首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Area CA1 of the rodent hippocampus is characterized by a highly lamina-specific and nonoverlapping termination of afferent fiber tracts. Entorhinal fibers terminate in stratum lacunosum-moleculare and commissural/associational fibers terminate in strata radiatum and oriens. It has been hypothesized that this fiber lamination depends on specific signals for the different afferent fiber tracts that are located on distinct dendritic segments of the postsynaptic neuron. In order to test this hypothesis, entorhinal and commissural/associational afferents to Ammon's horn were investigated in the adult reeler mutant mouse, in which developmental cell migration defects have disrupted the normal array of cells. Golgi staining revealed a deep and a superficial principal cell layer in the mutant. The morphology of the cells located in the deep pyramidal cell layer was considerably abnormal, whereas most cells located in the superficial pyramidal cell layer showed an almost normal cellular and dendritic morphology. Anterograde tracing with Phaseolus vulgaris leukoagglutinin revealed that the duplication and disorganization of the pyramidal cell layer in area CA1 are mirrored by the duplication and disruption of afferent fiber termination zones. In the zone above the abnormal deep pyramidal cell layer, i.e., between the two cell layers, entorhinal fibers as well as commissural/associational fibers terminate and intermingle. In contrast, in the zone above the fairly normal superficial pyramidal cell layer, entorhinal and commissural/associational fibers retain their normal fiber segregation. These data suggest that the normal laminar organization of the murine hippocampus depends on positional cues presented by their target cells.  相似文献   

2.
Kynurenic acid as an antagonist of hippocampal excitatory transmission   总被引:3,自引:0,他引:3  
Kynurenate, an endogenous tryptophan metabolite, was bath-applied to hippocampal slices while recording extracellular synaptic field potentials. Kynurenate antagonized the medial and lateral entorhinal projections to dentate granule cells, the Schaffer collateral projections to CA1 pyramidal cells, and inputs to the CA3 stratum radiatum of regio inferior with similar potencies. Concentration-response curves for these pathways paralleled theoretical antagonist curves with a Hill coefficient of 1, and the KdS were in the range of 130-400 microM. Projections to the stratum lucidum of regio inferior were much less sensitive to kynurenate. Inputs to CA3 pyramidal cells showed varying sensitivities to kynurenate, L-2-amino-4-phosphonobutanoic acid (L-APB), and (-)-baclofen depending on the placements of the stimulating and recording electrodes. When both electrodes were located in area CA3, outside the hilus of area dentata, all responses were insensitive to inhibition by L-APB. Under these conditions, responses recorded within the stratum radiatum were sensitive to inhibition by kynurenate and baclofen, while responses recorded within the stratum lucidum were insensitive to these drugs. When the stimulating electrode was placed within the hilus of area dentata, variable patterns of sensitivity to APB, baclofen, and kynurenate were observed from recording electrodes in area CA3. These results suggest that stimulation in the hilus, while recording in the stratum lucidum, produces responses that show composite effects resulting both from direct stimulation of mossy fibers and from stimulation of neuronal elements in the hilus which produce outputs to mossy fibers.  相似文献   

3.
Previous research has suggested that the entorhinal cortex plays a major role in the production of type 1 rhythmical slow-wave activity (RSA) recorded in the hippocampus of the freely moving preparation. In the present experiment we investigated the contribution of the entorhinal cortex to the type 2 fields recorded under urethane anesthesia. Rats had stimulating electrodes and cannulae filled with procaine positioned in the perforant pathway of one or both hemispheres. Recording electrodes were positioned in the dorsal hippocampus of each hemisphere to record perforant path and commissural/associational evoked potentials and RSA fields. Following unilateral procaine blockade, a decrease in RSA amplitude was observed in the stratum oriens and fissure regions of both hemispheres. Concomitant with this change in RSA, there was a loss of perforant path evoked responses, although commissural/associational control potentials remained unaltered. A greater reduction in RSA amplitude was observed following bilateral procaine microinfusion. RSA phase reversal also occurred more dorsally in microelectrode depth profiles conducted through the hippocampus during perforant path inactivation. In current source density analyses performed under baseline conditions, large rhythmic sinks were observed in stratum oriens, in stratum radiatum, and in strata adjacent to the hippocampal fissure. A rhythmic source was often observed in stratum pyramidale. Following perforant path inactivation decreases in the magnitude of the phasic sinks located near the fissure and stratum radiatum were observed. In contrast to the reduction in RSA amplitude observed in the stratum oriens region, the sink in this region and the source in stratum pyramidale remained relatively unaltered. These results demonstrate that the entorhinal region contributes to the production of RSA observed under urethane anesthesia. Furthermore, the CSD and amplitude changes following perforant path inactivation suggest that a substantial portion of RSA recorded in stratum oriens may result from ventrally located RSA dipoles. © 1994 Wiley-Liss, Inc.  相似文献   

4.
The two main glutamatergic pathways to the CA1 area, the Schaffer collateral/commissural input and the entorhinal fibers, as well as the local axons of CA1 pyramidal cells innervate both pyramidal cells and interneurons. To determine whether these inputs differ in their weights of activating GABAergic circuits, we have studied the relative proportion of pyramidal cells and interneurons among their postsynaptic targets in serial electron microscopic sections. Local axons of CA1 pyramidal cells, intracellularly labeled in vitro or in vivo, innervated a relatively high proportion of interneuronal postsynaptic targets (65.9 and 53.8%, in vitro and in vivo, respectively) in stratum (str.) oriens and alveus. In contrast, axons of in vitro labeled CA3 pyramidal cells in str. oriens and str. radiatum of the CA1 area made synaptic junctions predominantly with pyramidal cell spines (92.9%). The postsynaptic targets of anterogradely labeled medial entorhinal cortical boutons in CA1 str. lacunosum-moleculare were primarily pyramidal neuron dendritic spines and shafts (90.8%). The alvear group of the entorhinal afferents, traversing str. oriens, str. pyramidale, and str. radiatum showed a higher preference for innervating GABAergic cells (21.3%), particularly in str. oriens/alveus. These data demonstrate that different glutamatergic pathways innervate CA1 GABAergic cells to different extents. The results suggest that the numerically smaller CA1 local axonal inputs together with the alvear part of the entorhinal input preferentially act on GABAergic interneurons in contrast to the CA3, or the entorhinal input in str. lacunosum-moleculare. The results highlight differences in the postsynaptic target selection of the feed-forward versus recurrent glutamatergic inputs to the CA1 and CA3 areas.  相似文献   

5.
In the rat hippocampus, bipolar non-pyramidal neurons in stratum radiatum and stratum oriens and multipolar neurons in stratum lacunosum-moleculare react for vasoactive intestinal polypeptide (VIP) immunostaining, but pyramidal cells do not. Such bipolar VIP-like immunoreactive neurons in strata radiatum and oriens of regio superior were studied by electron microscopy for synaptic contacts with commissural afferents. The commissural fibers were identified by their anterograde degeneration induced by contralateral fimbria transections 2 days before sacrifice. Electron-dense degenerated boutons of commissural origin were found in synaptic contact with the cell bodies and dendrites of the VIP-like immunoreactive non-pyramidal cells.  相似文献   

6.
Two neuronal calcium-binding proteins, calbindin-D28k (CaBP) and parvalbumin (PV), were localized in the normal rat hippocampus by using immunocytochemical methods to determine 1) their location and 2) whether a correlation exists between the presence of these two calcium-binding proteins and the selective vulnerability of different hippocampal neuronal populations to experimental seizure activity. CaBP-like immunoreactivity (CaBP-LI) is present in all dentate granule cells and some, but not all, CA1 and CA2 pyramidal cells. Some CA1 pyramidal cells lack CaBP-LI, and those that do are lightly stained compared to the dentate granule cells. CA3 pyramidal cells appear to contain neither CaBP- nor PV-LI, and no granule or pyramidal cells exhibit PV-LI. CaBP-LI is present in distinct populations of dentate and hippocampal interneurons but absent from others. In area dentata, CaBP-LI is present in a small number of interneurons of the molecular and granule cell layers and in a small population of presumed basket cells in or below the granule cell layer. Conversely, more presumed dentate basket cells exhibit PV-LI than CaBP-LI. In the hilus of area dentata, few cells are CaBP- or PV-immunoreactive. The hilar somatostatin/neuropeptide Y (NPY)-immunoreactive cells and hilar mossy cells, two distinct and large populations, lack CaBP- and PV-LI. In the CA3 region, CaBP-LI is present in a relatively small number of interneurons in each stratum. PV-immunoreactive interneurons in area CA3 are more numerous. In area CA1, CaBP-LI is present in many interneurons in strata radiatum and lacunosum-moleculare. Some, but relatively fewer, CaBP-positive interneurons are present in strata pyramidale and oriens. Conversely, PV-immunoreactive interneurons are numerous in strata pyramidale and oriens but rare in strata radiatum and lacunosum-moleculare. Staining with the particulate chromagen benzidine hydrochloride revealed a previously undescribed dense band of CaBP-LI in the inner dentate molecular layer, a lamina enriched with kainate-displaceable glutamate-binding sites and innervated by the apparently excitatory ipsilateral associational/commissural (IAC) pathway that originates in the CaBP-negative hilar mossy cells. Bilateral electrical stimulation of the perforant path was performed in order to destroy the hilar mossy cells and to determine if this band of CaBP-LI is normally present within the mossy cell terminals. Perforant path stimulation that destroyed hilar mossy cells throughout the dorsal portions of both hippocampi did not abolish the dense CaBP-like immunoreactivity in the inner molecular layer.  相似文献   

7.
Stable intracellular recordings were obtained from nonpyramidal cells (interneurons) in stratum lacunosum-moleculare (L-M) of the CA1 region of guinea pig hippocampal slices. The intracellular response characteristics of these interneurons were distinctly different from responses of pyramidal cells and of other interneurons (basket cells and oriens-alveus interneurons). L-M interneurons had a high resting membrane potential (-58 mV), a high input resistance (64 M omega), and a large amplitude (60 mV), relatively long duration (2 msec) action potential. A large afterhyperpolarization (11 mV, 34 msec) followed a single action potential. Most L-M interneurons did not display any spontaneous firing. Lucifer yellow (LY)-filled L-M interneurons showed nonpyramidal morphology. Cells were generally fusiform or multipolar, with aspinous, beaded dendritic processes ramifying in stratum lacunosum-moleculare, radiatum, and (sometimes) oriens. The varicose axon originated from a primary dendrite, projected along stratum lacunosum-moleculare, branched profusely in stratum radiatum, and coursed toward and into stratum pyramidale and occasionally into oriens. Processes of cells with somata in the L-M region of CA1 were not restricted to the CA1 region. The dendritic and axonal processes of some L-M interneurons were seen ascending in stratum lacunosum-moleculare, crossing the hippocampal fissure, and coursing in stratum moleculare of the dentate gyrus. Excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) were evoked in L-M interneurons from stimulation of major hippocampal afferents. EPSPs were most effectively elicited by stimulation of fiber pathways in transverse slices, whereas IPSPs were predominantly evoked when major pathways were stimulated in longitudinal slices. We have identified a population of interneurons with intracellular response characteristics and morphology distinctly different from previously described pyramidal and nonpyramidal neurons of CA1 region. The possible role of these interneurons in hippocampal circuitry is discussed.  相似文献   

8.
Ipsilateral and contralateral hippocampal CA3-CA1 and CA2-CA1 projections were investigated in adult male Long-Evans rats by retrograde tracing. Injection of the retrograde tracer cholera toxin subunit B in the strata oriens and radiatum of dorsal CA1 resulted in labeling of predominantly pyramidal cells in ipsilateral and contralateral CA3 and CA2. The contralateral and ipsilateral anterior-posterior extents of CA3 innervation to CA1 were similar. Fifteen to twenty per cent of the hippocampus proper cells that give rise to CA1 stratum oriens innervation were CA2 pyramidal cells, whereas CA2 cells were a mere 3% for CA1 stratum radiatum innervation. The preferred projection of CA2 pyramidal cells to the CA1 stratum oriens was also manifested in transgenic mice that express GFP under the control of the CACNG5 promoter, in which CA2 cells express high amounts of GFP. The ratios of ipsilateral to contralateral projections were compared. For the CA3-CA1 connection, we found that dorsal CA1 stratum radiatum received more ipsilateral projections whereas CA1 stratum oriens received more contralateral innervation. Interestingly, ipsilateral connections dominated for both CA2-CA1 stratum oriens and CA2-CA1 stratum radiatum. These results demonstrate that the primary intrahippocampal target of CA2 pyramidal cells is the ipsilateral CA1 stratum oriens, in contrast to CA3 cells which project more diversely to bilateral CA1 regions. Such innervation patterns may suggest differential dendritic information processing in apical and basal dendrites of CA1 pyramidal cells.  相似文献   

9.
Neuropeptide Y (NPY) reduces excitatory synaptic transmission between stratum radiatum and CA1 pyramidal cells in rat hippocampal slice in vitro by a presynaptic action. To understand NPY's role in the control of excitability in hippocampus, its actions on excitatory and inhibitory synaptic transmission were examined, using intracellular, sharp microelectrode, and tight-seal, whole cell recordings from principal neurons in areas CA1, CA3, and dentate. Bath application of 1 μM NPY reversibly inhibited excitatory postsynaptic potentials (EPSPs) evoked in CA1 pyramidal cells from either stratum radiatum or stratum oriens by about 50%. Neuropeptide Y also inhibited EPSPs at mossy fiber-CA3, stratum oriens-CA3, and CA3-CA3 synapses by between 45% and 55%. As in CA1, the action of NPY was presynaptic. By contrast, NPY did not inhibit EPSPs evoked in dentate granule cells from either perforant path or commissural inputs. Neuropeptide Y did not alter postsynaptic membrane properties in any cell type. Although NPY attenuated the orthodromically evoked (stratum radiatum) inhibitory postsynaptic potentials in CA1 pyramidal cells by about the same amount as it inhibited the EPSPs, it did not affect the IPSPs evoked in the same cells by antidromic stimulation from alveus. Inhibitory postsynaptic potentials evoked in pharmacological isolation in CA1, CA3, or dentate were also not significantly affected by NPY. The evidence supports the hypothesis that NPY acts at feedforward excitatory synapses to presynaptically reduce the amplitude of excitation as it travels through hippocampal circuits. By contrast, synaptically mediated inhibition is not directly affected by NPY. Neuropeptide Y is the only known endogenous substance that selectively reduces feedforward excitatory transmission without causing changes in other properties of the hippocampal circuitry.  相似文献   

10.
Dopamine is known to be an important modulator of learning and memory processes, but its mechanisms of action at the cellular level are diverse and are not fully characterized. In the hippocampus, pharmacologically isolated monosynaptic IPSCs were measured using the whole-cell voltage-clamp recording technique. Both electrically evoked and spontaneous miniature GABA(A) receptor currents were recorded from CA1 pyramidal neurons in slices obtained from mature rats in the presence of the D3-selective agonist PD128907. The activation of D3 receptors inhibited synaptic GABAergic input without affecting presynaptic function or passive membrane properties. Inhibition of IPSCs evoked from stratum radiatum occurred via regulation of dynamin-dependent trafficking of the GABA(A) receptor, as inclusion of dynamin inhibitory peptide (50 microM) in the recording solution prevented the inhibitory effects of PD128907 (1 microM). This effect of D3 receptor activation could be prevented by intracellular application of either an inhibitor of protein kinase A (PKI, 20 microM) or an activator of protein kinase A (8-OH-cAMP, 50 microM). Neither synchronous IPSCs evoked from the stratum oriens nor asynchronous miniature IPSCs recorded from the stratum radiatum were affected by D3 agonist. The induction of long-term potentiation (LTP) of the extracellular field response in both the stratum radiatum and stratum oriens demonstrated that only potentiation in the stratum radiatum was significantly enhanced by PD128907 (1 microM). Our results suggest that the activation of D3 receptors can modulate GABA(A) receptor endocytosis in the hippocampus in a lamina specific manner, and thereby alter the efficacy of GABAergic transmission in the stratum radiatum of the CA1 region through a postsynaptic mechanism of action.  相似文献   

11.
The present study is concerned with the cellular origins and identities of the hippocampal enkephalin and CCK-immunoreactive fibers and terminals. In the hippocampus of the rat, the guinea pig and the European hedgehog a system of enkephalin immunoreactive nerves emerges in the hilus of area dentata and can be followed to the apical dendrites of the hippocampal regio inferior pyramidal cells. This pattern of immunoreactive nerves corresponds to the hippocampal mossy fiber system as visualized by the Timm staining. Cholecystokinin immunoreactive nerve fibers and terminals reveal the same distribution in the guinea pig and the European hedgehog whereas in the rat the mossy fiber zone contains little or no cholecystokinin immunoreactivity. In the guinea pig degeneration of the mossy fibers after stereotactic lesions of the mossy fibers causes a complete loss of both enkephalin and cholecystokinin immunoreactivity in the mossy fiber zone. Only a few enkephalin immunoreactive cell bodies were scattered throughout the granular cell layer of area dentata, but inhibition of the axoplasmic transport by colchicine dramatically increased the number of enkephalin immunoreactive granule cell bodies. Enkephalin immunoreactive cell bodies were also detected in the hilus, throughout the pyramidal cell layer as well as in the stratum radiatum and stratum moleculare. Cholecystokinin immunoreactive cell bodies were seen in the hilus of the area dentata and in the stratum oriens, stratum pyramidale and stratum radiatum and the cell-rich layer of subiculum. No cholecystokinin immunoreactive cell bodies were observed in the granular cell layer of area dentata. Even after colchicine treatment the granule cells were devoid of cholecystokinin immunoreactivity. In the rat a system of nerves displaying enkephalin immunoreactivity was also observed in the superficial one-third of the molecular layer of area dentata, a zone which corresponds to the termination of the lateral perforant path. Another observation was that in the rat, but not in the guinea pig and the hedgehog, the terminal zone of both the medial perforant path and the zone of commissural and associational fibers of area dentata contained cholecystokinin immunoreactive molecules. In summary, our data show: (1) that the hippocampal mossy fibers contain enkephalin immunoreactive molecules; (2) that the cholecystokinin immunoreactivity in the mossy fiber zone is most likely also localized in the mossy fibers per se, although the granule cells seem devoid of cholecystokinin immunoreactivity; (3) zinc, here visualized as a Timm-positive substance, is also localized in the mossy fiber terminals; further, (4) other intrinsic cell bodies than the granule cells may contribute to both the enkephalin and cholecystokinin immunoreactive terminals within the hippocampus; (5) in the rat the lateral perforant path may be enkephalinergic; and (6) both the terminal zone of the medial perforant path and the associational and commissural fibers of the rat contain cholecystokinin immunoreactivity.  相似文献   

12.
Spontaneous EEG spikes (SPKs) were recorded from the CA1 region of the dorsal hippocampus in normal rats during behavioral states not accompanied by rhythmical slow activity (RSA). SPKs were positive in stratum oriens, negative in stratum radiatum and accompanied by population bursts (PBs) in stratum pyramidale. In order to examine the origin of SPKs and PBs single pulse or brief high frequency electrical stimuli were applied to the Schaffer collateral/commissural pathway. Evoked potentials were recorded and compared with spontaneous SPKs and PBs. The results indicate the following: (1) the laminar amplitude profile of spontaneous SPKs was similar to that of population EPSPs evoked by stimulation of the Schaffer collateral/commissural pathway; (2) the population EPSP most similar to the spontaneous SPK was evoked by a brief (20-60 msec) train of high frequency (125-500 Hz) pulses; (3) the same pattern of stimulation was also found to be most efficient in evoking a series of multiple population spikes resembling a type of spontaneous PB (ripple). These observations suggest that SPKs and PBs in CA1 represent population EPSPs and multiple population spikes, respectively and that these CA1 events are triggered by brief, high frequency burst discharges of CA3 pyramidal cells via the Schaffer collateral and commissural pathway.  相似文献   

13.
Bartesaghi R  Gessi T 《Hippocampus》2004,14(8):948-963
Previous studies showed that dorsal psalterium (PSD) volleys to the entorhinal cortex (ENT) activated in layer II perforant path neurons projecting to the dentate gyrus. The discharge of layer II neurons was followed by the sequential activation of the dentate gyrus (DG), field CA3, field CA1. The aim of the present study was to ascertain whether in this experimental model field, CA2, a largely ignored sector, is activated either directly by perforant path volleys and/or indirectly by recurrent hippocampal projections. Field potentials evoked by single-shock PSD stimulation were recorded in anesthetized guinea pigs from ENT, DG, fields CA2, CA1, and CA3. Current source-density (CSD) analysis was used to localize the input/s to field CA2. The results showed the presence in field CA2 of an early population spike superimposed on a slow wave (early response) and of a late and smaller population spike, superimposed on a slow wave (late response). CSD analysis during the early CA2 response showed a current sink in stratum lacunosum-moleculare, followed by a sink moving from stratum radiatum to stratum pyramidale, suggesting that this response represented the activation and discharge of CA2 pyramidal neurons, mediated by perforant path fibers to this field. CSD analysis during the late response showed a current sink in middle stratum radiatum of CA2 followed by a sink moving from inner stratum radiatum to stratum pyramidale, suggesting that this response was mediated by Schaffer collaterals from field CA3. No early population spike was evoked in CA3. However, an early current sink of small magnitude was evoked in stratum lacunosum-moleculare of CA3, suggesting the presence of synaptic currents mediated by perforant path fibers to this field. The results provide novel information about the perforant path system, by showing that dorsal psalterium volleys to the entorhinal cortex activate perforant path neurons that evoke the parallel discharge of granule cells and CA2 pyramidal neurons and depolarization, but no discharge of CA3 pyramidal neurons. Consequently, field CA2 may mediate the direct transfer of ENT signals to hippocampal and extrahippocampal structures in parallel with the DG-CA3-CA1 system and may provide a security factor in situations in which the latter is disrupted.  相似文献   

14.
Hippocampal sharp waves: Their origin and significance   总被引:21,自引:0,他引:21  
This study investigated the spatial distribution and cellular-synaptic generation of hippocampal sharp waves (SPW) in the dorsal hippocampus of the awake rat. Depth analyses of SPWs were performed by stepping the recording electrode in 82.5 microns increments. SPWs were present during slow wave sleep, awake immobility, drinking, grooming and eating (0.01-2/s). The largest negative SPWs were recorded from the middle part of the stratum radiatum of CA1, the stratum lucidum of CA3, the inner molecular layer of the dentate gyrus and from layer I of the subiculum, in that order. The polarity of the SPWs was positive in layers II-IV of the subiculum, in stratum oriens and stratum pyramidale of CA1 and CA3, and in the hilus of the dentate gyrus. The electrical gradients across the null zones of the field SPWs were as large as 8-14 mV/mm. SPWs were associated with population bursts of pyramidal cells and increased discharges of interneurons and granule cells. During the SPW the excitability of granule cells and pyramidal cells to afferent volleys increased considerably. Picrotoxin and atropine and aspiration lesion of the fimbria-fornix increased either the amplitude or the frequency of SPWs. Diazepam and Nembutal could completely abolish SPWs. It is suggested that: hippocampal SPWs are triggered by a population burst of CA3 pyramidal cells as a result of temporary disinhibition from afferent control; and field SPWs represent summed extracellular PSPs of CA1 and subicular pyramidal cells, and dentate granular cells induced by the Schaffer collaterals and the associational fibers of hilar cells, respectively. The relevance of the physiological SPWs to epileptic interictal spikes and long-term potentiation is discussed.  相似文献   

15.
Reelin is a large, extracellular matrix protein involved in neuronal migration and axonal growth. To analyze the contribution of Reelin to the development of the commissural projection in the hippocampus, we analyzed the ontogeny of this projection in the reeler mutant mouse. Injections of the lipophilic tracer DiI revealed many commissural fibers in the hippocampus of both reeler and control mice at P1-P2. At P5, at P12, and in the adult, the topography of commissural connections was normal in the CA1 region of reeler mice, with axons innervating the stratum radiatum and stratum oriens. In contrast, in the CA3/CA2 region, commissural fibers abnormally innervated the stratum lacunosum-moleculare and, in the dentate gyrus, some fibers were observed in the outer molecular layer. Next, we monitored the distribution of Cajal-Retzius cells in the hippocampus of reeler mutant mice and noted that the stratum lacunosum-moleculare of the CA3/CA2 region was largely devoid of Cajal-Retzius (CR) cells. Taken together, the above results indicate that in the absence of CR cells in the CA3/CA2, commissural axons abnormally grow to the stratum lacunosum-moleculare. To test this hypothesis a series of coculture experiments was performed in collagen gels, in which the CA3 axonal growth was monitored when confronted to the marginal zone. These experiments showed that the marginal zone containing CR cells exerts short-range inhibitory influences for commissural axonal growth.  相似文献   

16.
Pavlides C  McEwen BS 《Brain research》1999,851(1-2):204-214
We have previously shown that the two types of adrenal steroid receptors, mineralocorticoid MR. and glucocorticoid GR. produce opposite effects on long-term potentiation LTP. in the dentate gyrus in vivo. and CA1 hippocampal field in vitro. More specifically, MR activation enhanced and prolonged LTP, whereas GR activation suppressed LTP in these areas and also produced a long-term depression LTD. of the synaptic response. In the present experiment we investigated acute effects of MR and GR activation on LTP induction in the mossy fiber and commissural associational input to the CA3 hippocampal field, since the mechanisms underlying LTP induction in these two pathways differ, the former being N-methyl-D-aspartate receptor NMDAR. independent while the latter being NMDAR-dependent. Rats were either adrenalectomized ADX or adrenally intact. ADX animals were acutely injected with either the specific MR agonist, aldosterone, the specific GR agonist RU 28362 or vehicle. One hour following the injection, the animals were prepared for electrophysiological recording stimulation. Field potential recordings were performed in the radiatum or laconosum moleculare layers of the CA3 field, with stimulation of either the mossy fibers or the commissural associational input from the contralateral hemisphere. We also replicated our previous findings by recording in the dentate gyrus with stimulation of the medial perforant pathway, in the same animals. As observed in our previous study in the dentate gyrus, we found an enhancement and a suppression of LTP with MR and GR activation, respectively. Similarly, for the commissural associational input to CA3, MR activation enhanced LTP, while GR activation reduced it. In contrast, for the mossy fiber input to CA3, neither MR nor GR activation significantly affected LTP induction. These results indicate that adrenal steroids may modulate LTP induction in the hippocampus via an interaction with glutamatergic NMDAR.  相似文献   

17.
There is an expanding body of work characterizing dopaminergic modulation of synaptic plasticity in the hippocampus CA1 region, an area known to be involved in learning and memory. However, in vitro studies to date have focused almost exclusively on the proximal and distal apical dendritic layers (strata radiatum and lacunosum moleculare, respectively). In this report, we establish that dopaminergic activity can enhance long‐term potentiation (LTP) in the basal dendritic layer (stratum oriens) of CA1 in the rat hippocampal slice preparation. Application of the D1/5 agonist SKF38393 (20 μM) significantly increased the magnitude of basal LTP of the fEPSP response following high‐frequency stimulation of the Schaffer collateral/commissural inputs in the stratum oriens layer. In addition, endogenous dopamine (DA) activity facilitated by the presence of cocaine (6 μM) was also capable of enhancing the magnitude of basal LTP. Prior application of the D1/5 antagonist SKF83566 (2 μM) prevented this effect of cocaine, indicating that endogenously released dopamine was exerting its LTP‐enhancing effect in stratum oriens via activation of D1/5 receptors. This final result stands in contrast with the previously characterized effects of cocaine on apical LTP in the stratum radiatum, which instead have been shown to require D3 receptor activation. These observations demonstrate that dopaminergic mechanisms resulting in the enhancement of hippocampal LTP are lamina specific at Schaffer collateral/commissural synapses in the CA1 region. Synapse 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
GABAergic synaptic responses were studied by direct, monosynaptic activation of GABAergic interneurons in the CA1 region of in vitro hippocampal slices from rats made tolerant to the benzodiazepine, flurazepam. Monosynaptic IPSPs were elicited in CA1 pyramidal neurons, following 1 week oral flurazepam administration, by electrical stimulation at the stratum oriens/stratum pyramidale or stratum radiatum/ stratum-lacanosum border ≤ 0.5 mm from the recording electrode plane. Excitatory input to pyramidal cells and interneurons was eliminated by prior superfusion of the glutamate receptor antagonists, APV (50 μM) and DNQX (10 μM). GABAA receptor-mediated early IPSPs were further isolated by perfusion of the GABAB antagonist, CGP 35348 (25 μM) or by diffusion of Cs+ from the recording electrode. GABAB receptor-mediated late IPSPs were pharmacologically isolated by perfusion of the GABAA antagonist, picrotoxin (50 μM). There was a significant decrease in the amplitude of pharmacologically isolated early and late IPSPs in FZP-treated neurons without a change in passive membrane properties. A shift of the early IPSP, but not the late IPSP, reversal potential in FZP-treated neurons suggested that a change in the driving force for anions, presumably Cl, in CA1 neurons was one important factor related to the decreased early IPSP amplitude after prolonged activation of GABAA receptors by flurazepam. A decreased early IPSP amplitude accompanied by a decreased late IPSP amplitude suggested that presynaptic GABA release onto FZP-treated pyramidal cells may also be reduced. We conclude from these data that an impairment of GABAergic transmission in CA1 pyramidal neurons associated with the development of tolerance during chronic benzodiazepine treatment may be related to the regulation of both pre- and postsynaptic mechanisms at the GABA synapse. Synapse 25:125–136, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Light and electron microscopic substance P (SP) immunostaining was performed on hippocampal sections of colchicine-pretreated, control, untreated fimbria-fornix-transected (5 days), as well as perforant path-stimulated Sprague-Dawley rats fixed in 5% acrolein. Numerous SP-immunoreactive neurons could be observed in the stratum oriens of the Ammon's horn and subiculum, fewer were seen in the dentate hilar area and stratum radiatum of CA2 and CA3, and even fewer were seen at the border between the CA1 strata radiatum and the lacunosum moleculare of CA1 subfield. A higher dose of colchicine resulted in SP immunoreactivity in a large population of granule cells and mossy axon terminals. The entire CA2 region, the stratum oriens of CA1, CA3, and the subiculum were densely innervated by SP-containing axon terminals. A homogeneous SP innervation was found in the stratum radiatum of CA1. Only a few SP fibers were seen adjacent to the granule cell layer. Symmetric axosomatic contacts were seen between SP-containing boutons and somata in the stratum oriens of the Ammon's horn. However, throughout the hippocampal formation, the majority of SP-containing axons formed axodendritic symmetric synapses. A dense population of SP-immunoreactive boutons that formed axodendritic asymmetric synapses was observed in the strata oriens and radiatum of the CA3a and CA2 regions, and a few were found in the supragranular and subgranular layers of the dentate gyrus. Fimbria-fornix transection resulted in a marked loss of SP fibers in the strata oriens, pyramidale, and radiatum of the CA3a and CA2 subfields. In perforant pathway-stimulated animals, a population of granule cells and a large number of mossy axon terminals were immunoreactive for SP. These observations suggest two sources of SP innervation to the hippocampal formation: one arising from intrinsic sources (interneurons and granule cells) and one arising from extrinsic sources, most likely the supramammillary region. J. Comp. Neurol. 384:41–58, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Some internal pathways of the hippocampus were mapped in adult rats using Fink-Heimer silver impregnation methods for the demonstration of anterograde axon degeneration. Cases with lesions of regio superior of the Ammon's horn showed that regio superior projects onto the subiculum by way of fibers in the alveus. The termination is most dense in the portion of the subiculum near the presubiculum. The fibers exhibit an orderly arrangement, in that the dorso-ventral level of the subicular degeneration depends on the level of the regio-superior lesion. No evidence of connections from regio superior to regio inferior and area dentata appeared in this study. The terminal fields of ipsilateral fibers from regio inferior to regio inferior and superior are pervaded by commissural fibers. This precludes selective destruction of the ipsilateral fibers in normal rats. In order to investigate these latter ipsilateral fibers, special animals were used in which the commissures had been transsected at the age of eight days. Secondary lesions were made in the hippocampus of the adults when no stainable commissural degeneration was demonstrable. The results obtained from these animals were the following. Lesions of regio inferior cause degeneration both in this subfield and in regio superior. The fibers terminate in the stratum oriens and radiatum, and not in the stratum lacunosum-moleculare or on pyramidal cell bodies. The total spread of fibers along the longitudinal axis of the hippocampus is 4–5 mm, being slightly less in the regio inferior than in the regio superior. When the lesion involves only the dentate area and the adjacent part of the regio inferior, the degeneration in the regio superior is most pronounced superficially in the stratum radiatum and is absent from the stratum oriens. The fibers remaining within the regio inferior have a special mode of termination: dorsal to the lesion, degeneration is present in the deeper half of the stratum radiatum and in the stratum oriens; ventral to the lesion, degeneration is found predominantly in the superficial one half of the stratum radiatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号