首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report describes a 4-year-old male patient experienced prolonged febrile seizures after 1 year of age, multiple febrile seizures and complex partial seizures with secondary generalization. The gene encoding voltage-gated sodium channel alpha1-subunit: SCN1A analysis revealed a heterozygous de novo one-point mutation (IVS16+2 T>C) at a splice-acceptor site. This mutation was inferred to cause truncation of the alpha1-subunit molecule and, thereby, a loss of channel function. To date, truncation mutation has been found exclusively in patients with severe myoclonic epilepsy in infancy (SMEI), although only missense mutations have been found in generalized epilepsy with febrile seizures plus (GEFS+), partial epilepsy with FS+, FS+, and FS. The patient's phenotype is consistent with that of partial epilepsy with FS+, rather than SMEI, including borderline SMEI (SMEB). We present the first case report of partial epilepsy with FS+ associated with a truncation mutation of SCN1A. The possibility exists for concomitant involvement of multiple genes other than SCN1A for seizure phenotypes.  相似文献   

2.
Purpose: Generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy in infancy (SMEI) are associated with sodium channel α‐subunit type‐1 gene (SCN1A) mutations. Febrile seizures and partial seizures occur in both GEFS+ and SMEI; sporadic onset and seizure aggravation by antiepileptic drugs (AEDs) are features of SMEI. We thus searched gene mutations in isolated cases of partial epilepsy with antecedent FS (PEFS+) that showed seizure aggravations by AEDs. Methods: Genomic DNA from four patients was screened for mutations in SCN1A, SCN2A, SCN1B, and GABRG2 using denaturing high‐performance liquid chromatography (dHPLC) and sequencing. Whole‐cell patch clamp analysis was used to characterize biophysical properties of two newly defined mutants of Nav1.1 in tsA201 cells. Results: Two heterozygous de novo mutations of SCN1A (R946H and F1765L) were detected, which were proven to cause loss of function of Nav1.1. When the functional defects of mutants reported previously are compared, it is found that all mutants from PEFS+ have features of loss of function, whereas GEFS+ shows mild dysfunction excluding loss of function, coincident with mild clinical manifestations. PEFS+ is similar to SMEI clinically with possible AED‐induced seizure aggravation and biophysiologically with features of loss of function, and different from SMEI by missense mutation without changes in hydrophobicity or polarity of the residues. Conclusions: Isolated milder PEFS+ may associate with SCN1A mutations and loss of function of Nav1.1, which may be the basis of seizure aggravation by sodium channel–blocking AEDs. This study characterized phenotypes biologically, which may be helpful in understanding the pathophysiologic basis, and further in management of the disease.  相似文献   

3.
Myoclonic astatic epilepsy (MAE) is a genetically determined condition of childhood onset characterized by multiple generalized types of seizures including myoclonic astatic seizures, generalized spike waves and cognitive deterioration. This condition has been reported in a few patients in generalized epilepsy with febrile seizures plus (GEFS+) families and MAE has been considered, like severe myoclonic epilepsy of infancy (SMEI), to be a severe phenotype within the GEFS+ spectrum. Four genes have been identified in GEFS+ families, but only three (SCN1A, SCNlB, GABRG2) were found in MAE patients within GEFS+ families. We analysed these three genes in a series of 22 sporadic patients with MAE and found no causal mutations. These findings suggest that MAE, unlike SMEI, is not genetically related to GEFS+. Although MAE and SMEI share the same types of seizures, only SMEI patients are sensitive to fever. This is probably its main link to GEFS+. A different family of genes is likely to account for MAE.  相似文献   

4.
Deletions and duplications/amplifications of the α1-sodium channel subunit (SCN1A) gene occur in about 12% of patients with Dravet syndrome (DS) who are otherwise mutation-negative. Such genomic abnormalities cause loss of function, with severe phenotypes, reproductive disadvantage and, therefore, sporadic occurrence. Inherited mutations, occurring in ~5% of patients with DS, are usually missense; transmission occurs from a mildly affected parent exhibiting febrile seizures (FS) or the generalized epilepsy with febrile seizures plus (GEFS+) spectrum. We identified an intragenic SCN1A deletion in a three-generation, clinically heterogeneous family. Sequence analysis of SCN9A, a putative modifier, ruled out pathogenic mutations, variants, or putative disease-associated haplotype segregating with phenotype severity. Intrafamilial variability in phenotype severity indicates that SCN1A loss of function causes a phenotypic spectrum in which seizures precipitated by fever are prominent and schematic syndrome subdivisions would be inappropriate. SCN1A deletions should be ruled out even in individuals with mild phenotypes.  相似文献   

5.
Purpose: Genetic abnormalities of the gene encoding α1 subunit of the sodium channel (SCN1A), which can be detected by direct sequencing, are present in more than 60% of patients with severe myoclonic epilepsy in infancy (SMEI) or its borderline phenotype (SMEB). Microchromosomal deletions have been recently reported as additional causes of SMEI. This study examines whether such microdeletions are associated with SMEI as well as with SMEB. Methods: We recruited patients with SMEI (n = 35) and SMEB (n = 34), who were confirmed previously to have no mutations of SCN1A by direct sequencing. Microdeletions were sought by multiplex ligation‐dependent probe amplification (MLPA), and then confirmed and characterized by fluorescence in situ hybridization (FISH) and array‐based comparative genomic hybridization (aCGH), respectively. Results: Heterozygous multiple exonic deletions were identified in 7/35 SMEI patients (20%) and 0/34 SMEB patients (0%), with a net frequency of 10.1% (7/69 patients). Deletions were confirmed by FISH and aCGH analysis. The concomitant deletions of adjacent genes were revealed by aCGH. None of the parents who agreed to undergo the analysis had such deletions suggesting that the deletions were de novo. The phenotypes of patients with the deletions were indistinguishable from those of SMEI resulting from point mutations. Discussion: Our findings indicate that microchromosomal deletion, often involving not only SCN1A but also several adjacent genes, is associated with core SMEI. As microchromosomal deletion cannot be anticipated by the phenotypes or detected by conventional methods, genetic abnormalities in SMEI should be carefully sought by techniques that can detect microdeletions.  相似文献   

6.
PURPOSE: Severe myoclonic epilepsy in infancy (SMEI) is a distinct epilepsy syndrome. Patients with borderline SMEI (SMEB) are a subgroup with clinical features similar to those of core SMEI but are not necessarily consistent with the accepted diagnostic criteria for core SMEI. The aim of this study was to delineate the genetic correlation between core SMEI and SMEB and to estimate the frequency of mutations in both phenotypes. METHODS: We examined 96 healthy volunteers and 58 unrelated individuals whose clinical features were consistent with either core SMEI (n = 31) or SMEB (n = 27). We screened for genetic abnormalities within exons and their flanking introns of the genes encoding major subunits of the Na+ channels (SCN1A, SCN2A, SCN1B, and SCN2B) by using a direct sequencing method. RESULTS: In both core SMEI and SMEB, various mutations of SCN1A including nonsense and missense mutations were identified, whereas no mutations of SCN2A, SCN1B, and SCN2B were found within the regions examined. All mutations were heterozygous and not found in 192 control chromosomes. Mutations were identified in 26 (44.8%) of the 58 individuals and were more frequent (p < 0.05) in core SMEI (19 of 31) than in SMEB (seven of 27), as assessed by the continuity-adjusted chi2 test. Mutations resulting in a molecular truncation were found only in core SMEI. Among the mutations, two missense mutations were found in both core SMEI and SMEB. CONCLUSIONS: Our findings confirm that SMEB is part of the SMEI spectrum and may expand the recognition of SMEI and suggest other responsible or modifying genes.  相似文献   

7.
PURPOSE: We describe seven Italian families with generalized epilepsy with febrile seizures plus (GEFS+), in which mutations of SCN1A, SCN1B, and GABRG2 genes were excluded and compare their clinical spectrum with that of previously reported GEFS+ with known mutations. METHODS: We performed a clinical study of seven families (167 individuals). The molecular study included analysis of polymerase chain reaction (PCR) fragments of SCN1A and SCN1B exons by denaturing high-performance liquid chromatography (DHPLC) and direct sequencing of GABRG2 in all families. We excluded SCN1A, SCN1B, and GABRG2 genes with linkage analysis in a large pedigree and directly sequenced SCN2A in a family with neonatal-infantile seizures onset. We compared the epilepsy phenotypes observed in our families with those of GEFS+ families harboring mutations of SCN1A, SCN1B, and GABRG2 and estimated the percentage of mutations of these genes among GEFS+ cases by reviewing all published studies. RESULTS: Inheritance was autosomal dominant with 69% penetrance. Forty-one individuals had epilepsy: 29 had a phenotype consistent with GEFS+; seven had idiopathic generalized epilepsy (IGE); in three, the epilepsy type could not be classified; and two were considered phenocopies. Clinical phenotypes included FS+ (29.2%), FS (29.2%), IGE (18.2%), FS+ with focal seizures (13%) or absence seizures (2.6%), and FS with absence seizures (2.6%). Molecular study of SCN1A, SCN2A, SCN1B, and GABRG2 did not reveal any mutation. Results of our study and literature review indicate that mutations of SCN1A, SCN2A, SCN1B, and GABRG2 in patients with GEFS+ are rare. CONCLUSIONS: The most frequently observed phenotypes matched those reported in families with mutations of the SCN1A, SCN1B, and GABRG2 genes. IGE and GEFS+ may overlap in some families, suggesting a shared genetic mechanism. The observation that 13% of affected individuals had focal epilepsy confirms previously reported rates and should prompt a reformulation of the "GEFS+" concept to include focal epileptogenesis.  相似文献   

8.
Generalised (genetic) epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome with various phenotypes. The majority of individuals with GEFS+ have generalised seizure types, in addition to febrile seizures (FS) or febrile seizures plus (FS+), defined as either continued FS after 6 years of age or afebrile seizures following FS. A 27‐year‐old man with no history of FS/FS+ experienced intractable generalised convulsive seizures. The patient's father had a history of similar seizures during puberty and the patient's siblings had only FS. No individual in the family had both generalised seizures and FS/FS+, although GEFS+ might be considered to be present in the family. Analysis of SCN1A, a sodium channel gene, revealed a novel mutation (c.3250A>T [S1084C]) in the cytoplasmic loop 2 of SCN1A in both the patient and his father. Most previously reported SCN1A mutations in GEFS+ patients are located in the conserved homologous domains of SCN1A, whereas mutations in the cytoplasmic loops are very rare. SCN1A gene analysis is not commonly performed in subjects with generalised seizures without FS. SCN1A mutation may be a clinically‐useful genetic marker in order to distinguish GEFS+ patients from those with classic idiopathic generalised epilepsy, even if they present an atypical clinical picture.  相似文献   

9.
PURPOSE: The role of the familial background in severe myoclonic epilepsy of infancy (SMEI) has been traditionally emphasized in literature, with 25-70% of the patients having a family history of febrile seizures (FS) or epilepsy. We explored the genetic background of SMEI patients carrying SCN1A mutations to further shed light on the genetics of this disorder. METHODS: We analyzed the occurrence of FS and epilepsy among first- and second-degree relatives (N = 867) of 74 SMEI probands with SCN1A mutations (70 de novo, four inherited) and compared data with age-matched and ethnically matched control families. Familial clustering and syndromic concordance within the affected relatives in both groups were investigated. RESULTS: The frequency of FS or epilepsy in relatives of SMEI patients did not significantly differ from that in controls (FS: 13 of 867 vs. 12 of 674, p = 0.66; epilepsy: 15 of 867 vs. six of 674, p = 0.16). Different forms of epilepsy were identified in both relatives of SMEI probands and controls. Twenty-eight relatives with FS and epilepsy were distributed in 20 (27%) of 74 SMEI families; among the controls, 18 affected relatives were clustered in 13 (18.5%) of 70 families. No pedigree showed several affected members, including the four with inherited mutations. CONCLUSIONS: A substantial epileptic family background is not present in our SMEI patients with SCN1A mutations. These data do not confirm previous observations and would not support polygenic inheritance in SMEI. The investigation of the family background in additional series of SMEI patients will further shed light on the genetics of this syndrome.  相似文献   

10.
Severe myoclonic epilepsy in infancy (SMEI), severe idiopathic generalized epilepsy of infancy (SIGEI) with generalized tonic clonic seizures (GTCS), and myoclonic astatic epilepsy (MAE) may show semiological overlaps. In GEFS+ families, all three phenotypes were found associated with mutations in the SCN1A gene. We analyzed the SCN1A gene in 20 patients with non-familial myoclonic astatic epilepsy -- including 12 probands of the original cohort used by Doose et al. in 1970 to delineate MAE. In addition, 18 patients with sporadic SIGEI -- mostly without myoclonic-astatic seizures -- were analyzed. Novel SCN1A mutations were found in 3 individuals. A frame shift resulting in an early premature stop codon in a now 35-year-old woman with a borderline phenotype of MAE and SIGEI (L433fsX449) was identified. A splice site variant (IVS18 + 5 G --> C) and a missense mutation in the conserved pore region (40736 C --> A; R946 S) were detected each in a child with SIGEI. We conclude that, independent of precise syndromic delineation, myoclonic-astatic seizures are not predictive of SCN1A mutations in sporadic myoclonic epilepsies of infancy and early childhood.  相似文献   

11.
Generalized epilepsy with febrile seizures plus (GEFS(+)) is an important childhood genetic epilepsy syndrome with heterogeneous phenotypes, including febrile seizures (FS) and generalized epilepsies of variable severity. Forty unrelated GEFS(+) and FS patients were screened for mutations in the sodium channel beta-subunits SCN1B and SCN2B, and the second GEFS(+) family with an SCN1B mutation is described here. The family had 19 affected individuals: 16 with typical GEFS(+) phenotypes and three with other epilepsy phenotypes. Site-specific mutation within SCN1B remains a rare cause of GEFS(+), and the authors found no evidence to implicate SCN2B in this syndrome.  相似文献   

12.
Yamakawa K 《Epilepsy research》2006,70(Z1):S218-S222
Mutations of voltage-gated sodium channel genes SCN1A, SCN2A, and SCN1B have been identified in several types of epilepsies including generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy in infancy (SMEI). In both SCN1A and SCN2A, missense mutations tend to result in benign idiopathic epilepsy, whereas truncation mutations lead to severe and intractable epilepsy. However, the results obtained by the biophysical analyses using cultured cell systems still remain elusive. Now studies in animal models harboring sodium channel gene mutations should be eagerly pursued.  相似文献   

13.
Evidence that febrile seizures have a strong genetic predisposition has been well documented. In families of probands with multiple febrile convulsions, an autosomal dominant inheritance with reduced penetrance is suspected. Four candidate loci for febrile seizures have been suggested to date; FEB1 on 8q13-q21, FEB2 on 19p, FEB3 on 2q23-q24, and FEB4 on 5q14-15. A missense mutation was identified in the voltage-gated sodium (Na(+))-channel beta 1 subunit gene, SCN1B at chromosome 19p13.1 in generalized epilepsy with the febrile seizures plus type 1 (GEFS+1) family. Several missense mutations of the (Na(+))-channel alpha 1 subunit (Nav1.1) gene, SCN1A were also identified in GEFS+2 families at chromosome 2q23-q24.3. The aim of this report is precisely to describe the phenotypes of Japanese patients with novel SCN1A mutations and to reevaluate the entity of GEFS+. Four family members over three generations and one isolated (phenotypically sporadic) case with SCN1A mutations were clinically investigated. The common seizure type in these patients was febrile and afebrile generalized tonic-clonic seizures (FS+). In addition to FS+, partial epilepsy phenotypes were suspected in all affected family members and electroencephalographically confirmed in three patients of two families. GEFS+ is genetically and clinically heterogeneous, and associated with generalized epilepsy and partial epilepsy as well. The spectrum of GEFS+ should be expanded to include partial epilepsies and better to be termed autosomal dominant epilepsy with febrile seizures plus (ADEFS+).  相似文献   

14.
Generalized epilepsy with febrile seizures plus (GEFS+) is a clinically and genetically heterogeneous syndrome with childhood onset, characterized by febrile seizures (FS) and a variety of afebrile epileptic seizure types. The authors performed a mutational analysis of SCN1B on 74 unrelated probands with GEFS+, FS, or FS plus (FS+). In a family with FS+ and early-onset absence epilepsy, a mutation was identified that predicts a deletion of five amino acids in the extracellular immunoglobulin-like domain of SCN1B and potential loss of function. SCN1B mutations are associated with GEFS+ and may have a role in the elicitation of absence seizures.  相似文献   

15.
Febrile seizures (FS) represent the most common form of childhood seizures. They affect 2–5% of infants in the Caucasian population and are even more common in the Japanese population, affecting 6–9% of infants. Some familial FS are associated with a wide variety of afebrile seizures. Generalized epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome with a spectrum of phenotypes including FS, atypical FS (FS+) and afebrile seizures. A significant genetic component exists for susceptibility to FS and GEFS+: extensive genetic studies have shown that at least nine loci are responsible for FS. Furthermore, mutations in the voltage-gated sodium channel subunit genes (SCN1A, SCN2A and SCN1B) and the GABAA receptor subunit genes (GABRG2 and GABRD) have been identified in GEFS+. However, the causative genes have not been identified in most patients with FS or GEFS+. Common forms of FS are genetically complex disorders believed to be influenced by variations in several susceptibility genes. Recently, several association studies on FS have been reported, but the results vary among different groups and no consistent or convincing FS susceptibility gene has emerged. Herein, we review the genetic data reported in FS, including the linkage analysis, association studies, and genetic abnormalities found in the FS-related disorders such as GEFS+ and severe myoclonic epilepsy in infancy.  相似文献   

16.
SCN1A is the most clinically relevant epilepsy gene and is associated with generalized epilepsy and febrile seizure plus (GEFS+) and Dravet syndrome. We postulated that earlier onset of febrile seizures in the febrile seizure (FS) and febrile seizure plus (FS+) phenotypes may occur in the presence of a SCN1A mutation. This was because of the age-related onset of Dravet syndrome, which typically begins in the first year of life. We found that patients with FS and FS+ with SCN1A mutations had earlier median onset of febrile seizures compared to the population median. Patients with GABRG2 mutations had a similar early onset in contrast to patients with SCN1B mutations where onset was later. This study is the first to demonstrate that a specific genetic abnormality directly influences the FS and FS+ phenotype in terms of age of onset.  相似文献   

17.
Till now truncation mutations of voltage-gated sodium channel alpha subunit type I (SCN1A) gene were mostly found in severe myoclonic epilepsy of infancy (SMEI) patients. In this research we first identified two novel de novo truncation mutations (S662X and M145fx148) in two patients whose phenotypes were quite milder compared with SMEI patients. One patient was diagnosed as generalized epilepsy with febrile seizures plus (GEFS+); the other had focal seizures. Both patients had good response to anti-epileptic therapy (valproate or the combination of valproate and topiramate). Our findings extended the utility of the SCN1A gene testing and further confirmed the complex relationship between genotype and phenotype of SCN1A mutations. Further work is needed to optimize the protocol for specific genetic testing in children with epilepsy.  相似文献   

18.
Background –  Mutations in the three genes SCN1A , SCN1B and GABRG2 , all encoding subunits of ion channels, have been known to cause generalized epilepsy with febrile seizures plus (GEFS+) in families of different origin.
Objective –  To study the occurrence of mutations in these genes in families with GEFS+ or a GEFS+ resembling phenotype of Scandinavian origin.
Material and methods –  We performed linkage analysis in 19 Scandinavian families with a history of febrile seizures (FS) and epilepsy or GEFS+. Where linkage could not be excluded, the genes of interest were sequenced.
Results –  We identified only one mutation in SCN1A , which seems to be a rare variant with no functional consequence.
Conclusion –  This suggests that mutations in these three genes are not a prevalent cause of familial cases of FS and epilepsy or GEFS+ in Scandinavia.  相似文献   

19.
BACKGROUND: Generalized epilepsy with febrile seizures plus (GEFS+) is an autosomal dominant syndrome characterized by febrile seizures (FS) and a variety of afebrile generalized seizure types. GEFS+ has previously been linked to mutations in two genes encoding the voltage-gated sodium channel alpha-subunit (SCN1A) and beta1-subunit (SCN1B). We studied a large family with FS and partial as well as generalized seizure types. METHODS: All but two living affected family members were interviewed and examined. Information on deceased affected family members was sought. EEG for 11 affected family members and one unaffected family member were obtained. Genetic linkage analysis and mutation screening of SCN1A were performed on blood samples from 16 affected individuals and their first-degree relatives. RESULTS: There were 27 affected family members; 18 were alive at the time of the study. All affected family members had FS; seven had FS only, and 19 also had afebrile seizures. Eleven individuals continued to have FS beyond 6 years of age. FS were complex in 12 family members, usually with prolonged duration. The index patient had right temporal lobe epilepsy and hippocampal sclerosis. Four other patients had strong historical evidence of temporal lobe epilepsy, and three others had nonlocalizing evidence of partial epilepsy. Pedigree analysis indicated autosomal dominant transmission. All affected individuals who were tested and one asymptomatic individual had a sodium channel mutation of SCN1A, an A-->C transversion at nucleotide 3809 resulting in the substitution of lysine 1270 by threonine in the D3/S2 segment (designated as K1270T). CONCLUSIONS: Our findings indicate that partial epilepsy preceded by FS can be associated with sodium channel mutations and may represent a variant of GEFS+.  相似文献   

20.
Fever‐associated syndromic epilepsies ranging from febrile seizures plus (FS+) to Dravet syndrome have a significant genetic component. However, apart from SCN1A mutations in >80% of patients with Dravet syndrome, the genetic underpinnings of these epilepsies remain largely unknown. Therefore, we performed a genome‐wide screening for copy number variations (CNVs) in 36 patients with SCN1A‐negative fever‐associated syndromic epilepsies. Phenotypes included Dravet syndrome (n = 23; 64%), genetic epilepsy with febrile seizures plus (GEFS+) and febrile seizures plus (FS+) (n = 11; 31%) and unclassified fever‐associated epilepsies (n = 2; 6%). Array comparative genomic hybridization (CGH) was performed using Agilent 4 × 180K arrays. We identified 13 rare CNVs in 8 (22%) of 36 individuals. These included known pathogenic CNVs in 4 (11%) of 36 patients: a 1q21.1 duplication in a proband with Dravet syndrome, a 14q23.3 deletion in a proband with FS+, and two deletions at 16p11.2 and 1q44 in two individuals with fever‐associated epilepsy with concomitant autism and/or intellectual disability. In addition, a 3q13.11 duplication in a patient with FS+ and two de novo duplications at 7p14.2 and 18q12.2 in a patient with atypical Dravet syndrome were classified as likely pathogenic. Six CNVs were of unknown significance. The identified genomic aberrations overlap with known neurodevelopmental disorders, suggesting that fever‐associated epilepsy syndromes may be a recurrent clinical presentation of known microdeletion syndromes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号