首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的研究赛甫拉合剂对对乙酰氨基酚致大鼠肝损伤的保护作用。方法将SD大鼠随机分为对照组和实验组,实验组按公斤体质量灌胃对乙酰氨基酚750 mg,30 d后,将实验组随机分为对乙酰氨基酚肝损伤模型组(APAP模型组)、水飞蓟宾(按公斤体质量21 mg)组、赛甫拉合剂(以药材粉末计算)按公斤体质量低(150 mg)、中(300 mg)和高(600 mg)剂量组,每组12只。各组于每日上午给药,同时于每日下午(除对照组外)按公斤体质量给予对乙酰氨基酚400 mg,连续4周,于4周后取血液和肝脏测定相关指标。结果与对照组比较,APAP模型组血清ALT、AST、ALP、TNF-α、MDA和ROS水平均明显增高(P<0.01),GSH和SOD水平明显降低(P<0.01)。与APAP模型组比较,赛甫拉合剂各剂量组与水飞蓟宾组血清ALT、AST、ALP、TNF-α、MDA和ROS水平均降低(P<0.05);GSH和SOD水平升高(P<0.05)。结论赛甫拉合剂对对乙酰氨基酚造成的大鼠肝损伤有保护作用。  相似文献   

2.
《Pharmaceutical biology》2013,51(8):826-832
Context: The flowers of Woodfordia fruticosa Kurz. (Lythraceae) are commonly used for the treatment of several ailments which includes rheumatism, leucorrhea, menorrhagia, asthma, liver disorder, and inflammatory conditions.

Objective: To evaluate the hepatoprotective property of Woodfordia fruticosa flowers against acetaminophen-induced hepatic injury in rats.

Material and methods: Acetaminophen (3?g/kg bw)-induced hepatotoxicity study was carried out by observing the effect of methanol extract of Woodfordia fruticosa flowers (400 and 600?mg/kg, bw) on some serum marker enzymes, albumin, blood urea nitrogen levels as well as liver total protein, nonenzymetic glutathione reduced content, and enzymatic antioxidant glutathione peroxidase, with histopathological evidence.

Results and discussion: Pretreatment of rats with methanol extract of Woodfordia fruticosa flowers effectively prevented the acetaminophen-induced hepatic damage as indicated by the serum marker enzymes aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase and other biochemical parameters (albumin and blood urea nitrogen). Parallel to these changes, the methanol extract of Woodfordia fruticosa flowers also prevented acetaminophen-induced oxidative stress in the rat liver by inhibiting depletion of liver total protein and restoring the levels of nonenzymatic antioxidant glutathione reduced. The biochemical changes were consistent with histopathological observations suggesting marked hepatoprotective effect of the methanol extract of Woodfordia fruticosa flowers.

Conclusion: The results suggested that methanol extract of Woodfordia fruticosa flowers possesses protective effect against acetaminophen-induced hepatotoxicity.  相似文献   

3.
4.
《Pharmaceutical biology》2013,51(2):210-216
In the present study, the hepatoprotective effects of petroleum ether (FRPE) and methanol (FRME) extract of Ficus racemosa Linn. (Moraceae) stem bark were studied using the model of hepatotoxicity induced by carbon tetrachloride (CCl4) in rats. CCl4 administration induced a significant decrease in serum total protein, albumin, urea and a significant increase (P?≤?0.01) in total bilirubin associated with a marked elevation in the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) as compared to control rats. Further, CCl4 intoxication caused significant increase in the TBARS and decrease in glutathione (GSH) levels in serum, liver and kidney. Pretreatment with FRPE and FRME restored total protein and albumin to near normal levels. Both the extracts resulted in significant decreases in the activities of AST, ALT and ALP, compared to CCl4-treated rats. However, a greater degree of reduction was observed in FRME pretreated group (FRPE 43%, 38%, and 33%; FRME 55%, 73%, and 38%). Total bilirubin content decreased from 2.1?mg/dL in CCl4-treated rats to 0.8 and 0.3?mg/dL in FRPE and FRME pretreated rats, respectively. The extracts improved the antioxidant status considerably as reflected by low TBARS and high GSH values. FRME exhibited higher hepatoprotective activity than a standard liver tonic (Liv52), while the protective effect of FRPE was similar to that of Liv52. The protective effect of F. racemosa was confirmed by histopathological profiles of the liver. The results indicate that F. racemosa possesses potent hepatoprotective effects against CCl4-induced hepatic damage in rats.  相似文献   

5.
'Arogyavardhini'-an indigenous formulation was evaluated for its hepatoprotective activity in rats, using two models of carbon tetrachloride (CCl4) hepatic damage, one simulating vital hepatitis and the other simulating fatty change. The protective effect was assessed from serum aspartate transaminase (AST) and alkaline phosphatase levels and from histopathological changes in liver. The results revealed that 'Arogyavardhini' (5 mg/100g, PO daily) was effective in minimizing the changes in serum levels of AST and alkaline phosphatase induced by CCI. The protective effect was also evident on histopathological examination.  相似文献   

6.
The potential protective role of alpha-lipoic acid (alpha-LA) in acetaminophen (APAP)-induced hepatotoxicity and nephrotoxicity was investigated in rats. Pretreatment of rats with alpha-LA (100mg/kg) orally protected markedly against hepatotoxicity and nephrotoxicity induced by an acute oral toxic dose of APAP (2.5 g/kg) as assessed by biochemical measurements and by histopathological examination. None of alpha-LA pretreated animals died by the acute toxic dose of APAP. Concomitantly, APAP-induced profound elevation of nitric oxide (NO) production and oxidative stress, as evidenced by increasing of lipid peroxidation level, reducing of glutathione peroxidase (GSH-Px) activity and depleting of intracellular reduced glutathione (GSH) level in liver and kidney, were suppressed by pretreatment with alpha-LA. Similarly, daily treatment of rats with a smaller dose of alpha-LA (25mg/kg) concurrently with a smaller toxic dose of APAP (750 mg/kg) for 1 week protected against APAP-induced hepatotoxicity and nephrotoxicity. This treatment also completely prevented APAP-induced mortality and markedly inhibited APAP-induced NO overproduction and oxidative stress in hepatic and renal tissues. These results provide evidence that inhibition of NO overproduction and maintenance of intracellular antioxidant status may play a pivotal role in the protective effects of alpha-LA against APAP-induced hepatic and renal damage.  相似文献   

7.
The protective effect of salidroside (SDS) isolated from Rhodiola sachalinensis A. BOR. (Crassulaceae), was investigated in acetaminophen (APAP)-induced hepatic toxicity mouse model in comparison to N-acetylcysteine (NAC). Drug-induced hepatotoxicity was induced by an intraperitoneal (i.p.) injection of 300 mg/kg (sub-lethal dose) of APAP. SDS was given orally to mice at a dose of 50 or 100 mg/kg 2 h before the APAP administration in parallel with NAC. Mice were sacrificed 12 h after the APAP injection to determine aspartate aminotransferase (AST), alanine aminotransferase (ALT), and tumor necrosis factor-alpha (TNF-alpha) levels in serum and glutathione (GSH) depletion, malondialdehyde (MDA) accumulation, and caspase-3 expression in liver tissues. SDS significantly protected APAP-induced hepatotoxicity for SDS improved mouse survival rates better than NAC against a lethal dose of APAP and significantly blocked not only APAP-induced increases of AST, ALT, and TNF-alpha but also APAP-induced GSH depletion and MDA accumulation. Histopathological and immunohistochemical analyses also demonstrated that SDS could reduce the appearance of necrosis regions as well as caspase-3 and hypoxia inducible factor-1alpha (HIF-1alpha) expression in liver tissue. Our results indicated that SDS protected liver tissue from the APAP-induced oxidative damage via preventing or alleviating intracellular GSH depletion and oxidation damage, which suggested that SDS would be a potential antidote against APAP-induced hepatotoxicity.  相似文献   

8.
Nicotinamide (NAM), the amide form of vitamin B3, is involved in a wide range of biological processes. Recent evidence revealed the anti-inflammatory and anti-oxidant properties of NAM and suggests it may be used as a novel strategy in the prevention of acute liver injury. In the present study, we investigated the potential protective effects of NAM on acetaminophen (APAP)-induced acute liver injury in mice. Mice were treated with NAM at 400 mg/kg 30 min before or after administration of APAP at a hepatotoxic dose of 400 mg/kg body weight via intraperitoneal injection. Liver injury and the expression of inflammation-related molecules were determined by histological examination and biochemical analysis, respectively. In addition, the survival rate of mice was assessed after APAP administration. Pretreatment with NAM for 30 min significantly decreased plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and malondialdehyde (MDA), and diminished histopathologic evidence of hepatic toxicity in mice following APAP administration. Similarly, posttreatment with NAM also decreased plasma ALT and AST levels in APAP-administrated mice. Furthermore, both pretreatment and posttreatment with NAM prolonged the survival rate of acute liver injury mice, accompanied by a significant reduction in the plasma levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), and interleukin-6 (IL-6). Together, these findings suggest that NAM possesses protective effects on APAP-induced liver injury, which may involve the anti-inflammatory action.  相似文献   

9.
Acetaminophen, a widely used analgesic and antipyretic, is known to cause hepatic and renal injury in humans and experimental animals when administered in high doses. It was reported that these toxic effects of acetaminophen are due to oxidative reactions that take place during its metabolism. In this study we aimed to investigate the possible beneficial effect of 2-mercaptoethane sulphonate (MESNA), an antioxidant agent, against acetaminophen toxicity in mice. Balb-c mice were injected i.p. with: vehicle (the control group); a single dose of 150 mg kg(-1) MESNA (MES group); a single dose of 900 mg kg(-1) i.p. acetaminophen (AA4h and AA24h groups); and MESNA, at a dose of 150 mg kg(-1) after acetaminophen injection (AA4h-MES and AA24h-MES groups). The MESNA injection was repeated once more 12 h after the first injection in the AA24h-MES group. Blood urea nitrogen, serum creatinine, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in blood and glutathione (GSH) and malondialdehyde (MDA) levels, myeloperoxidase (MPO) activity and collagen contents in liver and kidney tissues were measured. Tissues also were examined microscopically. Blood urea nitrogen and serum creatinine, which were increased significantly (P < 0.001) following acetaminophen treatment were decreased significantly (P < 0.05-0.001) after treatment with MESNA. The ALT and AST levels were also increased significantly (P < 0.001) after acetaminophen treatment but were not reduced with MESNA. Acetaminophen treatment caused a significant (P < 0.05-0.001) decrease in GSH levels whereas MDA levels and MPO activity were increased in both tissues. These changes were reversed by MESNA treatment. Collagen contents of the liver and kidney tissues were increased by acetaminophen treatment (P < 0.001) and reversed back to the control levels with MESNA. Our results imply that acetaminophen causes oxidative damage in hepatic and renal tissues and that MESNA, via its antioxidant effects, protects these tissues. Therefore, its therapeutic role as a 'tissue injury-limiting agent' must be elucidated further in drug-induced oxidative damage.  相似文献   

10.
The alcoholic extract of stem of Indigofera aspalathoides was evaluated for its antihepatotoxic activity against CCl(4)-induced hepatic damage in rats. The activity was evaluated by using biochemical parameters, such as serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), alkaline phosphatase (ALP), total bilirubin and gama glutamate transpeptidase (GGTP). The histopathological changes of liver sample were compared with respective control. The extract showed remarkable hepatoprotective effect.  相似文献   

11.
The present study was designed to evaluate the radioprotective effect of N- acetylcysteine (NAC) on gamma-radiation induced toxicity in hepatic tissue in rat. The cellular changes were estimated using malondialdehyde (MDA, an index of lipid peroxidation), superoxide dismutase (SOD), glutathione peroxidase (GSHPx), reduced glutathione (GSH), and total nitrate/nitrite (NO(x)) as markers of hepatic oxidative stress in rats following gamma-irradiation. The DNA damage was determined by agarose gel electrophoresis. To achieve the ultimate goal of this study, 40 adult rats were randomly divided into 4 groups of 10 animals each. Group I was injected intraperitoneally with saline solution for 7 consecutive days and served as control group. Group II was irradiated with a single dose of 6Gy gamma-radiation. Group III was daily injected with NAC (1g/kg, i.p.) for 7 consecutive days. Group IV received a daily i.p. injection of NAC (1g/kg, i.p.) for 7 consecutive days and 1h after the last dose, rats were irradiated with a single dose (6Gy) gamma-radiation. The animals were sacrificed after 24h. DNA damage was observed in tissue after total body irradiation with a single dose of 6Gy. Malondialdehyde and total nitrate/nitrite were increased significantly whereas the levels of GSH and antioxidant enzymes were significantly decreased in gamma-irradiated group. Pretreatment with NAC showed a significant decrease in the levels of MDA, NO(x) and DNA damage. The antioxidant enzymes increased significantly along with the levels of GSH. Moreover, histopathological examination of liver tissues confirmed the biochemical data. Thus, our results show that pretreatment with N-acetylcysteine offers protection against gamma-radiation induced cellular damage.  相似文献   

12.
The protective effect of ursodeoxycholic acid (UDCA), a biliary component found in bears, on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced testicular damage in mice was investigated. Fifty C57BL/6J mice were equally divided into five groups. The mice in the control group received the vehicle and standard chow. The single TCDD treatment group received 27.5 microg/kg of TCDD subcutaneously. The UDCA-included treatment group received pulverized chow containing 0.125%, 0.25% and 0.5% UDCA, respectively, for 70 days starting 10 days before TCDD injections. The body and testicular weights were shown to be decreased in the single TCDD treatment group, while the decrease was prevented by UDCA added to the chow. In addition, the decrease in the serum-luteinizing hormone (LH) or the follicle stimulating hormone (FSH) secondary to a TCDD injection was not observed in the UDCA-included treatment group. Contrary to the single TCDD treatment group, the germinal epithelium and intercellular space were relatively well preserved in the UDCA-included treatment group. Adding UDCA also normalized TCDD-induced irregular ultrastructural changes such as development of phagolysosomes, inflated smooth endoplasmic reticulum (SER), dilated and altered mitochondria, necrosis and completely damaged seminiferous tubules. Moreover, in the experiment for Arnt expression, UDCA added to the chow suppressed the TCDD-induced relocation of Arnt from the cytoplasm to the nuclei. In conclusion, TCDD-induced testicular toxicity was effectively protected by UDCA. There was almost complete recovery of the testes in the UDCA-included treatment group. Thus, UDCA may be useful for the prevention and treatment of TCDD-induced testicular damage.  相似文献   

13.
Acute liver failure (ALF), an often fatal condition characterized by massive hepatocyte necrosis, is frequently caused by drug poisoning, particularly with acetaminophen (N-acetyl-p-aminophenol/APAP). Hepatocyte necrosis is consecutive to glutathione (GSH) depletion and mitochondrial damage caused by reactive oxygen species (ROS) overproduction. Magnolol, one major phenolic constituent of Magnolia officinalis, have been known to exhibit potent antioxidative activity. In this study, the anti-hepatotoxic activity of magnolol on APAP-induced toxicity in the Sprague-Dawley rat liver was examined. After evaluating the changes of several biochemical parameters in serum, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) were elevated by APAP (500 mg/kg) intraperitoneal administration (8 and 24 h) and reduced by treatment with magnolol (0.5 h after APAP administration; 0.01, 0.1, and 1 μg/kg). Histological changes around the hepatic central vein, lipid peroxidation (thiobarbituric acid-reactive substance/TBARS), and GSH depletion in liver tissue induced by APAP were also recovered by magnolol treatment. The data show that oxidative stress followed by lipid peroxidation may play a very important role in the pathogenesis of APAP-induced hepatic injury; treatment with lipid-soluble antioxidant, magnolol, exerts anti-hepatotoxic activity. Our study points out the potential interest of magnolol in the treatment of toxic ALF. Yen-Yi Ho and Ming-Tsung Lai contributed equally to this work.  相似文献   

14.
The potential protective role of aminoguanidine (AG), gadolinium chloride (GdCl(3)) and oleanolic acid (OA) in acetaminophen (APAP)-induced hepatotoxicity and nephrotoxicity was investigated in rats. Pretreatment of rats with AG (50mg/kg) orally, GdCl(3) (10mg/kg) intramuscularly or OA (25mg/kg) intramuscularly protected markedly against hepatotoxicity and nephrotoxicity induced by an acute oral toxic dose of APAP (2.5g/kg) as assessed by biochemical measurements and by histopathological examination. None of AG-, GdCl(3)- or OA-pretreated animals died by the acute toxic dose of APAP. Concomitantly, pretreatment of rats with these agents suppressed the profound elevation of nitric oxide (NO) production and obvious reduction of intracellular reduced glutathione (GSH) levels in liver and kidney induced by the acute toxic dose of APAP. Similarly, daily treatment of rats with a smaller dose of AG (10mg/kg), GdCl(3) (3mg/kg) or OA (5mg/kg) concurrently with a smaller toxic dose of APAP (750mg/kg) for 1 week protected against APAP-induced hepatotoxicity and nephrotoxicity. This treatment also completely prevented APAP-induced mortality and markedly inhibited APAP-induced NO overproduction as well as hepatic and renal intracellular GSH levels reduction. These results provide evidence that inhibition of NO overproduction and consequently maintenance of intracellular GSH levels may play a pivotal role in the protective effects of AG, GdCl(3) and OA against APAP-induced hepatic and renal damages.  相似文献   

15.
Picroliv protects against monocrotalineinduced hepatic damage in rats   总被引:2,自引:0,他引:2  
Monocrotaline, a pyrrolizidine alkaloid, caused changes in most of the biochemical parameters in rats 12 days after a single dose of 120 mg/kg. These included significantly increased activities of hepatic succinate dehydrogenase, acid ribonuclease, acid phosphatase, gammaglutamyl transpeptidase and 5'-nucleotidase and decreased in the activities of glucose-6-phosphatase and cytochrome P450. The levels of DNA, RNA and glycogen in liver and albumin and protein in serum decreased while serum bilirubin increased. The histopathological changes in liver were characterized by diffused hepatocyte alterations in the form of ballooning, granular cytoplasm, indistinct cell outlines, nuclear changes, focal necrosis, and vascular damage. When picroliv, a standardized iridoid glycoside fraction of Picrorhiza kurroa, was administered orally in a dose of 25 mg/kg simultaneously with monocrotaline, alterations in most of the biochemical parameters along with the histopathological changes in liver caused by monocrotaline were prevented.  相似文献   

16.
Fucoidan, a sulfated polysaccharide extracted from various brown seaweeds, possesses a wide range of pharmacological properties. In this study, we investigated the protective effect of fucoidan on acetaminophen-induced acute liver injury in rats. Liver injury was induced by administration of acetaminophen (800 mg/kg, i.p.) and fucoidan was administered (100 mg kg, p.o.) 2 h before and after acetaminophen administration. After 24 h, co-treatment of fucoidan ameliorated liver damage and cell death induced by acetaminophen. Acetaminophen induced the overexpression of CYP2E1, one of the metabolizing enzymes of acetaminophen, but cotreatment with fucoidan suppressed its increased expression of CYP2E1. Fucoidan also reduced the hepatic apoptosis induced by acetaminophen exposure as shown in the protein expression of Bax, Bcl-2, and cleaved caspase-3. The anti-oxidative effect of fucoidan was observed from the increase of the production and expression of glutathione, superoxide dismutase, and glutathione peroxidase, both of which were decreased by acetaminophen. Also, fucoidan decreased the expression of inflammatory mediators, including tumor necrosis factoralpha, interleukin 1 beta, and inducible nitric oxide synthase. Taken together, the data demonstrate the hepato-protective effects of fucoidan against acetaminophen-induced liver injury via anti-oxidant, anti-inflammatory, and anti-apoptotic mechanisms.  相似文献   

17.
Hepatic injury induced by various toxic agents, including acetaminophen (APAP), has been attributed, in part, to the production of proinflammatory cytokines and other mediators by resident Kupffer cells within the liver. However, recent evidence from our laboratory has demonstrated that hepato-protective factors, such as interleukin (IL)-10 and cyclooxygenase-derived mediators, are also upregulated in response to hepatic damage to help protect against exacerbated injury, and Kupffer cells have been suggested to be a source of these modulatory factors. In other models, Kupffer cells also serve important regulatory functions in pathophysiological states of the liver. Therefore, we reevaluated the role of Kupffer cells in a murine model of APAP-induced liver injury using liposome-entrapped clodronate (liposome/clodronate) as an effective Kupffer cell-depleting agent. We show that in contrast to pretreatment of mice with a widely used macrophage inhibitor, gadolinium chloride, which did not deplete Kupffer cells but moderately protected against APAP-induced hepatotoxicity as reported previously, the intravenous injection of liposome/clodronate caused nearly complete elimination of Kupffer cells and significantly increased susceptibility to APAP-induced liver injury as compared with mice pretreated with empty liposomes. This increased susceptibility was apparently unrelated to the metabolism of APAP since liposome/clodronate pretreatment did not alter APAP-protein adduct levels. Instead, Kupffer cell depletion by liposome/clodronate led to significant decreases in the levels of hepatic mRNA expression of several hepato-regulatory cytokines and mediators, including IL-6, IL-10, IL-18 binding protein and complement 1q, suggesting that Kupffer cells are a significant source for production of these mediators in this model. Our findings indicate that, in addition to their protoxicant activities, Kupffer cells can also have an important protective function in the liver through the production of a variety of modulatory factors which may counteract inflammatory responses and/or stimulate liver regeneration.  相似文献   

18.
19.
Thioacetamide (100 mg/kg), when administered to normal rats, caused a significant increase in the activities of 5'-nucleotidase and gamma-glutamyl transpeptidase and a decrease in the activities of glucose 6-phosphatase and succinate dehydrogenase enzymes in the liver. DNA, RNA, and proteins were increased while the cytochrome P450 in the microsomal fraction and the glycogen content in the liver were decreased significantly. Elevations in the activities of GOT, GPT, and alkaline phosphatase and bilirubin content in serum were also observed. Picroliv, a standardised glycoside fraction of Picrorhiza kurroa, in doses of 12.5 and 25 mg/kg prevented most of the biochemical changes induced by thioacetamide in liver and serum. The hepatoprotective activity of Picroliv was comparable with that of silymarin, a known hepatoprotective agent obtained from seeds of Silybum marianum.  相似文献   

20.
Overdose of acetaminophen, a widely used analgesic drug, can result in severe hepatotoxicity and is often fatal. This study was undertaken to examine the effects of arabic gum (AG), which is commonly used in processed foods, on acetaminophen-induced hepatotoxicity in mice. Mice were given arabic gum orally (100 g l(-1)) 5 days before a hepatotoxic dose of acetaminophen (500 mg kg(-1)) intraperitoneally. Arabic gum administration dramatically reduced acetaminophen-induced hepatotoxicity as evidenced by reduced serum alanine (ALT) and aspartate aminotransferase (AST) activities. Acetaminophen-induced hepatic lipid peroxidation was reduced significantly by arabic gum pretreatment. The protection offered by arabic gum does not appear to be caused by a decrease in the formation of toxic acetaminophen metabolites, which consumes glutathione, because arabic gum did not alter acetaminophen-induced hepatic glutathione depletion. Acetaminophen increased nitric oxide synthesis as measured by serum nitrate plus nitrite at 4 and 6 h after administration and arabic gum pretreatment significantly reduced their formation. In conclusion, arabic gum is effective in protecting mice against acetaminophen-induced hepatotoxicity. This protection may involve the reduction of oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号