首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The method of making Monte Carlo calculations of the velocity of fast axonal transport is described and applied in a relatively simple case. These illustrative calculations are supplemented by a differential equation solution of the same problem, valid as an asymptotic limit. The latter treatment is closely related to the theory of muscle contraction.  相似文献   

2.
The general procedure is discussed for calculating the velocity of a vesicle along a microtubule. The formalism used previously for isotonic contraction in muscle (with multiple actin sites for a given cross-bridge) can be employed. However, some modifications must be made: (i) the kinetic diagram must include a state in which kinesin is absent from a vesicle binding site, (ii) an average must be taken over the locations of the vesicle binding sites relative to microtubule sites, and (iii) a self-consistency condition must be imposed that equates the mean force exerted by kinesin molecules on the vesicle with the frictional resisting force of the medium.  相似文献   

3.
In the brains of aged humans and cases of Alzheimer disease, deposits of amyloid in senile plaques are located in proximity to nerve processes. The principal component of this extracellular amyloid is beta/A4, a peptide derived from a larger amyloid precursor protein (APP), which is actively expressed in brain and systemic organs. Mechanisms that result in the proteolysis of APP to form beta/A4, previously termed beta-amyloid protein, and the subsequent deposition of the peptide in brain are unknown. If beta/A4 in senile plaques is derived from neuronally synthesized APP and deposited at locations remote from sites of synthesis, then APP must be transported from neuronal cell bodies to distal nerve processes in proximity to deposits of amyloid. In this study, using several immunodetection methods, we demonstrate that APP is transported axonally in neurons of the rat peripheral nervous system. Moreover, our investigations show that APP is transported by means of the fast anterograde component. These findings are consistent with the hypothesis of a neuronal origin of beta/A4, in which amyloid is deposited in the brain parenchyma of aged individuals and cases of Alzheimer disease. In this setting, we suggest that APP is synthesized in neurons and delivered to dystrophic nerve endings, where subsequent alterations of local processing of APP result in deposits of brain amyloid.  相似文献   

4.
We find that half of the pertussis toxin-sensitive guanine nucleotide-binding protein (G protein) in the squid (Loligo pealei) giant axon is cytoplasmic and that this species of G protein is intermediate in size between the two forms present in axolemma. This G protein is transported toward synaptic terminals at 44 mm/day. Moreover, these data are consistent with there being two additional steps leading to the maturation of G proteins: (i) association with and transport on intracellular organelles and (ii) modification at the time of transfer to the plasmalemma resulting in a molecular weight shift. Since the other two components of G protein-mediated signal transduction pathways, receptors and effector enzymes, are known to be delivered to the synaptic terminals by fast axonal transport, our findings introduce the possibility that these three macromolecules are assembled as a complex in the cell body and delivered together to the plasma membrane of the axon and synaptic terminals.  相似文献   

5.
Although actin is thought to participate in several types of cell motility other than muscle contraction, no direct evidence has linked it to the force-generating mechanism for fast axonal transport. We have obtained evidence for the involvement of actin by microinjecting, into the serotonergic giant cerebral neuron of Aplysia, two preparations that have been shown to depolymerize actin filaments. One is a fraction of rabbit serum containing a heat-labile gamma globulin that affects actin polymerization in a manner similar to that of cytochalasin and several proteins that are thought to regulate the length of actin filaments. The other is bovine pancreatic DNase I which binds to actin stoichiometrically. Both preparations substantially decreased the transport of storage vesicles containing [3H]serotonin. Phalloidin, a toxic fungal peptide that binds to actin filaments but stabilizes rather than depolymerizes them, did not inhibit transport. We have not yet determined whether the inhibition od transport occurs during export of [3H]serotonin from the cell body into the axon or during translocation along the axon. Nevertheless, these observations provide a promising experimental indication that actin is involved in fast axonal transport.  相似文献   

6.
Summary The hypothesis that nerves in diabetes mellitus exhibit an increased susceptibility to compression was experimentally tested. Inhibition of fast axonal transport was induced by local compression in sciatic nerves of rats with streptozotocin-induced diabetes mellitus. Fast anterograde axonal transport was measured after application of3H-leucine to the motor neurone cell bodies in the spinal cord. The sciatic nerve as subjected to local, graded compression in vivo by a small compression chamber. The amount of accumulation of proteins was quantified by calculation of a transport block ratio. Compression at 30 mm Hg for 3 h induced a significantly greater (p<0.05) accumulation of axonally transported proteins at the site of compression in nerves of diabetic animals (transport block ratio: 1.01±0.35; n=7) than in nerves of controls (0.67±0.16;n=7). Accumulation was significantly higher in ligature experiments of both control (1.34±0.44;n=8;p< 0.01) and diabetic animals (1.45±0.30;n=8 ;p< 0.05), indicating that the block of transport in compressed nerves was incomplete. Neither sham compressed diabetic (0.50±0.09;n=6) nor control (0.49±0.11;n=6) nerves showed any block of axonal transport. The possible causes of the increased inhibition of fast axonal transport in diabetic rats are discussed. The results indicate that diabetes may lead to an increased susceptibility of peripheral nerves to compression.  相似文献   

7.
Summary The effect of treatment with an aldose reductase inhibitor on the susceptibility of peripheral nerves to compression was studied in rats made diabetic by the injection of streptozotocin (50 mg·kg–1). The response to nerve compression was determined in untreated diabetic rats after 22 days of diabetes and compared with the response in two similar groups of diabetic rats which had been treated with the aldose reductase inhibitor Statil (ICI 128436; 25 mg·kg–1· day–1 orally) either from the induction of diabetes or for 7 days prior to nerve compression. Two groups of non-diabetic rats were treated with Statil for either 22 days or 7 days to act as controls. Inhibition of fast axonally transported proteins was induced by local compression of the sciatic nerves 4 h after application of 3H-leucine to the motor neurone cell bodies in the spinal cord. The inhibition of fast axonal transport was quantified by calculation of a transport block ratio.Compression at 30 mmHg for 3 h induced a significantly greater (p<0.05) inhibition of axonal transport at the site of compression in nerves of untreated diabetic rats (transport block ratio 0.96±0.24, n=8) than in nerves of control rats treated with the aldose reductase inhibitor for either the shorter time of 7 days (0.71±0.17, n=10) or the longer time of 22 days (0.69±0.08, n=5). In diabetic rats treated with the aldose reductase inhibitor for 22 days the inhibition (0.77±0.12, n=6) was significantly less than that in untreated diabetic rats; treatment for 7 days reduced the transport block ratio to 0.85±0.11 (n=8), but the effect was not significant. Treatment for 22 days prevented the marked increase in nerve sorbitol found in the diabetic rats but did not prevent a fall in nerve myo-inositol. The results indicate that treatment with an aldose reductase inhibitor for a sufficient period of time can reduce the increased susceptibility of peripheral nerves to compression in streptozotocin-induced diabetes mellitus in the rat by a mechanism which may be related to the prevention of increases in sorbitol in the nerves.  相似文献   

8.
One of our monoclonal antibodies against the heavy chain of bovine kinesin (H2) also recognized the heavy chain of squid kinesin. The immunofluorescence pattern of H2 in axoplasm was similar to that seen in mammalian cells with antibodies specific for kinesin light and heavy chains, indicating that squid kinesin is also concentrated on membrane-bounded organelles. Although kinesin is assumed to be a motor for translocation of membrane-bounded organelles in fast axonal transport, direct evidence has been lacking. Perfusion of axoplasm with purified H2 at 0.1-0.4 mg/ml resulted in a profound inhibition of both the rates and number of organelles moving in anterograde and retrograde directions in the interior of the axoplasm, and comparable inhibition was noted in bidirectional movement along individual microtubules at the periphery. Maximal inhibition developed over 30-60 min. Perfusion with higher concentrations of H2 (greater than 1 mg of IgG per ml) were less effective, whereas perfusion with 0.04 mg of H2 per ml resulted in minimal inhibition. Movement of membrane-bounded organelles after perfusion with comparable levels of irrelevant mouse IgG (0.04 to greater than 1 mg/ml) were not distinguishable from perfusion with buffer controls. Inhibition of fast axonal transport by an antibody specific for kinesin provides direct evidence that kinesin is involved in the translocation of membrane-bounded organelles in axons. Moreover, the inhibition of bidirectional axonal transport by H2 raises the possibility that kinesin may play some role in both anterograde and retrograde axonal transport.  相似文献   

9.
W. G. McLean 《Diabetologia》1988,31(7):443-448
Summary Fast and slow anterograde axonal transport and retrograde axonal transport of proteins were studied in the mainly non-myelinated sensory fibres of the vagus nerve of rabbits fed a diet of 50% galactose over a period of 29 days. Galactose feeding had no effect on the rate or protein composition of slow transport nor on the amount of retrogradely transported proteins. There was a slight retardation of fast transported proteins although their composition was unchanged. The galactose feeding led to a significant increase (p<0.005) in nerve water content and nerve galactitol but no significant change in myo-inositol. When 20 mmHg pressure was applied locally to the cervical vagus nerve, fast transported proteins accumulated proximal to the compression zone in the galactose-fed but not in control rabbits. Administration of the aldose reductase inhibitor Statil (ICI 128436) throughout the experiment prevented the increased susceptibility to pressure and the increase in nerve galactitol and water content. The effects of pressure are similar to those found in the streptozotocin-diabetic rat although the underlying mechanisms may differ.  相似文献   

10.
Parkinson's disease (PD), a late-onset condition characterized by dysfunction and loss of dopaminergic neurons in the substantia nigra, has both sporadic and neurotoxic forms. Neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and its metabolite 1-methyl-4-phenylpyridinium (MPP+) induce PD symptoms and recapitulate major pathological hallmarks of PD in human and animal models. Both sporadic and MPP+-induced forms of PD proceed through a "dying-back" pattern of neuronal degeneration in affected neurons, characterized by early loss of synaptic terminals and axonopathy. However, axonal and synaptic-specific effects of MPP+ are poorly understood. Using isolated squid axoplasm, we show that MPP+ produces significant alterations in fast axonal transport (FAT) through activation of a caspase and a previously undescribed protein kinase C (PKCdelta) isoform. Specifically, MPP+ increased cytoplasmic dynein-dependent retrograde FAT and reduced kinesin-1-mediated anterograde FAT. Significantly, MPP+ effects were independent of both nuclear activities and ATP production. Consistent with its effects on FAT, MPP+ injection in presynaptic domains led to a dramatic reduction in the number of membranous profiles. Changes in availability of synaptic and neurotrophin-signaling components represent axonal and synaptic-specific effects of MPP+ that would produce a dying-back pathology. Our results identify a critical neuronal process affected by MPP+ and suggest that alterations in vesicle trafficking represent a primary event in PD pathogenesis. We propose that PD and other neurodegenerative diseases exhibiting dying-back neuropathology represent a previously undescribed category of neurological diseases characterized by dysfunction of vesicle transport and associated with the loss of synaptic function.  相似文献   

11.
Dynein is the motor for retrograde axonal transport of organelles.   总被引:38,自引:5,他引:38       下载免费PDF全文
Vesicular organelles in axons of nerve cells are transported along microtubules either toward their plus ends (fast anterograde transport) or toward their minus ends (retrograde transport). Two microtubule-based motors were previously identified by examining plastic beads induced to move along microtubules by cytosol fractions from the squid giant axon: (i) an anterograde motor, kinesin, and (ii) a retrograde motor, which is characterized here. The retrograde motor, a cytosolic protein previously termed HMW1, was purified from optic lobes and extruded axoplasm by nucleotide-dependent microtubule affinity and release; microtubule gliding was used as the assay of motor activity. The following properties of the retrograde motor suggest that it is cytoplasmic dynein: (i) sedimentation at 20-22 S with a heavy chain of Mr greater than 200,000 that coelectrophoreses with the alpha and beta subunits of axonemal dynein, (ii) cleavage by UV irradiation in the presence of ATP and vanadate, and (iii) a molecular structure resembling two-headed dynein from axonemes. Furthermore, bead movement toward the minus end of microtubules was blocked when axoplasmic supernatants were treated with UV/vanadate. Treatment of axoplasmic supernatant with UV/vanadate also blocks the retrograde movement of purified organelles in vitro without changing the number of anterograde moving organelles, indicating that dynein interacts specifically with a subgroup of organelles programmed to move toward the cell body. However, purified optic lobe dynein, like purified kinesin, does not by itself promote the movement of purified organelles along microtubules, suggesting that additional axoplasmic factors are necessary for retrograde as well as anterograde transport.  相似文献   

12.
13.
A major issue in the slow transport of cytoskeletal proteins is the form in which they are transported. We have investigated the possibility that unpolymerized as well as polymerized cytoskeletal proteins can be actively transported in axons. We report the active transport of highly diffusible tubulin oligomers, as well as transport of the less diffusible neurofilament polymers. After injection into the squid giant axon, tubulin was transported in an anterograde direction at an average rate of 2.3 mm/day, whereas neurofilament was moved at 1.1 mm/day. Addition of the metabolic poisons cyanide or dinitrophenol reduced the active transport of both proteins to less than 10% of control values, whereas disruption of microtubules by treatment of the axon with cold in the presence of nocodazole reduced transport of both proteins to approximately 20% of control levels. Passive diffusion of these proteins occurred in parallel with transport. The diffusion coefficient of the moving tubulin in axoplasm was 8.6 micrometer(2)/s compared with only 0.43 micrometer(2)/s for neurofilament. These results suggest that the tubulin was transported in the unpolymerized state and that the neurofilament was transported in the polymerized state by an energy-dependent nocodazole/cold-sensitive transport mechanism.  相似文献   

14.
The labeled inorganic phosphate formed by enzymatic hydrolysis of [gamma-18O]ATP in normal water was derivatized to trimethyl phosphate and analyzed for the proportions of [18O3]Pi, [18O2]Pi, [18O1]Pi, and [18O0]Pi. The proportions observed were correlated with the kinetics of intermediate exchange by using a kinetic relationship in which it is assumed that binding of ATP and subsequent release of products are irreversible. Actomyosin and acto-heavy meromyosin catalyze intermediate exchange at a mean rate that is more than 1 order of magnitude slower than that predicted by rapid kinetic studies or implied by the essentially complete intermediate exchange observed with myosin alone. The reason for the slow apparent exchange is that there are two ATPase activities with different exchange properties. The effect of varying heavy meromyosin concentrations at a constant actin concentration shows that the two activities are interrelated and suggests further that one is due to ATP hydrolysis by the undissociated actomyosin crossbridge.  相似文献   

15.
This study has utilized stage VI oocytes of Xenopus laevis which have amplified the rDNA gene 1,000-fold to assess whether the microinjection of ornithine decarboxylase (OrnDCase) would stimulate [alpha-32P]guanosine incorporation into 45S and 18S/28S RNA selectively. The injection of purified OrnDCase into individual oocytes resulted in a greater than 2-fold increase in the incorporation of [32P]guanosine into 45S RNA and 18S/28S RNA with no increased incorporation into low molecular weight RNA. Further, an irreversible inhibitor of OrnDCase, alpha-difluoromethylornithine (CHF2-Orn), rapidly inhibited the endogenous activity of OrnDCase when added to the buffered Hepes solution bathing the oocytes and also inhibited the incorporation of [32P]guanosine into rRNA. The inhibitory effect of CHF2-Orn could not be reversed totally by addition of 10 microM putrescine to the oocytes. OrnDCase injected into oocytes in the presence of CHF2-Orn in the media did not stimulate incorporation of [32P]guanosine label into rRNA. However, when CHF2-Orn was removed from the buffered medium at the time of the injection of label and enzyme, a 3-fold increase of 32P incorporation into 18S/28S RNA occurred. Therefore, in an in vivo model in which amplified extrachromosomal rDNA gene copies are present, the microinjection of OrnDCase was capable of specifically stimulating rRNA synthesis. CHF2-Orn, a suicide enzyme inactivator of OrnDCase, was able to inhibit rRNA synthesis and, after washout, there was a more marked stimulation of rRNA synthesis than occurred after only the injection of OrnDCase alone. These data suggest further that OrnDCase is the labile protein that regulates the initiation of RNA synthesis.  相似文献   

16.
Giant axonal neuropathies are a group of acquired and inherited human diseases morphologically characterized by accumulation of neurofilaments (NF) in enlargements of preterminal regions of central and peripheral axons. Slow axonal transport was studied in the optic systems of rats treated with 2,5-hexanedione, a toxic compound that produces an experimental model of giant axonal neuropathy. The transport rate of NF and of two other polypeptides of Mr 64,000 and 62,000 were selectively increased. Other components of the slow axonal transport were not affected. Acceleration of labeled NF was also observed when 2,5-hexanedione was given after [35S]methionine administration. Morphometric analysis revealed that the number of NF and the axon size were decreased in regions of optic axons proximal to the enlargements. It is suggested that acceleration of NF transport leads to a longitudinal redistribution of NF: NF decrease proximally and increase distally, forming NF-containing enlargements. Evidence was obtained that polypeptides of Mr 64,000 and 62,000 are cytoskeletal components related to intermediate filaments, normally migrating with the component a of the slow axonal transport. The 2,5-hexanedione axon may provide insight into the pathogenesis of inherited and acquired giant axonal neuropathies and offers a model to investigate the relationship between number of NF and axonal size in central axons.  相似文献   

17.
Nerve growth factor is retrogradely transported in sympathetic and sensory neurons throughout life. Although this transport is known to be biologically significant in sympathetic neurons, such a function was not yet known in sensory ganglia. By using the neuropeptide substance P as a biochemical marker, we show that sensory ganglia from newborn and adult rats respond in nerve growth factor and that its retrograde axonal transport is biologically relevant, as indicated by an increase in substance P and in general protein content.  相似文献   

18.
Herpes simplex virus type I (HSV) typically enters peripheral nerve terminals and then travels back along the nerve to reach the neuronal cell body, where it replicates or enters latency. To monitor axoplasmic transport of HSV, we used the giant axon of the squid, Loligo pealei, a well known system for the study of axoplasmic transport. To deliver HSV into the axoplasm, viral particles stripped of their envelopes by detergent were injected into the giant axon, thereby bypassing the infective process. Labeling the viral tegument protein, VP16, with green fluorescent protein allowed viral particles moving inside the axon to be imaged by confocal microscopy. Viral particles moved 2.2 +/- 0.26 micrometer/sec in the retrograde direction, a rate comparable to that of the transport of endogenous organelles and of virus in mammalian neurons in culture. Electron microscopy confirmed that 96% of motile (stripped) viral particles had lost their envelope but retained tegument, and Western blot analysis revealed that these particles had retained protein from capsid but not envelope. We conclude that (i) HSV recruits the squid retrograde transport machinery; (ii) viral tegument and capsid but not envelope are sufficient for this recruitment; and (iii) the giant axon of the squid provides a unique system to dissect the viral components required for transport and to identify the cellular transport mechanisms they recruit.  相似文献   

19.
20.
Proteins of the fast component of axonal transport were analyzed by one- and two-dimensional polyacrylamide gel electrophoresis in the guinea pig spiral ganglion, which has its cell bodies in the cochlea and its axons in the eighth cranial nerve projecting to the ipsilateral cochlear nucleus. We found that we could easily identify the proteins of the fast component even though these axons are only about 3 mm long because the cochlea minimized diffusion of labeled precursor into the cochlear nucleus. The composition of the fast component of the spiral ganglion cells was similar, but not identical, to the fast component of guinea pig retinal ganglion cells. One difference was the predominance in the spiral ganglion cell fast component of a rapidly turned-over glycoprotein (RTGP) with a molecular weight of 110,000-140,000 and an isoelectric point of 5.0 RTGP accumulated in the cochlear nucleus for just the first 3 hr after the application of the labeled precursor and then rapidly disappeared, whereas the other major fast component polypeptides continued to accumulate for 12-24 hr. RTGP was also tentatively identified in the fast component of retinal ganglion cells, but was not as prominently labeled relative to the other fast-component proteins in those cells. The rapid disappearance of RTGP from spiral ganglion cell terminals in the cochlear nucleus may be a result of secretion, perhaps as part of a synaptic vesicle, or retrograde transport as a feedback signal. The difference in the relative amounts of RTGP found in spiral ganglion and retinal ganglion cell terminals may reflect differences in the fundamental properties of the two groups of neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号