首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The leaf extract of Acalypha alnifolia with different solvents — hexane, chloroform, ethyl acetate, acetone and methanol — were tested for larvicidal activity against three important mosquitoes such as malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus. The medicinal plants were collected from the area around Kallar Hills near the Western Ghats, Coimbatore, India. A. alnifolia plant was washed with tap water and shade dried at room temperature. The dried leaves were powdered mechanically using commercial electrical stainless steel blender. The powder 800 g of the leaf material was extract with 2.5 litre of various each organic solvents such as hexane, chloroform, ethyl acetate, acetone, methanol for 8 h using Soxhlet apparatus, and filtered. The crude plant extracts were evaporated to dryness in a rotary vacuum evaporator. The yield of extracts was hexane (8.64 g), chloroform (10.74 g), ethyl acetate (9.14 g), acetone (10.02 g), and methanol (11.43 g). One gram of the each plant residue was dissolved separately in 100 ml of acetone (stock solution) from which different concentrations, i.e., 50, 150, 250, 350 and 450 ppm, was prepared. The hexane, chloroform, ethyl acetate, acetone was moderate considerable mortality; however, the highest larval mortality was methanolic extract observed in three mosquito vectors. The larval mortality was observed after 24 h exposure. No mortality was observed in the control. The early fourth-instar larvae of A. stephensi had values of LC50 = 197.37, 178.75, 164.34, 149.90 and 125.73 ppm and LC90 = 477.60, 459.21, 435.07, 416.20 and 395.50 ppm, respectively. The A. aegypti had values of LC50 = 202.15, 182.58, 160.35, 146.07 and 128.55 ppm and LC90 = 476.57, 460.83, 440.78, 415.38 and 381.67 ppm, respectively. The C. quinquefasciatus had values of LC50 = 198.79, 172.48, 151.06, 140.69 and 127.98 ppm and LC90 = 458.73, 430.66, 418.78, 408.83 and 386.26 ppm, respectively. The results of the leaf extract of A. alnifloia are promising as good larvicidal activity against the mosquito vector, A. stephensi, A. aegypti, C. quinquefasciatus. Therefore, this study provides first report on the larvicidal activities against three species of mosquito vectors of this plant extracts from Southern India.  相似文献   

2.
Larvicides play a vital role in controlling mosquitoes in their breeding sites. The present study was carried out to establish the larvicidal activities of mycosynthesized silver nanoparticles (AgNPs) against vectors: Aedes aegypti and Anopheles stephensi responsible for diseases of public health importance. The AgNPs synthesized by filamentous fungus Cochliobolus lunatus, characterized by UV–Vis spectrophotometry, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The characterization studies confirmed the spherical shape and size (3–21 nm) of silver nanoparticles. The efficacy of mycosynthesized AgNPs at all the tested concentrations (10, 5, 2.5, 1.25, 0.625, and 0.3125 ppm) against second, third, and fourth instar larvae of A. aegypti (LC50 1.29, 1.48, and 1.58; LC90 3.08, 3.33, and 3.41 ppm) and against A. stephensi (LC50 1.17, 1.30, and 1.41; LC90 2.99, 3.13, and 3.29 ppm) were observed, respectively. The mortality rates were positively correlated with the concentration of AgNPs. Significant (P < 0.05) changes in the larval mortality was also recorded between the period of exposure against fourth instar larvae of A. aegypti and A. stephensi. The possible larvicidal activity may be due to penetration of nanoparticles through membrane. Toxicity studies carried out against non-target fish species Poecilia reticulata, the most common organism in the habitats of A. aegypti and A. stephensi showed no toxicity at LC50 and LC90 doses of the AgNPs. This is the first report on mosquito larvicidal activity of mycosynthesized nanoparticles. Thus, the use of fungus C. lunatus to synthesize silver nanoparticles is a rapid, eco-friendly, and a single-step approach and the AgNps formed can be potential mosquito larvicidal agents.  相似文献   

3.
The efficacy of whole plant extracts of Leucas aspera and Bacillus sphaericus has been proven against larvicidal and pupicidal activities of the malarial vector, Anopheles stephensi. The present study investigated the larvicidal and pupicidal activity against the first to fourth instar lavae and pupae of the laboratory-reared mosquitoes, A. stephensi. The medicinal plants were collected from the area around Maruthamalai hills, Coimbatore, Tamil Nadu, India. L. aspera whole plant was washed with tap water and shade dried at room temperature. The dried plant materials were powdered by an electric blender. From the powder, 100 g of the plant materials was extracted with 300 ml of organic solvents of ethanol for 8 h using a Soxhlet apparatus. The extracts were filtered through a Buchner funnel with Whatman number 1 filter paper. The crude plant extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure. All larval instars and pupae have considerably moderate mortality; however, the highest larval mortality was the ethanolic extract of whole plant L. aspera against the first to fourth instar larvae and pupae values of LC50 = I instar was 9.695%, II instar was 10.272%, III instar was 10.823%, and IV instar was 11.303%, and pupae was 12.732%. B. spaericus against the first to fouth instar larvae and pupae had the following values: I instar was 0.051%, II instar was 0.057%, III instar was 0.062%, IV instar was 0.066%, and for the pupae was 0.073%. No mortality was observed in the control. The present results suggest that the ethanolic extracts of L. aspera and B. sphaericus provided an excellent potential for controlling of malarial vector, A. stephensi.  相似文献   

4.
The present study explored the effects of crude leaf acetone, chloroform, hot water, methanol, petroleum ether (60–80°C), and water extracts of Calotropis procera (Ait) R. Br., Canna indica L., Hibiscus rosa-sinensis Linn., Ipomoea carnea Jacq. spp. fistulosa Choisy, and Sarcostemma brevistigma Wight that were selected for investigating larvicidal potential against second and fourth instar larvae of the laboratory-reared mosquito species, Culex quinquefasciatus Say, in which the major lymphatic filariasis was used. All plant extracts showed moderate larvicidal effects after 24 h of exposure at 1,000 ppm; however, the highest larval mortality was found in leaf acetone, chloroform, methanol, and petroleum ether of C. indica (LC50 = 29.62, 59.18, 40.77, and 44.38 ppm; LC90 = 148.55, 267.87, 165.00, and 171.91 ppm) against second instar larvae (LC50 = 121.88, 118.25, 69.76, and 56.31 ppm; LC90 = 624.35, 573.93, 304.27, and 248.24 ppm) and against fourth instar larvae and acetone, hot water, methanol, and petroleum ether extracts of I. carnea (LC50 = 61.17, 41.07, 41.82, and 39.32 ppm; LC90 = 252.91, 142.67, 423.76, and 176.39 ppm) against second instar larvae (LC50 = 145.37, 58.00, 163.81, and 41.75 ppm; LC90 = 573.30, 181.10, 627.38, and 162.63 ppm) and against fourth instar larvae of C. quinquefasciatus, respectively. These results suggest that the acetone, methanol extracts of C. indica and hot water, petroleum ether extracts of I. carnea have the potential to be used as an ideal eco-friendly approach for the control of the major lymphatic filariasis vector, C. quinquefasciatus.  相似文献   

5.
The early fourth instar larvae of Culex quinquefasciatus, reared in the laboratory were used for larvicidal assay with leaf extracts of Vitex negundo, Vitex trifolia, Vitex peduncularis and Vitex altissima. The methanol extracts of the four species possessed varying levels of larvicidal nature. The highest larvicidal activity was found with the extract of V. trifolia (LC50 = 41.41 ppm) followed by V. peduncularis (LC50 = 76.28 ppm), V. altissima (LC50 = 128.04 ppm) and V. negundo (LC50 = 212.57 ppm).  相似文献   

6.
Preet S  Sneha A 《Parasitology research》2011,108(6):1533-1539
Aedes aegypti is the primary vector of dengue, yellow fever and chikungunya in India and other South East Asian countries, and novel insecticides for vector control are urgently needed. In the present investigation, efficacy of potash alum, a traditionally known double salt in Indian and Chinese medicine system, was tested against the larvae of dengue vector, A. aegypti. LC50, LC90 and LC99 values were recorded for various instar larvae where I instar larvae were found to be the most susceptible and IV instar larvae as the least susceptible one. The LC50 values of crude and standard potash alum of various instar larvae ranged between 15.29 and 48.53 ppm and 20.50–65.10 ppm, respectively. Biochemical changes were also evidenced in IV instar A. aegypti larvae following a sublethal exposure for 24 h in the levels of various nutrient reserves and primary metabolites such as sugar, glycogen, lipids and proteins suggesting possible mode of action responsible for larval mortality. Sugar and glycogen concentrations were measured as 24.6 and 10.67 μg per five larvae in controls which were significantly (p < 0.05) reduced by 32.11–93.98% and 39.26–94.47%, respectively, in larvae treated with crude alum. In controls, protein and lipid content were recorded as 210.74 and 94.71 μg per five larvae which dropped up to 26.53% and 25.5%, respectively, in larvae following treatment with crude alum. Moreover, drastic changes were also recorded for DNA content with 25.39–44.17% decrease in crude alum-treated larvae. It is evident from these results that potash alum, a fairly cheaper and readily available ecofriendly compound could be recommended as a potential chemical larvicide against dengue vector at mosquito breeding sites in the vicinity of human dwellings.  相似文献   

7.
The larvicidal activities of methanolic fractions from Adhatoda vasica leaf extracts were investigated against the bancroftian filariasis vector Culex quinquefasciatus and dengue vector Aedes aegypti. The results indicated that the mortality rates was high at 100, 150, 200 and 250 ppm of methanol extract of fractions III with R f value 0.67 and methanol extract of fraction V with R f value 0.64 of A. vasica against all the larval instars of C. quinquefasciatus and A. aegypti. The result of log probit analysis (at 95% confidence level) revealed that lethal concentration, LC50 and LC90 values were 106.13 and 180.6 ppm for fraction III, 110.6 and 170 ppm for fraction V of C. quinquefasciatus. And, the LC50 and LC90 values were 157.5 and 215.5 ppm for fraction III of A. aegypti and 120 and 243.5 ppm for the fraction V of A. aegypti, respectively. All the tested fractions proved to have strong larvicidal activity (doses from 100 to 250 ppm) against C. quinquefasciatus and A. aegypti. In general, second instar was more susceptible than the later instar. The results achieved suggest that, in addition to their ethnopharmacology value, A. vasica may also serve as a natural larvicidal agent.  相似文献   

8.
The aim of this study was to investigate the larvicidal potential of the hexane, chloroform, ethyl acetate, acetone, methanol, and aqueous leaf extracts of Nelumbo nucifera Gaertn. (Nymphaeaceae) and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Anopheles subpictus Grassi and Culex quinquefasciatus Say (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. The results recorded from UV–vis spectrum, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared support the biosynthesis and characterization of silver nanoparticles. Larvae were exposed to varying concentrations of plant extracts and synthesized silver nanoparticles for 24 h. All extracts showed moderate larvicidal effects; however, the maximum efficacy was observed in crude methanol, aqueous, and synthesized silver nanoparticles against the larvae of A. subpictus (LC50 = 8.89, 11.82, and 0.69 ppm; LC90 = 28.65, 36.06, and 2.15 ppm) and against the larvae of C. quinquefasciatus (LC50 = 9.51, 13.65, and 1.10 ppm; LC90 = 28.13, 35.83, and 3.59 ppm), respectively. These results suggest that the leaf methanol, aqueous extracts of N. nucifera, and green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus and C. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the plant extracts and synthesized nanoparticles.  相似文献   

9.
The purpose of the present study was to assess the effect of crude extracts of marine actinobacteria on larvicidal, repellent, and ovicidal activities against Culex tritaeniorhynchus and Culex gelidus (Diptera: Culicidae). The early fourth instar larvae of C. tritaeniorhynchus and C. gelidus, reared in the laboratory, were used for larvicidal, ovicidal, and repellent assay with crude extracts of actinobacteria. Saccharomonospora spp. (LK-1), Streptomyces roseiscleroticus (LK-2), and Streptomyces gedanensis (LK-3) were identified as potential biocide producers. Based on the antimicrobial activity, three strains were chosen for larvicidal activity. The marine actinobacterial extracts showed moderate to high larvicidal effects after 24 h of exposure at 1,000 ppm and the highest larval mortality was found in extract of LK-3 (LC50 = 108.08 ppm and LC90 = 609.15 ppm) against the larvae of C. gelidus and (LC50 = 146.24 ppm and LC90 = 762.69 ppm) against the larvae of C. tritaeniorhynchus. Complete protections for 240 min were found in crude extract of LK-2 and LK-3 at 1,000 ppm, against mosquito bites of C. tritaeniorhynchus and C. gelidus, respectively. After 24-h treatment, mean percent hatchability of the ovicidal activity was observed. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Crude extracts of LK-1 and LK-3 showed no hatchability at 1,000 ppm against C. tritaeniorhynchus and C. gelidus, respectively. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. tritaeniorhynchus and C. gelidus.  相似文献   

10.
This study investigates the larvicidal potential of indigenous plant extracts from commonly used medicinal herbs as an environmentally safe measure to control the filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). The early fourth-instar larvae of C. quinquefasciatus, reared in the laboratory, were used for larvicidal assay with water, hot water, acetone, chloroform, and methanol leaf, stem-bark, and flower extracts of Acacia arabica Willd. Sans, Cedrus deodara Roxb, Hibiscus rosa-sinensis L., Mangifera indica L., Nerium indicum Mill., Nicotiana tabacum Linn., Pongamia pinnata (L.) Pierre, and Solanum nigrum Linn. All plant extracts showed moderate larvicidal effects after 24 h of exposure at 1,000 ppm; however, the highest larval mortality was found in stem-bark hot water, acetone, and methanol extracts of C. deodara (LC50 = 133.85, 141.60, and 95.19 ppm, LC90 = 583.14, 624.19, and 639.99 ppm) and leaf hot water, acetone, methanol, and chloroform extracts of N. tabacum (LC50 = 76.27, 163.81, 83.38, and 105.85 ppm, LC90 = 334.72, 627.38, 709.51, and 524.39 ppm) against the larvae of C. quinquefasciatus, respectively. This is an ideal ecofriendly approach for the control of lymphatic filariasis vector, C. quinquefasciatus.  相似文献   

11.
Mosquito control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. The acetone, chloroform, ethyl acetate, hexane, methanol and petroleum ether extracts of leaf, flower and seed of Cassia auriculata L., Leucas aspera (Willd.), Rhinacanthus nasutus KURZ., Solanum torvum Swartz and Vitex negundo Linn. were tested against fourth instar larvae of malaria vector, Anopheles subpictus Grassi and Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest mortality was found in leaf petroleum ether, flower methanol extracts of C. auriculata, flower methanol extracts of L. aspera and R. nasutus, leaf and seed methanol extracts of S. torvum and leaf hexane extract of V. negundo against the larvae of A. subpictus (LC50 = 44.21, 44.69, 53.16, 41.07, 35.32, 28.90 and 44.40 ppm; LC90 = 187.31, 188.29, 233.18, 142.66, 151.60, 121.05 and 192.11 ppm, respectively) and against the larvae of C. tritaeniorhynchus (LC50 = 69.83, 51.29, 81.24, 71.79, 44.42, 84.47 and 65.35 ppm; LC90 = 335.26, 245.63, 300.45, 361.83, 185.09, 351.41 and 302.42 ppm, respectively). These results suggest that the leaf petroleum ether, flower methanol extracts of C. auriculata, leaf and seed methanol extracts of S. torvum and leaf hexane extract of V. negundo have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus and C. tritaeniorhynchus. This is the first report on the mosquito larvicidal activity of the medicinal plant extracts.  相似文献   

12.
Microbial control agents offer alternatives to chemical pest control as they can be more selective than chemical insecticides. The present study evaluates the mosquito larvicidal potential of microbial pigment prodigiosin produced by Serratia marcescens NMCC46 against Aedes aegypti and Anopheles stephensi. The pigment of S. marcescens NMCC46 was extracted after 24 h from mannitol containing nutrient broth media. The effects of crude extracted pigment on the growth, survival, development, and other life cycle aspects were studied. The LC50 and LC90 values of second, third, and fourth instars of A. aegypti (LC50 = 41.65, 139.51, 103.95; LC90 = 117.81, 213.68, 367.82) and A. stephensi (LC50 = 51.12, 105.52, 133.07; LC90 = 134.81, 204.45, 285.35) were determined. At higher concentration (500 ppm), mortality starts within first 6 h of exposure. More than 50% mortality occurs within the first 24 h. The overall observed effects against A. aegypti and A. stephensi larvae after 48 h were increasing percent survival larvae, survival pupation, adult emergence with decreasing crude pigment extract concentration. These ensure that the resultant mosquito population reduction is substantial even where the larvicidal potential is minimal. The UV (λ max = 536 nm), TLC (Rf = 0.9), HPLC, and FTIR analysis of crude pigment shows the presence of prodigiosin as active compound. Thus, the active compound produced by this species would be more useful against vectors responsible for diseases of public health importance. This is the first report on mosquito larvicidal activity of prodigiosin produced by Serratia species.  相似文献   

13.
In a search for natural products that could be used to control the vectors of tropical diseases, extracts of medicinal plants Plumbago zeylanica and Cestrum nocturnum have been tested for larvicidal activity against second, third, and fourth instar larvae of Aedes aegypti. The LC50 values of all the extracts in different solvents of both the plants were less than 50 ppm (15.40–38.50 ppm) against all tested larval instars. Plant extracts also affected the life cycle of A. aegypti by inhibition of pupal development and adult emergence with increasing concentrations. The larvicidal stability of the extracts at five constant temperatures (19°C, 22°C, 25°C, 28°C, and 31°C) evaluated against fourth instar larvae revealed that toxicity of both plant extracts increases with increase in temperature. Toxicity studies carried out against fish species Poecilia reticulata, the most common nontarget organism in the habitats of A. aegypti, showed almost nil to meager toxicity at LC50 and LC90 doses of the plant extracts. The qualitative analysis of crude extracts of P. Zeylanica and C. nocturnum revealed the presence of bioactive phytochemicals with predominance of plumbagin in P. zeylanica and saponins in C. nocturnum. Partially purified plumbagin from P. zeylanica and saponins from C. nocturnum were obtained, and their presence was confirmed by thin-layer chromatography and biochemical tests. The bioassay experiment of partially purified secondary metabolites showed potent mosquito larvicidal activity against the fourth instar larval form. Therefore, this study explored the safer and effective potential of plant extracts against vector responsible for diseases of public health importance.  相似文献   

14.
The present study explored the effects of Jatropha curcas leaf extract and Bacillus thuringiensis israelensis larvicidal activity against the lymphatic filarial vector, Culex quinquefasciatus. Wights were selected for investigating the larvicidal potential against the first to fourth instar larvae of the laboratory-reared mosquito species, C. quinquefasciatus Say, in which the major lymphatic filariasis was used. The medicinal plants were collected from the area around Bharathiar University, Coimbatore. The dried plant materials were powdered by an electric blender. From the powder, 100 g of the plant materials was extracted with 300 ml of organic solvents of methanol for 8 h, using a Soxhlet apparatus, and filtered. The crude plant extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal effects after 24 h of exposure; however, the highest larval mortality was found in the leaf extract of methanol J. curcas against the first to fourth instar larvae of values LC50 = 1.200%, 1.290%, 1.358%, and 1.448% and LC90 = 2.094%, 2.323%, 2.444%, and 2.544% and B. thuringiensis israelensis against the first to fourth instar larvae of values LC50 = 9.332%, 9.832%, 10.212%, 10.622% and LC90 = 15.225%, 15.508%, 15.887%, and 15.986% larvae of C. quinquefasciatus, respectively. No mortality was observed in the control. These results suggest methanol extracts of J. curcas and B. thuringiensis israelensis have potential to be used as an ideal eco-friendly approach for the control of the major lymphatic filarial vector, C. quinquefasciatus.  相似文献   

15.
Due to the global health problems associated with mosquito-borne diseases, over two million people primarily in the tropical countries are at risk. The widely and commonly used chemical method though effective, has some major disadvantages making insect control practically difficult. In view of the above, it is unavoidable to search for new molecules, which are eco-friendly, cheaper, and safer. The present study deals with evaluation of bioactive potential of two commonly occurring plants against mosquitoes presenting an alternative to the conventional chemical methods. Essential oils extracted by steam distillation from rhizome of Zingiber officinalis and leaf and stem of Achyranthes aspera were evaluated for larvicidal, attractant/repellent, and oviposition attractant/deterrent activity against two mosquito species viz. Aedes aegypti and Culex quinquefasciatus. The highest larvicidal activity, i.e., LC50 = 154 ppm and LC50 = 197 ppm for A. aegypti and C. quinquefasciatus, respectively was shown by Z. officinalis. This oil also offers 5-h protection at the concentration of 0.5 mg/cm2 from both mosquito species. The highest oviposition deterrence activity was exhibited by A. aspera stem oil, i.e., 100% and 85.71%, in case of A. aegypti and C. quinquefasciatus, respectively, at the concentration of 0.1%. These results reveal that both these oils have control potential against A. aegypti and C. quinquefasciatus.  相似文献   

16.
Chrysosporium keratinophilum is known to be a keratinophilic fungus and an effective mosquito control agent. This fungus was grown on Sabauraud dextrose broth in the laboratory at 25°C, while the relative humidity was maintained at 75 ± 5% for 15 days. Filtration process of metabolites was done using whatman-1 filter paper, column chromatography and flash, chromatography. Larvicidal efficacy was performed against all instars of Culex quinquefasciatus. Larvicidal efficacy was performed at six different concentrations with different effective ratios (ethanol/metabolites: 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, and 1:9). The mortality values were then subjected by the probit analysis. The larval mortalities were observed for a period of 24, 48, and 72 h, respectively. The first and second instars were highly susceptible to 2:8 ratio. In the first instar after column chromatography, LC50 = 26.66 ppm, LC90 = 121.96 ppm, LC99 = 231.86 ppm were observed after 72 h, while after flash chromatography the LC50 = 20 ppm, LC90 = 123.02 ppm, LC99 = 281.83 ppm were observed after 48 h. In the second instar after column chromatography, LC50 = 18.19 ppm, LC90 = 102.32 ppm, LC99 = 162.18 ppm were observed after 72 h, while doing flash chromatography 100% mortality could be recorded after 24 h. In the third instar after column chromatography, the LC50 = 38.01 ppm, LC90 = 131.82 ppm, LC99 = 245.47 ppm were observed after 72 h, while after flash chromatography the LC50 = 17.78 ppm, LC90 = 100 ppm, LC99 = 151.35 ppm. In the fourth instar, LC50 = 61.65 ppm, LC90 = 181.97 ppm, LC99 = 436.51 ppm, while after flash chromatography LC50 = 40 ppm, LC90 = 120 ppm, and LC99 = 223.87 ppm were observed after 72 h. The extracellular metabolites of C. keratinophilum could be a fungal based larvicides resource for the control of C. quinquefasciatus larvae. This could be another agent for biotechnological exploitation, if found suitable in field trials.  相似文献   

17.
Plant extracts, especially botanical insecticides, are currently studied more and more because of the possibility of their use in plant protection. Biological activity of five solvent plant extracts were studied using fourth instar larvae of gram pod borer Helicoverpa armigera (Lepidoptera: Noctuidae), cotton leaf roller Sylepta derogata (Lepidoptera: Pyralidae) and malaria vector Anopheles stephensi (Diptera: Culicidae). Antifeedant and larvicidal activity of acetone, chloroform, ethyl acetate, hexane and methanol peel, leaf and flower extracts of Citrus sinensis, Ocimum canum, Ocimum sanctum and Rhinacanthus nasutus were used in this study. During preliminary screening, the extracts were tested at 1,000 ppm concentration. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in peel chloroform extract of C. sinensis, flower methanol extract of O. canum against the larvae of H. armigera (LC50 = 65.10,51.78, LC90 = 277.39 and 218.18 ppm), peel methanol extract of C. sinensis, flower ethyl acetate extract of O. canum and leaf acetone extract of O. sanctum against the larvae of S. derogata (LC50 = 20.27,58.21,36.66, LC90 =113.15,285.70 and 668.02 ppm), peel methanol extract of C. sinensis, leaf and flower ethyl acetate extracts of O. canum against the larvae of A. stephensi (LC50 = 95.74,101.53,28.96, LC90 = 303.20,492.43 and 168.05 ppm), respectively. These results suggest that the chloroform and methanol extract of C. sinensis, ethyl acetate flower extracts of O. canum and acetone extract of O. sanctum have the potential to be used as an ideal eco-friendly approach for the control of the agricultural pests H. armigera, S. derogata and medically important vector A. stephensi.  相似文献   

18.
Larvicidal activity of crude hexane, ethyl acetate, petroleum ether, acetone, and methanol extracts of the leaf of five species of cucurbitaceous plants, Citrullus colocynthis, Coccinia indica, Cucumis sativus, Momordica charantia, and Trichosanthes anguina, were tested against the early fourth instar larvae of Aedes aegypti L. and Culex quinquefasciatus (Say) (Diptera: Culicidae). The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in petroleum ether extract of C. colocynthis, methanol extracts of C. indica, C. sativus, M. charantia, and acetone extract of T. anguina against the larvae of A. aegypti (LC50 = 74.57, 309.46, 492.73, 199.14, and 554.20 ppm) and against C. quinquefasciatus (LC50 = 88.24, 377.69, 623.80, 207.61, and 842.34 ppm), respectively. The petroleum ether extract of C. colocynthis and methanol extract of M. charantia were more effective than the other extracts. This is an ideal eco-friendly approach for the control of the dengue vector, A. aegypti, and the lymphatic filariasis vector, C. quinquefasciatus.  相似文献   

19.
In view of the recently increased interest in developing plant-based insecticides as an alternative to chemical insecticides, this study was undertaken to assess the larvicidal potential of the various fruit wall extracts of Momordica charantia (cucurbitaceae) against two species of mosquito vectors, Anophels stephensi and Culex quinquefasciatus. Among the extracts tested, petroleum ether (LC50 = 27.60; 17.22 ppm and 41.36; 15.62 ppm) extract was found more effective than carbon tetrachloride (LC50 = 49.58; 16.15 ppm and 80.61; 27.64 ppm) and methanol (LC50 = 142.82; 95.98 ppm and 1,057.49; 579.93 ppm) extracts towards anopheline and culicine larvae after 24 and 48 h of exposure respectively. Thus, all fruit wall extracts of M. charantia are toxic to both the larval species. M. charantia may, therefore, act as an effective biolarvicide against mosquitoes in the future.  相似文献   

20.
In mosquito control programs, botanical origin may have the potential to be used successfully as larvicides. The larvicidal activity of crude acetone, hexane, ethyl acetate, methanol, and petroleum ether extracts of the leaf of Centella asiatica Linn., Datura metal Linn., Mukia scabrella Arn., Toddalia asiatica (Linn.) Lam, extracts of whole plant of Citrullus colocynthis (Linn.) Schrad, and Sphaeranthus indicus Linn. were assayed for their toxicity against the early fourth instar larvae of Culex quinquefasciatus (Diptera: Culicidae). The larval mortality was observed after 24 h exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in whole plant petroleum ether extract of C. colocynthis. In the present study, bioassay-guided fractionation of petroleum ether extract led to the separation and identification of fatty acids; oleic acid and linoleic acid were isolated and identified as mosquito larvicidal compounds. Oleic and Linoleic acids were quite potent against fourth instar larvae of Aedes aegypti L. (LC50 8.80, 18.20 and LC90 35.39, 96.33 ppm), Anopheles stephensi Liston (LC50 9.79, 11.49 and LC90 37.42, 47.35 ppm), and Culex quinquefasciatus Say (LC50 7.66, 27.24 and LC90 30.71, 70.38 ppm). The structure was elucidated from infrared, ultraviolet, 1H-nuclear magnetic resonance, 13C-NMR, and mass spectral data. This is the first report on the mosquito larvicidal activity of the reported isolated compounds from C. colocynthis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号