPA receptor (sGluR) demonstrated that AMPA/kainate receptors are present in squid skin. Application of l-glutamate evoked chromatophore muscle contractions in both ventral and dorsal skins, while NMDA was only active on a subpopulation of dorsal chromatophores. In dorsal skin, neurotransmission was partly blocked by either AMPA/kainate receptor antagonists (CNQX and DNQX) or NMDA receptor antagonists (AP-5 and MK-801) or completely blocked by simultaneous application of both classes of antagonists. In isolated muscle fibres, ionophoretic application of l-glutamate evoked fast inward CNQX- and DNQX-sensitive currents with reversal potentials around +14 mV and a high conductance to Na+. In fibres from dorsal skin only, a slower outward glutamate-sensitive current appeared at positive holding potentials. At negative potentials, currents were potentiated by glycine or by removing external Mg2+ and were blocked by AP-5 and MK-801. Glutamate caused a fast, followed by a slow, transient increase in cytoplasmic Ca2+. The slow component was increased in amplitude and duration by glycine or by lowering external Mg2+ and decreased by AP-5 and MK-801. In cells from ventral skin, no 'NMDA-like responses' were detected. Thus, while AMPA/kainate receptors mediated fast excitatory synaptic transmission and rapid colour change over the whole skin, activation of both AMPA/kainate and NMDA-like receptors in a subpopulation of dorsal chromatophores prolonged the postsynaptically evoked Ca2+ elevation causing temporally extended colour displays with behavioural significance.  相似文献   

3.
The complex modulation of cytoplasmic free calcium concentration ([Ca2+]c) in primary cultures of cerebellar granule cells in response to glutamate receptor agonists has been the subject of several contradictory reports. We here show that 3 components of the [Ca2+]c response can be distinguished: (1) Ca2+ entry through voltage-dependent Ca2+ channels, following KCl- or receptor-evoked depolarization, (2) Ca2+ entry through NMDA receptor channels, and (3) liberation of internal Ca2+ via a metabolotropic receptor. Depolarization with KCl induced a transient [Ca2+]c response (subject to voltage inactivation) decaying to a sustained plateau (largely inhibited by nifedipine). The NMDA response was potentiated by glycine, totally inhibited by (+)5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), and blocked by Mg2+ in a voltage-sensitive manner. Polarized cells displayed small responses to quisqualate (QA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA). Depolarization enhanced a transient response to QA, but not to AMPA. Trans-1-amino-1,3-cyclopentanedicarboxylic acid (trans-ACPD), a selective agonist for the metabolotropic glutamate receptor, caused a transient elevation of [Ca2+]c, which was blocked by prior exposure to QA but not AMPA. The prolonged [Ca2+]c response to kainate (KA) can be resolved into 2 major components: an indirect NMDA receptor-mediated response due to released glutamate and a nifedipine-sensitive component consistent with depolarization-mediated entry via Ca2+ channels. 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX), QA at greater than 10 microM, and AMPA (but not trans-ACPD) reversed the KA response, consistent with an inactivation of the KA receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Oligodendroglial cells express ionotropic glutamate receptors of alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid hydrobromide (AMPA) and kainate (KA) subtypes. Recently, we reported that AMPA receptor agonists increased 45Ca2+ uptake and phospholipase C (PLC) activity. To further elucidate the intracellular signaling mechanisms, we examined the effects of AMPA and KA on mitogen-activated protein kinase (MAPK). KA caused a time- and concentration-dependent increase in MAPK activity (predominantly the p42mapk or ERK2) and the effect was blocked by 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), a competitive AMPA/KA receptor antagonist. Furthermore, the noncompetitive antagonists of AMPA receptor GYKI 52466 and LY 303070 prevented the actions of the agonists, indicating that the effect of KA on MAPK activation is mediated through AMPA receptors in oligodendrocyte progenitors. Chelation of extracellular Ca2+ by EDTA or inhibition of PLC with U73122 abolished MAPK activation by KA. In addition, KA-stimulated MAPK activation was reduced by the protein kinase C (PKC) inhibitors, H7 and bisindolylmaleimide, as well as downregulation of PKC by prolonged exposure to phorbol esters. The involvement of PKC in the signal transduction pathways was further supported by the ability of KA to induce translocation of PKC measured by [3H]PDBu binding. Interestingly, a wortmannin-sensitive phosphatidylinositol 3-kinase and a pertussis toxin (PTX)-sensitive G protein form part of the molecular pathways mediating MAPK activation by AMPA receptor. A specific inhibitor of MAPK kinase, PD 098059, blocked MAPK activation and reduced KA-induced c-fos gene expression. All together, these results indicate that MAPK is implicated in the transmission of AMPA signaling to the nucleus and requires extracellular Ca2+, and PLC/PKC activation.  相似文献   

5.
Melittin, a potent activator of phospholipase A2, enhanced both spontaneous and depolarization-induced release of D-[3H]aspartate in primary cultures of cerebellar granule cells. The action of melittin was concentration-dependent (EC50 value = 300 ng/ml) and did not require the presence of extracellular Ca2+. Melittin also stimulated the release of glutamate and aspartate, in addition to other endogenous amino acids (taurine, alanine and gamma-aminobutyric acid). These effects were accompanied by an enhanced influx of 45Ca2+, which was in part mediated by the activation of excitatory amino acid receptors by endogenous agonists. Low concentrations of melittin (50 ng/ml) potentiated the efficacy of AMPA in stimulating 45Ca2+ influx without affecting stimulation by kainate or by glutamate added in the absence of extracellular Mg2+ (a condition that favors the activation of NMDA receptors). These results indicate that activation of phospholipase A2 evokes both an enhanced glutamate release and an increased sensitivity of AMPA receptors, two events that may support synaptic facilitation and LTP formation.  相似文献   

6.
A number of studies have demonstrated that willardiine [(S)-1-(2-amino-2-carboxyethyl) pyrimidine-2,4-dione] is a useful agonist for the activation of AMPA/kainate receptors. Here we examine the effect of extracellular calcium on currents evoked by willardiine in HEK 293 cells expressing the GluR6(Q)/KA-2 kainate receptor subunits. At a concentration of 1.8 mM, Ca2+ inhibited the currents induced by 100 microM willardiine by approximately 50%. When extracellular Na+ ions were replaced with Ca2+ ions there were no measurable inward currents. We conclude that Ca2+ inhibition of the willardiine-induced response is concentration dependent.  相似文献   

7.
Changes in cytosolic free Ca2+ concentrations, [Ca2+]i, in response to glutamate and glutamate receptor agonists were measured in rat cerebellar granule cells grown on coverslips. The intracellular Ca2+ as measured with fura-2 increased by applying kainate, N-methyl-D-aspartate (NMDA), quisqualate, and (RS)-d-amino-3-hydroxy-5-methyl-4-isoxazole-propionic (AMPA). When the extracellular Mg2+ was removed, the effects of NMDA and the NMDA receptor agonist cis-(+-)-1-amino-1,3-cyclopentanedicarboxylic acid (cis-ACPD) on intracellular Ca2+ were augmented. Glycine potentiated the effects of NMDA and cis-ACPD if the membrane was depolarized by increasing the extracellular K+ concentration. The NMDA receptor antagonist DL-2-amino-5-phosphonopentanic acid (AP5) abolished and the antagonist 3-([+-]-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) greatly reduced the effect of NMDA in both the normal and the Mg-free media. The dose-response curves of NMDA and, to a lesser extent, of kainate were shifted to the left, and that of quisqualate became biphasic in the Mg-free medium. The increase in [Ca2+]i produced by high quisqualate concentrations in the Mg-free medium was totally abolished by AP5. The results suggest that Ca2+ influx in cerebellar granule cells occurs through both NMDA- and non-NMDA-coupled ion channels. A part of the quisqualate-induced rise in cytosolic Ca2+ seems to be linked to the activation of NMDA receptors.  相似文献   

8.
We investigated the role of kainate (KA) receptor activation and desensitization in inducing the increase in the intracellular free Ca(2+) concentration ([Ca(2+)](i)) in individual cultured rat hippocampal neurons. The rat hippocampal neurons in the cultures were shown to express kainate receptor subunits, KA2 and GluR6/7, either by immunocytochemistry or by immunoblot analysis. The effect of LY303070, an alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) receptor antagonist, on the alterations in the [Ca(2+)](i) caused by kainate showed cell-to-cell variability. The [Ca(2+)](i) increase caused by kainate was mostly mediated by the activation of AMPA receptors because LY303070 inhibited the response to kainate in a high percentage of neurons. The response to kainate was potentiated by concanavalin A (Con A), which inhibits kainate receptor desensitization, in 82.1% of the neurons, and this potentiation was not reversed by LY303070 in about 38% of the neurons. Also, upon stimulation of the cells with 4-methylglutamate (MGA), a selective kainate receptor agonist, in the presence of Con A, it was possible to observe [Ca(2+)](i) changes induced by kainate receptor activation, because LY303070 did not inhibit the response in all neurons analyzed. In toxicity studies, cultured rat hippocampal neurons were exposed to the drugs for 30 min, and the cell viability was evaluated at 24 hr using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The selective activation of kainate receptors with MGA, in the presence of Con A, induced a toxic effect, which was not prevented by LY303070, revealing a contribution of a small subpopulation of neurons expressing kainate receptors that independently mediate cytotoxicity. Taken together, these results indicate that cultured hippocampal neurons express not only AMPA receptors, but also kainate receptors, which can modulate the [Ca(2+)](i) and toxicity.  相似文献   

9.
Mechanisms of AMPA Neurotoxicity in Rat Brain Slices   总被引:1,自引:0,他引:1  
The mechanisms underlying the neurodegenerative effects of the glutamate receptor agonist, AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate), were studied using brain slice preparations of young rat (8 - 9 days old) cerebellum and hippocampus. Rapid AMPA toxicity (exerted on some cerebellar interneurons) was inhibited by including the appropriate receptor blocker, CNQX (6-cyano-7-nitroquinoxaline-2,3-dione, 10 microM), in the exposing solution. The degeneration of other neurons, including Purkinje cells and hippocampal pyramidal neurons, persisted. It could, however, be largely prevented if CNQX was included for 1.5 h during the post-incubation period, suggesting that an enduring 'rebound' AMPA receptor activation was responsible for this delayed type of degeneration, not the exposure itself. In cerebellar slices, independent evidence for the occurrence, postexposure, of persisting AMPA receptor stimulation was obtained electrophysiologically. Omission of Ca2+ during the exposure period (and for 10 min beforehand) markedly reduced rapid AMPA toxicity but was ineffective in protecting most of the Purkinje cells. However, if the slices were previously starved of Ca2+ for 1 h, then most of these neurons survived, even if the ion was reinstated during the recovery period. Slow AMPA toxicity, which takes place during long (2 h) exposures, could be inhibited either by CNQX or by omission of Ca2+ (30 min preincubation). The results indicate that the rapid oedematous necrosis induced by AMPA, like that caused by N-methyl-d-aspartate and kainate, is likely to involve excessive influx of Ca2+. In contrast, the induction of the delayed mechanisms, as well as its 'expression' during the postincubation period, probably depends on intracellular Ca2+, rather than Ca2+ influx.  相似文献   

10.
The effect of changes in the external concentrations (0.4-10 mM) of Ca2+ ions on AMPA receptors (AMPARs) of different subunit composition was studied on freshly isolated rat brain neurones. Ca2+ produces rapid and reversible voltage-independent inhibition of AMPARs. Ca2+-permeable and Ca2+-impermeable AMPARs are equally sensitive to external Ca2+ suggesting that the effect is not addressed to the ion channel. The inhibition of responses evoked by AMPA is significantly larger than those evoked by kainate or glutamate. Cyclothiazide and aniracetam, which are known to prevent AMPAR desensitization, both greatly diminish inhibition of AMPARs by Ca2+. Cyclothiazide is more potent than aniracetam in both preventing of AMPAR desensitization and protecting against the Ca2+ inhibitory effect on hippocampal pyramidal cells. On giant cholinergic interneurones of striatum, aniracetam but not cyclothiazide significantly prevents inhibition by Ca2+. This agrees with available data on relative abundance of flip and flop splice variants in these cell types. The results suggest that Ca2+ may allosterically increase AMPA receptor desensitization independently on subunit composition and splice variants.  相似文献   

11.
12.
We compared the effect of short and long exposures of cultured motor neurons to glutamate and kainate (KA) and studied the receptors involved in these two types of excitotoxicity. There was no difference in the receptor type used between short and long glutamate exposures as activation of the N-methyl-D-asparate (NMDA) receptor was in both cases responsible for the motor neuron death. Cell death through activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors only became apparent when desensitization of these receptors was prevented. In such conditions, motor neurons became much more sensitive to excitotoxicity, and activation of different types of AMPA receptors mediated motor neuron death after short, compared to long, exposures to the non-desensitizing AMPA receptor agonist, KA. Short KA exposures selectively affected motor neurons containing Ca(2+)-permeable AMPA receptors, as the KA effect was completely inhibited by Joro spider toxin and only motor neurons that were positive for the histochemical Co(2+) staining were killed. A long exposure to KA affected motor neurons through both Ca(2+)-permeable and Ca(2+)-impermeable AMPA receptors. The selective death of motor neurons vs. dorsal horn neurons was observed after short KA exposures indicating that the selective vulnerability of motor neurons to excitotoxicity is related to the presence of Ca(2+)-permeable AMPA receptors.  相似文献   

13.
S L Sensi  H Z Yin  J H Weiss 《Neuroreport》1999,10(8):1723-1727
ZN2+ co-released with glutamate at excitatory synaptic sites can enter and cause injury to postsynaptic neurons. While prior studies using the slowly desensitizing agonist kainate suggested preferential Zn2+ permeation through Ca2+ permeable AMPA/kainate (Ca-A/K) channels, the present study aims to assess relevance of those findings upon more physiological receptor activation. Microfluorimetric techniques were used to measure [Zn2+]i attained upon exposure to the rapidly desensitizing agonist AMPA or to the physiological agonist glutamate, in the presence of 300 microM Zn2+. Under these conditions, micromolar [Zn2+]i rises (delta[Zn2+]i) were still observed to occur selectively in the subset of neurons that express large numbers of Ca-A/ K channels. Further studies using the oxidation sensitive dye, hydroethidine, revealed Zn2+-dependent reactive oxygen species generation that paralleled delta[Zn2+]i, with rapid oxidation only observed in the case of Zn2+ entry through Ca-A/K channels.  相似文献   

14.
Cultured mouse cerebellar granule cells differ from their rat counterparts in that they survive well when grown in non-depolarising medium (5 mM K(+)). However, when chronically stimulated by added glutamate agonists, including (RS)alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), rat cerebellar granule cells also survive well in non-depolarising medium. We hypothesised that the relatively good survival of mouse cerebellar granule cells in the absence of added glutamate agonists might reflect AMPA receptors resistant to desensitisation. These receptors might be stimulated by endogenous glutamate. We tested this hypothesis by comparing cultured mouse and rat cerebellar granule cells grown in depolarising (25 mM K(+)) and non-depolarising (5 mM K(+)) medium. We studied the AMPA-induced increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), using the fluorescent Ca(2+) chelator, Fluo-3, and the relative concentrations of mRNAs for the four AMPA receptor subunits, GluR1-4. GluR1-4 mRNAs were measured by restriction enzyme analysis of a PCR product containing cDNA with a composition proportional to the four subunit mRNAs. We found that the [Ca(2+)](i)-response to AMPA receptor activation in cultured cerebellar granule cells is determined mainly by the desensitisation properties of the AMPA receptors rather than by their ion permeability. We also found that mouse cerebellar granule cells express AMPA receptors which are more resistant to desensitisation than the corresponding rat AMPA receptors. Thus, relatively slow AMPA receptor desensitisation kinetics may contribute to the survival of mouse cerebellar granule cells in non-depolarising medium.  相似文献   

15.
Stimulation of the quisqualate (QA) subtype of glutamate receptor increased the expression of phosphate activated glutaminase (needed for neurotransmitter glutamate synthesis) and the ability to release neurotransmitter glutamate in cultures of glutamatergic cerebellar granule neurons. In contrast, QA had no significant effects on the lactate dehydrogenase activity and amount of protein. The QA-mediated elevation in glutaminase activity was blocked by the ionotropic QA receptor antagonist CNQX and mimicked by the ionotropic QA receptor agonist AMPA, but not by the metatropic QA receptor agonist t-ACPD. The increase in Ca2+ influx essentially through activation of L-type channels, and not the mobilization of internal Ca2+ stores, was responsible for these QA receptor-mediated long-term changes in cerebellar granule neurons.  相似文献   

16.
The effect of Ni2+ on glial α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors was studied using the whole-cell patch-clamp technique in cultured rat cerebellar astrocytes. The application of kainate (10 μM-5 mM) evoked inward currents at a holding potential of −70 mV. These currents were blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and Evans Blue, and potentiated by cyclothiazide, suggesting that they were primarily mediated by the AMPA receptor subtype. Analysis of the kainate concentration-response relation in cultured astrocytes revealed a maximal current of 488 pA, a half-maximal effective concentration of 137 μM and a Hill coefficient of 1.43, indicating more than one agonist binding site. Ni2+ inhibited the current activated by 300 μM kainate in a concentration-dependent manner, displaying a half-maximal inhibition at 860 μM Ni2+ and a Hill coefficient of 1.07. In the presence of 700 μM Ni2+ the kainate-induced concentration-response curve was shifted towards higher concentrations, increasing the half-maximal effective concentration to 300 μM, without significantly changing the Hill coefficient. The blocking effect of Ni2+ was counteracted by increasing kainate concentrations, suggesting a competitive mechanism. © 1996 Wiley-Liss, Inc.  相似文献   

17.
18.
19.
The mutation Lurcher, resulting from a gain of malfunction of the delta2 glutamate receptor expressed specifically by cerebellar Purkinje cells, causes a primary total loss of these neurons of the cerebellar cortex, as well as the secondary degeneration of cerebellar granule and inferior olive neurons. The distributions of glutamate receptors sensitive to amino-methylisoxazole-propionic acid (AMPA), to kainic acid (KA), and to N-methyl-D-aspartic acid (NMDA) as well as metabotropic sites (MET1 and MET2) were examined in wild type and Lurcher mice by quantitative autoradiography. This study was undertaken to determine the gene effect on the distribution of the various glutamate receptor subtypes, as well as how the cerebellar lesion affects the glutamatergic system in other brain regions. In cerebellum, there were postsynaptic AMPA and metabotropic receptors on Purkinje cells, postsynaptic NMDA receptors on granule cells, as well as KA receptors on granule cells or on parallel fibers. Taking into account surface areas, binding to all receptor subtypes was lower in the cerebellar cortex of Lurcher mutants than in wild type mice, while in the deep cerebellar nuclei only KA receptors were diminished. In other brain regions, the alterations followed always the same pattern characterized by a decrease of NMDA and KA receptors but with an increase of AMPA sites; these reciprocal changes were seen in thalamus. neostriatum, limbic regions, and motor cerebral cortical regions. Comparisons of glutamate receptor distribution in Lurcher mutants and in human autosomal cerebellar ataxia may permit further understanding of the role of glutamate-induced toxicity on neuronal death in these heredo-degenerative diseases.  相似文献   

20.
A Resink  G J Boer  R Balázs 《Neuroreport》1992,3(9):757-760
N-methyl-D-aspartate (NMDA) receptor activity was examined, in terms of 45Ca2+ influx, during the development of cerebellar granule cells grown under 'non-trophic' [10 mM potassium (K10)] or 'trophic' conditions [25 mM potassium (K25), NMDA and kainate (KA)]. NMDA receptor activity increased sharply between 2 and 4 days in vitro (DIV) irrespective of growth conditions which upon further cultivation exerted a powerful influence, the NMDA response increasing progressively in K25 and NMDA grown cells, while remaining at a constant level in KA treated cells. In contrast, in K10 grown cells the NMDA response declined by 7 DIV to about 20% of the estimates in K25 at 9 DIV. Trophic conditions are, therefore, essential for the proper functional expression of NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号