首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In both chick and mouse, the otic placode, the rudiment of the inner ear, is induced by at least two signals, one from the cephalic paraxial mesoderm and the other from the neural ectoderm. In chick, the mesodermal signal, FGF19, induces neural ectoderm to express additional signals, including WNT8c and FGF3, resulting in induction of the otic placode. In mouse, mesodermal Fgf10 acting redundantly with neural Fgf3 is required for induction of the placode. To determine how the mesodermal inducers of the otic placode are localized, we took advantage of the unique strengths of the two model organisms. We show that endoderm is necessary for otic induction in the chick and that Fgf8, expressed in the chick endoderm subjacent to Fgf19, is both sufficient and necessary for the expression of Fgf19 in the mesoderm. In the mouse, Fgf8 is also expressed in endoderm as well as in other germ layers in the periotic placode region. We show that otic induction fails in embryos null for Fgf3 and hypomorphic for Fgf8 and expression of mesodermal Fgf10 is reduced. Thus, Fgf8 plays a critical upstream role in an FGF signaling cascade required for otic induction in chick and mouse.  相似文献   

2.
The Drosophila melanogaster proteins Flamingo and Prickle act in the planar cell polarity (PCP) pathway, which is required for acquisition of epithelial polarity in the wing, eye, and epidermis. In mammals, PCP signaling has been shown to regulate cell movements and polarity in a variety of tissues. Here, we show that the murine Flamingo orthologues Celsr1-3 and the Prickle orthologues Prickle1, Prickle2, and Testin have dynamic patterns of expression during pregastrulation and gastrulation stages. Celsr1 is expressed in the anterior visceral endoderm and nascent mesoderm, Celsr2 and Celsr3 mark the prospective neuroectoderm, Prickle1 is expressed in the primitive streak and mesoderm, Prickle2 in the node, and Testin in the anterior visceral endoderm, the extraembryonic ectoderm, primitive streak, and mesoderm. Analysis of a gene-trap mutation in Testin indicates that this gene is not required for embryogenesis; therefore, other Prickle homologues may compensate for its function during development.  相似文献   

3.
Hensen's node and the rostral part of the primitive streak of chick embryos at HH-stage 4-7 were investigated using scanning electron microscopy, a series of semithin sections, and whole-mount in situ hybridization. An asymmetric expression of Shh and Fgf8 was first found at HH-stage 5. The asymmetric expression of both laterality genes is preceded by an asymmetric morphology of the avian organizer. The right lip of the streak and the node is much more prominent than the left one and contains a cylindrical cell condensation that is connected with the head process. Since the densely packed cells in Hensen's node and in the cranial part of the primitive streak connect the epiblast with the endoderm, a cilia-generated "nodal flow" between epiblast and endoderm in the avian embryo seems to be unlikely.  相似文献   

4.
5.
Previous studies suggest that Fgf8 has a key role in regulating vertebrate development. In the rostral head of the embryonic chicken, there are increasing numbers of separate Fgf8 domains; these are present in tissues that appear to have previously expressed Otx2. As Fgf8 expression becomes established, Otx2 expression weakens, but remains in cells abutting the Fgf8 expression domain. These Fgf8 expression domains are closely associated with tissues expressing Bmp4 and Shh. Based on analogy with the embryonic limb, we suggest that Fgf8, Bmp4 and Shh function together in patterning regions of the embryonic head. Gene expression changes are particularly prominent in 14-21 somite stage embryos in the rostral forebrain, during early morphogenesis of the telencephalic and optic vesicles, when several new interfaces of Fgf8, Bmp4 and Shh are generated. To gain insights into the functions of fibroblast growth factor 8 (FGF8) in the embryonic forebrain, we studied the effects of implanting beads containing this protein in the dorsal prosencephalon of embryonic day 2 chicken embryos. Ectopic FGF8 had profound effects on morphogenesis of the telencephalic and optic vesicles. It disrupted formation of the optic stalk and caused a transformation of the pigment epithelium into neural retina. Within the telencephalon, FGF8 beads frequently induced a sulcus that had features of an ectopic rostral midline. The sulcus separated the telencephalon into rostral and caudal vesicles. Furthermore, we present evidence that FGF8 can regulate regionalization of the prosencephalon through inhibition of Otx2 and Emx2 expression. Thus, these experiments provide evidence that FGF8 can regulate both morphogenesis and patterning of the rostral prosencephalon (telencephalic and optic vesicles). FGF8 beads can induce midline properties (e.g. a sulcus) and can modulate the specification and differentiation of adjacent tissues. We suggest that some of these effects are through regulating the expression of homeobox genes (Otx2 and Emx2) that are known to participate in forebrain patterning.  相似文献   

6.
Summary Two groups of experiments were carried out. In the first group, grafts of quail mesoderm whose presumptive fate was to form somites or heart tissues, were taken from quail embryos (stage 4–5 of Hamburger and Hamilton 1951) and inserted beneath the ectoderm of chick embryos of stage 3–4 immediately lateral to the primitive streak. Whilst most grafts contributed to the somites and/or the heart, 22 out of a total of 46 were found to have contributed also to the pharyngeal endoderm. Although three of these grafts were known to have included some quail endoderm cells, the remainder were considered to consist of mesoderm alone. It is concluded that mesoderm at the primitive streak stages is still capable of forming endoderm.In the second group of experiments, grafts of quail somites (stage 10–14) were inserted beneath the ectoderm of chick embryos of stage 3–4. In 18 out of 23 cases the graft cells were found in somitic tissue, but they were also found in the endoderm (4 specimens), lateral plate (3 specimens) and endothelium (4 specimens). It is concluded that even at stages 10–14, the somite-derived cells are still not completely determined to form somite derivatives. In those cases where the grafted somites differentiated further, sclerotome cells which migrated from them did not necessarily move towards the host notochord.  相似文献   

7.
Background: Previous comparative studies suggest that the requirement for Nodal in epiblast and hypoblast development is unique to mammalians. Expression of anterior visceral endoderm (AVE) genes in the visceral endoderm and of their orthologs in the hypoblast may be unique to mammalians and avians, and is absent in the reptilian hypoblast. Axis formation in reptiles is signaled by the formation of the posterior marginal epiblast (PME), which expresses a series of primitive streak genes. To assess the phylogenetic origin of Nodal and AVE gene expression and axis formation in amniotes, we examined marker gene expression in gray short‐tailed opossum, a metatherian. Results: Nodal was expressed in neither epiblast nor hypoblast of opossum embryos. No AVE genes were expressed in the opossum hypoblast. Attainment of polarity in the embryonic disk was signaled by Nodal, Wnt3a, Fgf8, and Bra expression in the PME at 8.5 days post‐coitus. Conclusions: Nodal expression in epiblast or hypoblast may be unique to eutherians. AVE gene expression in visceral endoderm and hypoblast may have been independently acquired in eutherian and avian lineages. PME formation appears to be the event that signals axis formation in reptilian and metatherian embryos, and thus may be an ancestral characteristic of basal amniotes. Developmental Dynamics 245:1176–1188, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
9.
During heart development at the pregastrula stage, prospective heart cells reside in the posterior lateral region of the epiblast layer. Interaction of tissues between the posterior epiblast and hypoblast is necessary to generate the future heart mesoderm. Signaling regulating the interaction involves fibroblast growth factor (FGF)-8, Nodal, bone morphogenetic protein (BMP)-antagonist, and canonical Wnt and acts on the posterior epiblast to induce the expression of genes specific for the anterior lateral mesoderm. At the early gastrula stage, prospective heart cells accumulate at the posterior midline and migrate to the anterior region of the primitive streak. During gastrulation, future heart cells leave the primitive streak and migrate anterolaterally to form the left and right anterior lateral plate mesoderm including the precardiac mesoderm. At this stage, prospective heart cells receive endoderm-derived signals, including BMP, FGF, and Wnt-antagonist, and thereby become committed to the heart lineage. At the neurula stage, the left and right precardiac mesoderm move to the ventral midline and fuse, resulting in the formation of a single primitive heart tube. Therefore, a two-step signaling cascade, which includes tissue interaction between epiblast and hypoblast at the blastula stage and endoderm-derived signals during gastrulation, is required to generate a beating heart.
Yuji NakajimaEmail:
  相似文献   

10.
Beta-catenin signaling has been shown to be involved in triggering axis formation in several organisms, including Xenopus and zebrafish. Genetic analysis has demonstrated that the Wnt/beta-catenin signaling pathway is also involved in axis formation in the mouse, since a targeted deletion of beta-catenin results in embryos that have a block in anterior-posterior axis formation, fail to initiate gastrulation, and do not form mesoderm. However, because beta-catenin is ubiquitously expressed, the precise time and cell types in which this signaling pathway is active during early embryonic development remain unknown. Thus, to better understand the role of the Wnt/beta-catenin signaling pathway in axis formation and mesoderm specification, we have examined both the distribution and signaling activity of beta-catenin during early embryonic development in the mouse. We show that the N-terminally nonphosphorylated form of beta-catenin as well as beta-catenin signaling is first detectable in the extraembryonic visceral endoderm in day 5.5 embryos. Before the initiation of gastrulation at day 6.0, beta-catenin signaling is asymmetrically distributed within the epiblast and is localized to a small group of cells adjacent to the embryonic--extraembryonic junction. At day 6.5 and onward, beta-catenin signaling was detected in the primitive streak and mature node. Thus, beta-catenin signaling precedes primitive streak formation and is present in epiblast cells that will go on to form the primitive streak. These results support a critical role for the Wnt/beta-catenin pathway in specifying cells to form the primitive streak and node in the mammalian embryo as well as identify a novel domain of Wnt/beta-catenin signaling activity during early embryogenesis.  相似文献   

11.
12.
Summary The endoderm of a series of chick embryos from the unincubated egg to Hamburger and Hamilton stage 5 was examined by scanning electron microscopy (SEM). During this period the endoderm develops from a few scattered cells to a complete epithelial layer. Prior to the formation of the primitive streak endoderm cells can be observed delaminating from the ectoderm. These cells are round and have few processes except where they contact each other. At stage 2 cells appear in the endoderm over the primitive streak which have broad flat processes. This suggests that the cells originate directly from the streak. Away from the streak the endoderm cells are either smooth or have short microvilli. In later streak stages a mixture of smooth and some microvillous cells form a hexagonal pattern. This pattern is occasionally modified and holes are found in the endoderm with cell processes protruding from below the endoderm level. Sometimes whole cells, smaller and rounder than the majority of the endoderm cells are associated with this disturbance of the pattern. These cells are connected to the mesoderm by a long cytoplasmic process and it is suggested that they could be cells entering the endoderm from the middle layer, having accompanied the mesoderm cells through the primitive streak.  相似文献   

13.
Notochord signals to the endoderm are required for development of the chick dorsal pancreas. Sonic hedgehog (SHH) is normally absent from pancreatic endoderm, and we provide evidence that notochord, in contrast to its effects on adjacent neuroectoderm where SHH expression is induced, represses SHH expression in adjacent nascent pancreatic endoderm. We identify activin-βB and FGF2 as notochord factors that can repress endodermal SHH and thereby permit expression of pancreas genes including Pdx1 and insulin. Endoderm treatment with antibodies that block hedgehog activity also results in pancreatic gene expression. Prevention of SHH expression in prepancreatic dorsal endoderm by intercellular signals, like activin and FGF, may be critical for permitting early steps of chick pancreatic development.  相似文献   

14.
Little is known about how the endoderm germ layer is patterned along the anterior-posterior (A-P) axis before the formation of a gut tube (embryonic day [e] 7.5-8.5 in mouse), largely due to a paucity of molecular markers of endoderm. In particular, there are few genes that mark posterior domains of endoderm that give rise to the midgut and hindgut. We have identified 8 molecular markers that are expressed in discrete domains of the gastrula stage endoderm (e7.5), suggesting that a significant level of pattern exists in the endoderm before the formation of a gut tube. Three genes Tmprss2, NM_029639, and Dsp are expressed in a presumptive midgut domain overlying the node, a domain for which molecular markers have not previously been identified. Two genes, Klf5 and Epha2 are expressed in posterior endoderm associated with the primitive streak. Expression of these five genes persists in the midgut and/or hindgut at e8.5, 9.5 and 10.5, suggesting that these genes are markers of these domains throughout these stages of development. We have identified three genes Slc39a8, Amot, and Dp1l1, which are expressed in the visceral endoderm at e7.5. Starting at e9.5, Dp1l1 is expressed de novo in the liver, midgut, and hindgut. Our findings suggest that presumptive midgut and hindgut domains are being established at the molecular level by the end of gastrulation, earlier than previously thought, and emphasize the importance of endoderm patterning before the formation of the fetal gut.  相似文献   

15.
16.
In amniote embryos, cells from a rostral portion of the primitive streak migrate anterolaterally and establish the heart field mesoderm, from which two cardiac cell lineages, cardiomyocytes and endocardial endothelial cells, differentiate. The endoderm underlying the heart field has been postulated as the source of several paracrine factors that may serve to induce each of these cell types. However, it has been unclear how these signal molecules, which are expressed broadly in the endoderm, instruct individual cells of the heart field mesoderm to enter either the cardiomyocyte lineage or the endocardial cell lineage. To clarify lineage relationships of these two cardiac cell types, the fate of chicken primitive streak cells was traced for the first time in ovo. By using replication-defective retroviral-mediated gene transfer, we demonstrate that cells in the rostral half of Hamburger and Hamilton (HH) stage 3 primitive streak generate a daughter population that proliferates and migrates into the heart field, differentiating into either endocardial or myocardial cells, but not both cell types. The results suggest that the rostral portion of the primitive streak at HH stage 3 consists of at least two distinct subpopulations, entering either the cardiomyocyte lineage or the endocardial cell lineage. Thus, in ovo these two cell lineages of the heart are already segregated within the primitive streak, significantly before their migration to the heart field. When the precardiomyocytes and pre-endocardial cells arrive at the heart field, each mesodermal cell subpopulation may be permissive to paracrine signal(s) from underlying endoderm to initiate their terminal differentiation into either muscle or endothelial cells.  相似文献   

17.
Avian gastrulation is dependent on the ingression of outer layer cells into the interior of the embryo by means of a transient structure referred to as the primitive streak. As the growing streak progresses through the central area pellucida of the blastoderm, selective de-epithelialization of epiblast cells results in the initial migratory cells of the primitive mesoderm and endoderm. Here, we have examined the possibility that extracellular matrix molecules of the epiblast basal lamina influence the selection of streak-specific epiblast cells. By using whole embryo culture, we have found that removal of chondroitin sulfate glycosaminoglycans at gastrulation stages leads to defective streak formation. In situ hybridization with streak-specific markers in these embryos reveals ectopic patterns of gene expression, suggesting that differentiation of primitive streak precursors in the pregastrula epiblast is independent of normal streak morphogenesis. In addition, in vitro assays with chondroitin sulfate containing matrices suggest that specific cells of the epiblast are inhibited from joining the streak during gastrulation. Taken together, these results indicate that the presence of chondroitin sulfate in the epiblast basal lamina facilitates the allocation of cells to the primary germ layers by preventing ectopic axis formation.  相似文献   

18.
By constructing avian transplantation chimeras using fluorescently-labeled grafts and antibodies specific for grafted cells, we have generated a prospective fate map of the primitive streak and epiblast of the avian blastoderm at intermediate primitive-streak stages (stages 3a/3b). This high-resolution map confirms our previous study on the origin of the cardiovascular system from the primitive streak at these stages and provides new information on the epiblast origin of the neural plate, heart and somites. In addition, the origin of the rostral endoderm is now documented in more detail. The map shows that the prospective neural plate arises from the epiblast in close association with the rostral end of the primitive streak and lies within an area extending 250 microm rostral to the streak, 250 microm lateral to the streak and 125 microm caudal to the rostral border of the streak. The future floor plate of the neural tube arises within the midline just rostral to the streak, confirming our earlier study, but unlike at the late-primitive streak stages when both Hensen's node and the midline area rostral to Hensen's node contribute to the floor plate, only the area rostral to the primitive streak contributes to the floor plate at intermediate primitive-streak stages. Instead of contributing to the floor plate of the neural tube, the rostral end of the primitive streak at intermediate primitive-streak stages forms the notochord as well as the rostromedial endoderm, which lies beneath the prechordal plate mesoderm and extends caudolaterally on each side toward the cardiogenic areas. The epiblast lateral to the primitive streak and caudal to the neural plate contributes to the heart and it does so in rostrocaudal sequence (i.e., rostral grafts contribute to rostral levels of the straight heart tube, whereas progressively more caudal grafts contribute to progressively more caudal levels of the straight heart tube), and individual epiblast grafts contribute cells to both the myocardium and endocardium. The prospective somites (i.e., paraxial mesoderm) lie within the epiblast just lateral to the prospective heart mesoderm. Comparing this map with that constructed at late primitive-streak stages reveals that by the late primitive-streak stages, prospective heart mesoderm has moved from the epiblast through the primitive streak and into the mesodermal mantle, and that some of the prospective somitic mesoderm has entered the primitive streak and is undergoing ingression.  相似文献   

19.
Background: Parthenogenetic mammalian embryos were reported to die in utero no later than the 25‐somite stage due to abnormal development of both embryonic and extraembryonic lineages. Interestingly, it has been shown that parthenogenetic ICM cells tend to differentiate more into primitive endoderm cells and less into epiblast and ES cells. Hence we are interested in studying the molecular mechanisms underlying lineage defects of parthenotes. Results: We found that parthenote inner cell masses (ICMs) contained decreased numbers of Sox2+/Nanog+ epiblast cells but increased numbers of Gata4+ primitive endoderm cells, indicating an unusual lineage segregation. We demonstrate for the first time that the increased Gata4 level in parthenotes may be explained by the strong up‐regulation of Fgf3 and Fgfr2 phosphorylation. Inhibition of Fgfr2 activation by SU5402 in parthenotes restored normal Nanog and Gata4 levels without affecting Fgf3, indicating that Fgf3 is upstream of Fgfr2 activation. In parthenote trophectoderm, we detected normal Cdx2 but ectopic Gata4 expression and reduced Elf5 and Tbr2(Eomes) levels. Conclusions: Taken together, our work provides for the first time the insight into the molecular mechanisms of the developmental defects of parthenogenetic embryos in both the trophectoderm and ICM. Developmental Dynamics 241:1651–1664, 2012. © 2012 Wiley Periodicals,Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号