首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report that human embryonic stem cells contain a population of vascular progenitor cells that have the ability to differentiate into endothelial-like and smooth muscle (SM)-like cells. Vascular progenitor cells were isolated from EBs grown in suspension for 10 days and were characterized by expression of the endothelial/hematopoietic marker CD34 (CD34+ cells). When these cells are subsequently cultured in EGM-2 (endothelial growth medium) supplemented with vascular endothelial growth factor-165 (50 ng/mL), they give rise to endothelial-like cells characterized by a cobblestone cell morphology, expression of endothelial markers (platelet endothelial cell-adhesion molecule-1, CD34, KDR/Flk-1, vascular endothelial cadherin, von Willebrand factor), incorporation of acetylated low-density lipoprotein, and formation of capillary-like structures when placed in Matrigel. In contrast, when CD34+ cells are cultured in EGM-2 supplemented with platelet-derived growth factor-BB (50 ng/mL), they give rise to SM-like cells characterized by spindle-shape morphology, expression of SM cell markers (alpha-SM actin, SM myosin heavy chain, calponin, caldesmon, SM alpha-22), and the ability to contract and relax in response to common pharmacological agents such as carbachol and atropine but rarely form capillary-like structures when placed in Matrigel. Implantation studies in nude mice show that both cell types contribute to the formation of human microvasculature. Some microvessels contained mouse blood cells, which indicates functional integration with host vasculature. Therefore, the vascular progenitors isolated from human embryonic stem cells using methods established in the present study could provide a means to examine the mechanisms of endothelial and SM cell development, and they could also provide a potential source of cells for vascular tissue engineering.  相似文献   

2.
Endothelial progenitor cells (EPCs) were shown to be present in systemic circulation and cord blood. We investigated whether EPCs display specific properties compared with mature endothelial cells. Human cord blood CD34+ cells were isolated and adherent cells were amplified under endothelial conditions. Expression of specific markers identified them as endothelial cells, also called endothelial progenitor-derived cells (EPDCs). When compared to mature endothelial cells, human umbilical vein endothelial cells (HUVECs) and human bone marrow endothelial cells (HBMECs), endothelial markers, were expressed to the same extent except for KDR, which is expressed more in EPDCs. They display a higher proliferation potential. Functional studies demonstrated that EPDCs were more sensitive to angiogenic factors, which afford these cells greater protection against cell death compared with HUVECs. Moreover, EPDCs exhibit more hematopoietic supportive activity than HUVECs. Finally, studies in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice demonstrated that human circulating EPCs are able to colonize a Matrigel plug. EPDCs display the morphology and phenotype of endothelial cells. Their functional features indicate, however, that although these cells have undergone some differentiation steps, they still have the properties of immature cells, suggesting greater tissue repair capabilities. Future use of in vitro amplified peripheral blood EPDCs may constitute a challenging strategy for cell therapy.  相似文献   

3.
Endothelial progenitor cells in infantile hemangioma   总被引:24,自引:1,他引:24       下载免费PDF全文
Yu Y  Flint AF  Mulliken JB  Wu JK  Bischoff J 《Blood》2004,103(4):1373-1375
Infantile hemangioma is an endothelial tumor that grows rapidly after birth but slowly regresses during early childhood. Initial proliferation of hemangioma is characterized by clonal expansion of endothelial cells (ECs) and neovascularization. Here, we demonstrated mRNA encoding CD133-2, an important marker for endothelial progenitor cells (EPCs), predominantly in proliferating but not involuting or involuted hemangioma. Progenitor cells coexpressing CD133 and CD34 were detected by flow cytometry in 11 of 12 proliferating hemangioma specimens from children 3 to 24 months of age. Furthermore, in 4 proliferating hemangiomas, we showed that 0.14% to 1.6% of CD45(-) nucleated cells were EPCs that coexpressed CD133 and the EC marker KDR. This finding is consistent with the presence of KDR(+) immature ECs in proliferating hemangioma. Our results suggest that EPCs contribute to the early growth of hemangioma. To our knowledge, this is the first study to show direct evidence of EPCs in a human vascular tumor.  相似文献   

4.
Recent findings support the hypothesis that the CD34(+)-cell population in bone marrow and peripheral blood contains hematopoietic and endothelial progenitor and stem cells. In this study, we report that human AC133(+) cells from granulocyte colony-stimulating factor-mobilized peripheral blood have the capacity to differentiate into endothelial cells (ECs). When cultured in the presence of vascular endothelial growth factor (VEGF) and the novel cytokine stem cell growth factor (SCGF), AC133(+) progenitors generate both adherent and proliferating nonadherent cells. Phenotypic analysis of the cells within the adherent population reveals that the majority display endothelial features, including the expression of KDR, Tie-2, Ulex europaeus agglutinin-1, and von Willebrand factor. Electron microscopic studies of these cells show structures compatible with Weibel-Palade bodies that are found exclusively in vascular endothelium. AC133-derived nonadherent cells give rise to both hematopoietic and endothelial colonies in semisolid medium. On transfer to fresh liquid culture with VEGF and SCGF, nonadherent cells again produce an adherent and a nonadherent population. In mice with severe combined immunodeficiency, AC133-derived cells form new blood vessels in vivo when injected subcutaneously together with A549 lung cancer cells. These data indicate that the AC133(+)-cell population consists of progenitor and stem cells not only with hematopoietic potential but also with the capacity to differentiate into ECs. Whether these hematopoietic and endothelial progenitors develop from a common precursor, the hemangioblast will be studied at the single-cell level.  相似文献   

5.
We report a method of purifying, characterizing and expanding endothelial cells (ECs) derived from CD133(+) bone marrow cells, a subset of CD34(+) haematopoietic progenitors. Isolated using immunomagnetic sorting (mean purity 90 +/- 5%), the CD133(+) bone marrow cells were grown on fibronectin-coated flasks in M199 medium supplemented with fetal bovine serum (FBS), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and insulin growth factor (IGF-1). The CD133(+) fraction contained 95 +/- 4% CD34(+) cells, 3 +/- 2% cells expressing VEGF receptor (VEGFR-2/KDR), but did not express von Willebrand factor (VWF), VE-cadherin, P1H12 or TE-7. After 3 weeks of culture, the cells formed a monolayer with a typical EC morphology and expanded 11 +/- 5 times. The cells were further purified using Ulex europaeus agglutinin-1 (UEA-1)-fluorescein isothiocyanate (FITC) and anti-FITC microbeads, and expanded with VEGF for a further 3 weeks. All of the cells were CD45(-) and CD14(-), and expressed several endothelial markers (UEA-1, VWF, P1H12, CD105, E-selectin, VCAM-1 and VE-cadherin) and typical Weibel-Palade bodies. They had a high proliferative potential (up to a 2400-fold increase in cell number after 3 weeks of culture) and the capacity to modulate cell surface antigens upon stimulation with inflammatory cytokines. Purified ECs were also co-cultivated with CD34(+) cells, in parallel with a purified fibroblastic cell monolayer. CD34(+) cells (10 x 10(5)) gave rise to 17,951 +/- 2422 CFU-GM colonies when grown on endothelial cells, and to 12,928 +/- 4415 CFU-GM colonies on fibroblast monolayers. The ECs also supported erythroid blast-forming unit (BFU-E) colonies better. These results suggest that bone marrow CD133(+) progenitor cells can give rise to highly purified ECs, which have a high proliferative capacity, can be activated by inflammatory cytokines and are superior to fibroblasts in supporting haematopoiesis. Our data support the hypothesis that endothelial cell progenitors are present in adult bone marrow and may contribute to neo-angiogenesis.  相似文献   

6.
7.
To explore the initial steps by which transplanted mesenchymal stem cells (MSCs) interact with the vessel wall in the course of extravasation, we studied binding of human MSCs to endothelial cells (ECs). In a parallel plate flow chamber, MSCs bound to human umbilical vein ECs (HUVECs) similar to peripheral-blood mononuclear cells (PBMCs) or CD34(+) hematopoietic progenitors at shear stresses of up to 2 dynes/cm(2). This involved rapid extension of podia, rolling, and subsequent firm adhesion that was increased when ECs were prestimulated with TNF-alpha. MSC binding was suppressed when ECs were pretreated with function-blocking anti-P-selectin antibody, and rolling of MSCs was induced on immobilized P-selectin, indicating that P-selectin was involved in this process. Preincubation of HUVECs with anti-VCAM-1 or of MSCs with anti-VLA-4 antibodies suppressed binding of MSCs to HUVECs but did not enhance inhibition by anti-P-selectin, indicating that both P-selectin and VCAM-1 are equally required for this process. Intravital microscopy demonstrated the capacity of MSCs to roll and adhere to postcapillary venules in vivo in a mouse model in a P-selectin-dependent manner. Thus, MSCs interact in a coordinated fashion with ECs under shear flow, engaging P-selectin and VCAM-1/VLA-4.  相似文献   

8.
Hristov M  Erl W  Linder S  Weber PC 《Blood》2004,104(9):2761-2766
Endothelial progenitor cells (EPCs) play a role in the repair of ischemic or injured tissue. Because endothelial injury can be associated with apoptosis, we have investigated whether apoptotic bodies from mature endothelial cells (ECs) may affect growth and differentiation of EPCs in vitro. A 24-hour incubation of isolated human EPCs with apoptotic bodies-rich medium (ABRM) from ECs led to a significant increase in the number of spindle-shaped attached cells. EPCs were characterized by DiI-Ac-LDL/lectin staining and measurement of CD34 and kinase insert domain receptor (KDR) expression. The treatment with ABRM resulted in a 2-fold increase of DiI-Ac-LDL/lectin-positive cells and up-regulation of CD34 (22% +/- 2% versus 13% +/- 3%, P < .05 and KDR (49% +/- 12% versus 19% +/- 7%, P < .05). Fluorescence and confocal laser microscopy demonstrated the uptake of apoptotic bodies by the EPCs. Apoptotic bodies-depleted medium had no effect, whereas the incubation with suspension of apoptotic bodies induced effects similar to those of ABRM. Our results suggest that apoptotic bodies from ECs are taken up by EPCs, increasing their number and differentiation state. Such a mechanism may facilitate the repair of injured endothelium and may represent a new signaling pathway between progenitor and damaged somatic cells.  相似文献   

9.
Ischemic diseases remain one of the major causes of morbidity and mortality throughout the world. In recent clinical trials on cell-based therapies, the use of adult stem and progenitor cells only elicited marginal benefits. Therapeutic neovascularisation is the Holy Grail for ischemic tissue recovery. There is compelling evidence from animal transplantation studies that the inclusion of mural cells in addition to endothelial cells (ECs) can enhance the formation of functional blood vessels. Vascular smooth muscle cells (SMCs) and pericytes are essential for the stabilisation of nascent immature endothelial tubes. Despite the intense interest in the utility of human embryonic stem cells (ESCs) for vascular regenerative medicine, ESC-derived vascular SMCs have received much less attention than ECs. This review begins with developmental insights into a range of smooth muscle progenitors from studies on embryos and ESC differentiation systems. We then summarise the methods of derivation of smooth muscle progenitors and cells from human ESCs. The primary emphasis is on the inherent heterogeneity of smooth muscle progenitors and cells and the limitations of current in vitro characterisation. Essential transplantation issues such as the type and source of therapeutic cells, mode of cell delivery, measures to enhance cell viability, putative mechanisms of benefit and long-term tracking of cell fate are also discussed. Finally, we highlight the challenges of clinical compatibility and scaling up for medical use in order to eventually realise the goal of human ESC-based vascular regenerative medicine.  相似文献   

10.
Ingram DA  Mead LE  Moore DB  Woodard W  Fenoglio A  Yoder MC 《Blood》2005,105(7):2783-2786
Endothelial progenitor cells (EPCs) can be isolated from adult peripheral and umbilical cord blood and expanded exponentially ex vivo. In contrast, human umbilical vein endothelial cells (HUVECs) or human aortic endothelial cells (HAECs) derived from vessel walls are widely considered to be differentiated, mature endothelial cells (ECs). However, similar to adult- and cord blood-derived EPCs, HUVECs and HAECs derived from vessel walls can be passaged for at least 40 population doublings in vitro. Based on this paradox, we tested whether EPCs reside in HUVECs or HAECs utilizing a novel single cell deposition assay that discriminates EPCs based on their proliferative and clonogenic potential. We demonstrate that a complete hierarchy of EPCs can be identified in HUVECs and HAECs derived from vessel walls and discriminated by their clonogenic and proliferative potential. This study provides evidence that a diversity of EPCs exists in human vessels and provides a conceptual framework for determining both the origin and function of EPCs in maintaining vessel integrity.  相似文献   

11.
Peripheral blood (PB)-derived CD14+ monocytes were shown to transdifferentiate into endothelial cell (EC) lineage cells and contribute to neovascularization. We investigated whether bone marrow (BM)- or PB-derived CD34-/CD14+ cells are involved in reendothelialization after carotid balloon injury. Although neither hematopoietic nor mesenchymal stem cells were included in human BM-derived CD34-/CD14+ monocyte lineage cells (BM-MLCs), they expressed EC-specific markers (Tie2, CD31, VE-cadherin, and endoglin) to an extent identical to mature ECs. When BM-MLCs were cultured with vascular endothelial growth factors, hematopoietic markers were drastically decreased and new EC-specific markers (Flk and CD34) were induced. BM-MLCs were intra-arterially transplanted into balloon-injured arteries of athymic nude rats. When BM-MLCs were activated by monocyte chemoattractant protein-1 (MCP-1) in vivo or in vitro, they adhered onto injured endothelium, differentiated into EC-like cells by losing hematopoietic markers, and inhibited neointimal hyperplasia. Ability to prevent neointimal hyperplasia was more efficient than that of BM-derived CD34+ cells. MCP-dependent adhesion was not observed in PB-derived CD34-/CD14+ monocytes. Regenerated endothelium exhibited a cobblestone appearance, blocked extravasation of dye, and induced NO-dependent vasorelaxation. Basal adhesive activities on HUVECs under laminar flow and beta1-integrin expression (basal and active forms) were significantly increased in BM-MLCs compared with PB-derived monocytes. MCP-1 markedly enhanced adhesive activity of BM-MLCs (2.8-fold) on HUVECs by activating beta1-integrin conformation. Thus, BM-MLCs can function as EC progenitors that are more potent than CD34+ cells and acquire the ability to adhere on injured endothelium in a MCP-1-dependent manner, leading to reendothelialization associated with inhibition of intimal hyperplasia. This will open a novel window to MCP-1-mediated biological actions and vascular regeneration strategies by cell therapy.  相似文献   

12.
Angiogenesis governs the progression of multiple myeloma (MM). Circulating endothelial cells (CECs) contribute to angiogenesis and comprise mature ECs and endothelial progenitor cells (EPCs). The present study sought to characterize CECs and their relation to disease activity and therapeutic response in 31 consecutive patients with MM. CECs, identified as CD34(+)/CD146(+)/CD105(+)/CD11b(-) cells, were 6-fold higher in patients compared to controls and correlated positively with serum M protein and beta(2)-microglobulin. Circulating EPCs displayed late colony formation/outgrowth and capillary-like network formation on matrigel; these processes were inhibited after effective thalidomide treatment. Co-expression of vascular endothelial growth factor receptor-2 (KDR) and CD133 characterized EPCs in MM, and KDR mRNA elevations correlated with M protein levels. In vitro exposure of ECs to thalidomide or its derivative CC-5013 inhibited gene expression of the receptors for transforming growth factor-beta and thrombin. Thus, elevated levels of CECs and EPCs covary with disease activity and response to thalidomide, underscoring the angiogenic aspect of MM and suggesting that angioblastlike EPCs are a pathogenic biomarker and a rational treatment target in MM. The results also highlight the anti-angiogenic properties of thalidomide and CC-5013 and further elucidate possible mechanisms of their effectiveness against MM. (Blood. 2005;105:3286-3294).  相似文献   

13.
Suzuki H  Watabe T  Kato M  Miyazawa K  Miyazono K 《Blood》2005,105(6):2372-2379
Vascular endothelial growth factor receptor 2 (VEGFR2/Flk-1)-positive cells derived from embryonic stem (ES) cells serve as vascular progenitors, which differentiate into endothelial cells (ECs) in the presence of VEGF-A. VEGFR3/Flt-4 (fms-like tyrosine kinase 4) signaling is known to be important for the development of lymphatic endothelial cells (LECs). To elucidate the roles of VEGFR3 signaling in the differentiation of vascular progenitor cells into ECs, we introduced various types of VEGFR3 cDNAs into mouse ES cells. VEGF-C, a ligand for VEGFR2 and VEGFR3, stimulated the endothelial differentiation of the VEGFR2+ cells transfected with the VEGFR3 cDNA but not those transfected with kinase-negative mutants of VEGFR3. The VEGFR3-transfected ECs exhibited high expression levels of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), one of the markers of LECs, and showed efficient binding of hyaluronan. VEGF-C(C152S), which is able to activate VEGFR3 but not VEGFR2, failed to induce the endothelial differentiation of mock- and VEGFR3-transfected VEGFR2(+) cells, suggesting the essential role of VEGFR2 signaling for endothelial differentiation. Furthermore, kinase-negative mutants of VEGFR3 prevented the VEGF-C-mediated endothelial differentiation of the vascular progenitor cells. Thus, VEGFR2 signaling is required for the endothelial differentiation of mouse ES cells induced by VEGF-C, and VEGFR3 signaling may confer lymphatic endothelial-like phenotypes to ECs.  相似文献   

14.
Endothelial potential of human embryonic stem cells   总被引:2,自引:0,他引:2       下载免费PDF全文
Levenberg S  Zoldan J  Basevitch Y  Langer R 《Blood》2007,110(3):806-814
Growing interest in using endothelial cells for therapeutic purposes has led to exploring human embryonic stem cells as a potential source for endothelial progenitor cells. Embryonic stem cells are advantageous when compared with other endothelial cell origins, due to their high proliferation capability, pluripotency, and low immunogenity. However, there are many challenges and obstacles to overcome before the vision of using embryonic endothelial progenitor cells in the clinic can be realized. Among these obstacles is the development of a productive method of isolating endothelial cells from human embryonic stem cells and elucidating their differentiation pathway. This review will focus on the endothelial potential of human embryonic stem cells that is described in current studies, with respect to the differentiation of human embryonic stem cells to endothelial cells, their isolation, and their characterization.  相似文献   

15.
Transplanted human bone marrow contributes to vascular endothelium   总被引:6,自引:0,他引:6       下载免费PDF全文
Recent evidence indicates that bone marrow is a source of endothelial progenitor cells that are mobilized into the peripheral blood in response to cytokines or tissue injury. Previously, we showed that functional endothelial cells (ECs) can be clonally derived from phenotypically defined hematopoietic stem cells. To determine the EC potential of human bone marrow and peripheral blood stem cells, blood vessels in sex-mismatched transplant recipients were evaluated. EC outcomes were identified by using a combination of immunohistochemistry and XY interphase FISH. Donor-derived ECs were detected in the skin and gut of transplant recipients with a mean frequency of 2% and could readily be distinguished from CD45-expressing hematopoietic stem cells. None of the >4,000 ECs examined had more than two sex chromosomes, consistent with an absence of cell fusion. Y chromosome signals were not detected in sex-matched female recipients, excluding the vertical transmission of male cells. None of the recipients evaluated before hematopoietic engraftment demonstrated donor-derived ECs, indicating a close linkage between the recovery of hematopoiesis and EC outcomes. Transplantable bone marrow-derived endothelial progenitor cells may represent novel therapeutic targets for hematopoietic and vascular disease.  相似文献   

16.
17.
Nadin BM  Goodell MA  Hirschi KK 《Blood》2003,102(7):2436-2443
Adult murine bone marrow hematopoietic stem cells (HSCs) can be purified by sorting Hoechst 33342-extruding side population (SP) cells. Herein we investigated whether SP cells reside within embryonic tissues and exhibit hematopoietic progenitor activity. We isolated yolk sac (YS) and embryonic tissues 7.5 to 11.5 days after coitus (dpc), resolved an SP in each, and demonstrated that these SP cells exhibit distinct phenotypic and functional characteristics throughout development. YS and embryonic SP isolated 8.0 dpc expressed vascular endothelial-cadherin (VE-cadherin) and vascular endothelial receptor 2 (Flk-1), markers not expressed by bone marrow SP but expressed by endothelial cells and progenitors. SP at this stage did not express CD45 or produce hematopoietic colonies in vitro. In contrast, SP isolated 9.5 to 11.5 dpc contained a significantly higher proportion of cells expressing cKit and CD45, markers highly expressed by bone marrow SP. Furthermore, YS SP isolated 9.5 to 11.5 dpc demonstrated 40- to 90-fold enrichment for hematopoietic progenitor activity over unfractionated tissue. Our data indicate that YS and embryonic SP cells detected prior to the onset of circulation express the highest levels of endothelial markers and do not generate blood cells in vitro; however, as development progresses, they acquire hematopoietic potential and phenotypic characteristics similar to those of bone marrow SP.  相似文献   

18.
In contrast to myeloid and B-lymphoid differentiation, which take place in the marrow environment, development of T cells requires the presence of thymic stromal cells. We demonstrate in this study that human CD34+, CD34+ CD38+ and CD34+ CD38(low) cells from both cord blood and adult bone marrow reproducibly develop into CD4+ CD8+ T cells when introduced into NOD-SCID embryonic thymuses and further cultured in organotypic cultures. Such human/mouse FTOC fetal thymic organ culture) thus represents a reproducible and sensitive system to assess the T-cell potential of human primitive progenitor cells. The frequency of T-cell progenitors among cord-blood-derived CD34+ cells was estimated to be 1/500. Furthermore, the differentiation steps classically observed in human thymus were reproduced in NOD-SCID FTOC initiated with cord blood and human marrow CD34+ cells: immature human CD41(low) CD8- sCD3- TCR alphabeta- CD5+ CD1a+ T cells were mixed with CD4+ CD8+ cells and more mature CD4+ CD8- TCR alphabeta+ cells. However, in FTOC initiated with bone marrow T progenitors, <10% double-positive cells were observed, whereas this proportion increased to 50% when cord blood CD34+ cells were used, and most CD4+ cells were immature T cells. These differences may be explained by a lower frequency of T-cell progenitors in adult samples, but may also suggest differences in the thymic signals required by bone marrow versus cord blood T progenitors. Finally, since cytokine-stimulated CD34+ CD38(low) cells retained their ability to generate T cells, these FTOC assays will be of value to monitor, when combined with other biological assays, the influence of different expansion protocols on the potential of human stem cells.  相似文献   

19.
Vascular endothelial (VE) cadherin, PECAM-1 (platelet endothelial cell adhesion molecule-1, CD31), Tie2, CD34, and endoglin are established markers for adult and embryonic endothelial cells (ECs). Here, we report that the expression of these EC markers is initiated in the extraembryonic region at the late-streak stage (nominal stage E6.75). Immunohistochemical analysis shows that EC marker-positive cells arise in a subset of Flk1 (VEGF-R2) mesodermal cells. In contrast, GATA1, a marker for primitive erythropoietic progenitors, is expressed in a more restricted subset of Flk1-positive cells. Using flow cytometry, we observed that the GATA1-positive cell population existed as a subset of the EC marker-positive cell. Consistent with this notion, we showed with the primitive hematopoietic colony assay that primitive erythropoietic progenitors are enriched in PECAM-1- and Tie2-positive cells. These results suggest that primitive hematopoietic cells arise from EC marker-positive cells. Thus, VE-cadherin, PECAM-1, CD34, endoglin, and Tie2 are expressed not only in adult and embryonic ECs but in extraembryonic Flk1-positive cells during gastrulation. The latter cell population includes progenitors that give rise to primitive hematopoietic cells, suggesting that primitive and definitive hematopoietic cells in the mouse embryo arise from EC marker-positive cells.  相似文献   

20.
Liu YJ  Lu SH  Xu B  Yang RC  Ren Q  Liu B  Li B  Lu M  Yan FY  Han ZB  Han ZC 《Blood》2004,103(12):4449-4456
The cells of hematopoietic and vascular endothelial cell lineages are believed to share a common precursor, termed hemangioblast. However, the existence of a growth factor acting relatively specifically on hemangioblasts remains unclear. Here we report the identification of hemangiopoietin (HAPO), a novel growth factor acting on both hematopoietic and endothelial cell lineages. In vitro in the human system, recombinant human HAPO (rhHAPO) significantly stimulated the proliferation and hematopoietic and/or endothelial differentiation of human bone marrow mononuclear cells and of purified CD34+, CD133+, kinase domain receptor-positive (KDR+), or CD34+/KDR+ cell populations. In the murine system, rhHAPO stimulated the proliferation of long-term culture-initiating cells (LTC-ICs) as well as CD34+ and stem cell antigen-1 (Sca-1+) cell subsets. In vivo, subcutaneous injection of rhHAPO into normal mice resulted in a significant increase in bone marrow hematopoietic cells. Furthermore, irradiated mice injected with rhHAPO had an enhanced survival rate and accelerated hematopoiesis. Our data suggest that HAPO is a novel growth factor acting on the primitive cells of both hematopoietic and endothelial cell lineages and that HAPO may have a clinical potential in the treatment of various cytopenias and radiation injury and in the expansion of hematopoietic and endothelial stem/progenitor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号