首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Survivin regulates the p53 tumor suppressor gene family   总被引:12,自引:0,他引:12  
Wang Z  Fukuda S  Pelus LM 《Oncogene》2004,23(49):8146-8153
  相似文献   

2.
3.
Lu X  Ma O  Nguyen TA  Jones SN  Oren M  Donehower LA 《Cancer cell》2007,12(4):342-354
  相似文献   

4.
5.
6.
7.
The ATM kinase and p53 are key tumor suppressor factors that control the genotoxic stress response pathway. The ATM substrate Mdm2 controls p53 activity by either targeting p53 for degradation or promoting its synthesis by binding the p53 mRNA. The physiological role and regulation of Mdm2's dual function toward p53 is not known. Here we show that ATM-dependent phosphorylation of Mdm2 at Ser395 is required for the p53 mRNA-Mdm2 interaction. This event also promotes SUMO-conjugation of Mdm2 and its nucleoli accumulation. Interfering with the p53 mRNA-Mdm2 interaction prevents p53 stabilization and activation following DNA damage. These results demonstrate how ATM activity switches Mdm2 from a negative to a positive regulator of p53 via the p53 mRNA.  相似文献   

8.
9.
10.
The p53-Mdm2 module and the ubiquitin system   总被引:13,自引:0,他引:13  
The p53 tumor suppressor protein is a short-lived protein, which is stabilized in response to cellular stress. The ubiquitination and degradation of p53 are largely controlled by Mdm2, an oncogenic E3 ligase. Stress signals lead to p53 stabilization either by induction of covalent modifications in Mdm2 and p53, or through altered protein-protein interactions. Mdm2 also harbors a post-ubiquitination function, probably enabling efficient targeting of ubiquitinated p53 to the proteasome. p53 ubiquitination is associated with its export from the nucleus into the cytoplasm. However, the exact site of degradation of p53 is presently under debate. p53 may be targeted by other E3 ligases besides Mdm2, as well as by non-proteasomal mechanisms. Despite extensive information about p53 degradation, many important aspects remain unresolved.  相似文献   

11.
12.
J Gu  R M Rubin  Z M Yuan 《Oncogene》2001,20(27):3519-3527
The molecular basis that the viral oncoproteins, including HPV16 E6 and E1B55k/E4 34k complex, differentially target p53 but not its homolog p73 for degradation remains elusive. Using a series of p53/p73 chimeras, we demonstrated that despite binding to the different regions of p53, both HPV16 E6 and E1B55k/E4 34k required a very same p53 sequence, amino acid residues 92 to 112 [p53(aa.92-112)], previously identified as a necessity for Mdm2-mediated degradation, to target p53 for degradation. Removal of the p53(aa.92-112) by either substitution or deletion resulted in a p53 protein that was no longer degradable by the viral proteins. More significantly, swapping the oncoprotein-binding motif and the p53(aa.92-112) rendered p73 susceptible to oncoprotein-mediated degradation. Collectively, our data supports a model in which the p53(aa.92-112) functions as a determinant for p53 stability while the binding of the oncoproteins directs p53 into the specific pathway for proteolysis.  相似文献   

13.
14.
Veldhoen N  Metcalfe S  Milner J 《Oncogene》1999,18(50):7026-7033
The mdm2 protein interacts with a number of proteins involved in cell growth control. Such interactions favour cell proliferation and may explain the oncogenic potential of mdm2 when over-expressed in cells. Interaction with the tumour suppressor p53 involves the N-terminus of mdm2 and targets p53 for rapid degradation by the ubiquitin pathway. We now describe a novel, highly conserved exon of mdm2 (exon alpha) which includes an in-frame UGA stop codon. Expression of exon alpha disrupts in vitro translation of the p53 binding domain of mdm2. We propose that exon alpha induces translation re-initiation at an internal AUG codon within the mdm2 alpha mRNA isoform. The putative mdm2 alpha protein lacks the N-terminus of mdm2 and shows little, if any, binding capacity for p53. Mdm2 alpha mRNA is expressed in a tissue-specific manner and is observed predominantly in testis and peripheral blood lymphocytes. We propose that mdm2 alpha expression may provide a mechanism for uncoupling mdm2-p53 interaction in certain cell types and/or under specific conditions of cell growth.  相似文献   

15.
16.
Camus S  Menéndez S  Cheok CF  Stevenson LF  Laín S  Lane DP 《Oncogene》2007,26(28):4059-4070
In vitro, high-risk human papillomavirus E6 proteins have been shown, in conjunction with E6-associated protein (E6AP), to mediate ubiquitination of p53 and its degradation by the 26S proteasome by a pathway that is thought to be analogous to Mdm2-mediated p53 degradation. However, differences in the requirements of E6/E6AP and Mdm2 to promote the degradation of p53, both in vivo and in vitro, suggest that these two E3 ligases may promote p53 degradation by distinct pathways. Using tools that disrupt ubiquitination and degradation, clear differences between E6- and Mdm2-mediated p53 degradation are presented. The consistent failure to fully protect p53 protein from E6-mediated degradation by disrupting the ubiquitin-degradation pathway provides the first evidence of an E6-dependent, ubiquitin-independent, p53 degradation pathway in vivo.  相似文献   

17.
Xirodimas D  Saville MK  Edling C  Lane DP  Laín S 《Oncogene》2001,20(36):4972-4983
Mdm2 has been shown to promote its own ubiquitination and the ubiquitination of the p53 tumour suppressor by virtue of its E3 ubiquitin ligase activity. This modification targets Mdm2 and p53 for degradation by the proteasome. The p14ARF tumour suppressor has been shown to inhibit degradation of p53 mediated by Mdm2. Several models have been proposed to explain this effect of p14ARF. Here we have compared the effects of p14ARF overexpression on the in vivo ubiquitination of p53 and Mdm2. We report that the inhibition of the Mdm2-mediated degradation of p53 by p14ARF is associated with a decrease in the proportion of ubiquitinated p53. The levels of polyubiquitinated p53 decreased preferentially compared to monoubiquitinated species. p14ARF overexpression increased the levels of Mdm2 but it did not reduce the overall levels of ubiquitinated Mdm2 in vivo. This is unexpected because p14ARF has been reported to inhibit the ubiquitination of Mdm2 in vitro. In addition we show that like p14ARF, the proteasome inhibitor MG132 can promote the accumulation of Mdm2 in the nucleolus and that this can occur in the absence of p14ARF expression. We also show that the mutation of the nucleolar localization signal of Mdm2 does not impair the overall ubiquitination of Mdm2 but is necessary for the effective polyubiquitination of p53. These studies reveal important differences in the regulation of the stability of p53 and of Mdm2.  相似文献   

18.
19.
The mechanisms by which Mdm2 and Mdm4 (MdmX) regulate p53 remain controversial. We generated a mouse encoding p53 lacking the proline-rich domain (p53DeltaP). p53DeltaP exhibited increased sensitivity to Mdm2-dependent degradation and decreased transactivation capacity, correlating with deficient cell cycle arrest and reduced apoptotic responses. p53DeltaP induced lethality in Mdm2-/- embryos, but not in Mdm4-/- embryos. Mdm4 loss did not alter Mdm2 stability but significantly increased p53DeltaP transactivation to partially restore cycle control. In contrast, decreasing Mdm2 levels increased p53DeltaP levels without altering p53DeltaP transactivation. Thus, Mdm4 regulates p53 activity, while Mdm2 mainly controls p53 stability. Furthermore, Mdm4 loss dramatically improved p53DeltaP-mediated suppression of oncogene-induced tumors, emphasizing the importance of targeting Mdm4 in chemotherapies designed to activate p53.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号