首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the Wnt family of extracellular proteins play essential roles during many phases of vertebrate embryonic development. The molecular mechanism of their action involves a complex cascade of intracellular signaling events, which remains to be understood completely. Recently, two novel cytoplasmic modulators of Wnt signaling, Frodo and Dapper, were identified in Xenopus. We report isolation of their homologs in zebrafish, and show that these genes, frd1 and frd2, are expressed in restricted domains during embryogenesis. Both genes are expressed during early gastrulation in the future mesendoderm, and continue to be expressed in distinct patterns in the forming neurectoderm and mesoderm. Comparative sequence analysis and similar expression patterns argue that frd1 is the zebrafish ortholog of Frodo and Dapper, whereas frd2 is a more divergent member of the same family. Our data suggest important roles for zebrafish frd1 and frd2 in patterning the neural plate and several mesodermal derivatives.  相似文献   

2.
Hereditary multiple exostoses (HME) is a genetically heterogeneous disease characterized by the development of bony protuberances at the ends of all long bones. Genetic analyses have revealed HME to be a multigenic disorder linked to three loci on chromosomes 8q24 (EXT1), 11p11-13 (EXT2), and 19p (EXT3). The EXT1 and EXT2 genes have been cloned and defined as glycosyltransferases involved in the synthesis of heparan sulfate. EST database analysis has demonstrated additional gene family members, EXT-like genes (EXTL1, EXTL2, and EXTL3), not associated with a HME locus. The mouse homologs of EXT1 and EXT2 have also been cloned and shown to be 99% and 95% identical to their human counterparts, respectively. Here, we report the identification of the mouse EXTL1 gene and show it is 74% identical to the human EXTL1 gene. Expression studies of all three mouse EXT genes throughout various stages of embryonic development were carried out and whole-mount in situ hybridization in the developing limb buds showed high levels of expression of all three EXT genes. However, in situ hybridization of sectioned embryos revealed remarkable differences in expression profiles of EXT1, EXT2, and EXTL1. The identical expression patterns found for the EXT1 and EXT2 genes support the recent observation that both proteins form a glycosyltransferase complex. We suggest a model for exostoses formation based on the involvement of EXT1 and EXT2 in the Indian hedgehog/parathyroid hormone-related peptide (PTHrP) signaling pathway, an important regulator of the chondrocyte maturation process.  相似文献   

3.
Voltage‐gated calcium channels (VGCC) play important roles in electrically excitable cells and embryonic development. The VGCC β subunits are essential for membrane localization of the channel and exert modulatory effects on channel functions. In mammals, the VGCC β subunit gene family contains four members. In zebrafish, there appear to be seven VGCC β subunits including the previously identified β1 subunit. cDNAs for six additional VGCC β subunit homologs were identified in zebrafish, their chromosomal locations determined and their expression patterns characterized during embryonic development. These six genes are primarily expressed in the nervous system with cacnb4a also expressed in the developing heart. Sequence homology, genomic synteny and expression patterns suggest that there are three pairs of duplicate genes for β2, β3, and β4 in zebrafish with distinct expression patterns during embryonic development. Developmental Dynamics 237:3842–3852, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
Members of the Slit family regulate axon guidance and cell migration. To date, three vertebrate slit1 genes have been identified in mammals and orthologs of two, slit2 and slit3, have been identified in zebrafish. Here, we describe the cloning of full-length cDNAs for two zebrafish slit orthologs, slit1a and slit1b. Both predicted proteins contain the conserved motifs that characterize other vertebrate Slits. slit1a and slit1b are both expressed in the midline, hypochord, telencephalon, and hindbrain. Apart from these shared expression domains, however, their expression patterns largely differ. Whereas slit1a is expressed broadly in the central nervous system (CNS) and in the somites, pectoral fin buds, tail bud, and caudal fin folds, slit1b is expressed in the olfactory system throughout embryonic and larval development, and in the retina during larval stages. Their expression patterns, particularly that of slit1a, suggest that Slit proteins may have roles in tissue morphogenesis in addition to their established roles in axon guidance and cell migration.  相似文献   

5.
6.
7.
Troponin T (Tnnt), a troponin component, interacts with tropomyosin and is crucial to the regulation of striated muscle contraction. To gain insight into the molecular evolution and developmental regulation of Tnnt gene (Tnnt) in lower vertebrates, zebrafish Tnnt1 (slow Tnnt), Tnnt2 (cardiac Tnnt), and Tnnt3b (fast Tnnt isoform b) were characterized. The polypeptides of zebrafish Tnnt1, Tnnt2, and Tnnt3b were conserved in the central tropomyosin- and C-terminal troponin I-binding domains. However, the N-terminal hypervariable regions were highly extended and rich in glutamic acid in polypeptides of Tnnt1 and Tnnt2, but not Tnnt3b. The Tnnt2 and Tnnt3b contain introns, whereas Tnnt1 is intron-free. During development, large to small, alternatively spliced variants were detected in Tnnt2, but not in Tnnt1 or Tnnt3. Whole-mount in situ hybridization showed zebrafish Tnnt1 and Tnnt2 are activated during early somitogenesis (10 hr postfertilization, hpf) and cardiogenesis (14 hpf), respectively, but Tnnt3b is not activated until middle somitogenesis (18 hpf). Tnnt2 and Tnnt3b expression was cardiac- and fast-muscle specific, but Tnnt1 was expressed in both slow and fast muscles. We propose that three, distinct, muscle-type Tnnt evolved after the divergence of fish and deuterostome invertebrates. In zebrafish, the developmental regulation of Tnnt during somitogenesis and cardiogenesis is more restricted and simpler than in tetrapods. These new findings may provide insight into the developmental regulation and molecular evolution of vertebrate Tnnt.  相似文献   

8.
目的探讨斑马鱼胚胎发育过程中miR-9、miR-219及Dicer基因时序性表达规律。方法取正常发育至受精后4、8、12、16、20、24、36、48和72 h(hpf)斑马鱼胚胎各约40枚,用Trizol法分别提取总RNA,茎环法反转录为c DNA,用Real-time PCR检测胚胎miR-9、miR-219及Dicer表达量。结果 miR-9、miR-219及Dicer表达水平在胚胎发育过程中呈现峰谷变化,不同发育阶段之间总的差异有统计学意义(P0.05)。与胚胎发育全程的基因平均表达水平相比,miR-9在8 hpf之前表达量较低(P0.05),36 hpf后表达量持续增高,48 hpf和72 hpf时表达量显著高于平均水平(P0.01)。miR-219在8 hpf之前表达量也处于较低水平(P0.05),20 hpf后迅速增高,24hpf时达到峰值,并持续到48 hpf(P0.01)。Dicer在胚胎早期(4 hpf)就有明显表达(P0.05),随后表达水平迅速下降,16 hpf时达到低点(P0.05),然后逐渐回升,直至胚胎末期。结论斑马鱼胚胎发育过程miR-9、miR-219及Dicer时序性表达有一定规律,miR-9主要在胚胎后期表达,miR-219主要在胚胎中期表达,Dicer主要在胚胎早期表达,其次在胚胎后期,提示miR-9、miR-219及Dicer参与胚胎发育调控过程。  相似文献   

9.
10.
Wnt signaling is an important component in patterning the early embryo and specifically the neural plate. Studies in Xenopus, mouse, and zebrafish have shown that signaling by members of the Wnt family of secreted signaling factors, their Frizzled receptors and several inhibitors (sFRP1, sFRP2, sFRP3/Frzb1, Crescent/Frzb2, Dkk1, and Cerberus) are involved. However, very little is known about the expression of genes in the Wnt signaling pathway during early anterior neural patterning in chick. We have performed an expression analysis at neural plate stages of several Wnts, Frizzled genes, and Wnt signaling pathway inhibitors using in situ hybridization. The gene expression patterns of these markers are extremely dynamic. We have identified two candidate molecules for anterior patterning of the neural plate, Wnt1 and Wnt8b, which are expressed in the rostral ectoderm at these stages. Further functional studies on the roles of these markers are underway.  相似文献   

11.
12.
13.
The three Enigma subfamily proteins, Enigma, Enigma homologue, and Cypher/ZASP belong to the PDZ and LIM encoding protein family, which is characterized by the presence of a PDZ- and one or more LIM domains. PDZ/LIM proteins play important biological roles, and all members have been shown to associate with the actin cytoskeleton. We describe here the splice form specific expression patterns for the three Enigma subfamily members during zebrafish embryogenesis. Whole-mount in situ hybridization revealed common and distinct expression patterns for the different PDZ or LIM domain encoding splice variants. We further studied the role of enigma in zebrafish development. Enigma knockdown appeared to be embryonic lethal shortly after the end of gastrulation and in few surviving embryos led to elongation defects and disorganized somites. In summary, we show here the temporal and spatial expression patterns of the three Enigma family members and their PDZ and LIM domain encoding splice forms during zebrafish embryogenesis. Our results suggest that enigma is important for the formation and organization of somites and might play an important role for actin cytoskeleton organization during development.  相似文献   

14.
15.
目的探讨斑马鱼胚胎发育过程成纤维细胞生长因子(FGF)受体基因时序性表达规律。方法分别提取发育至4、6、10、12、18、24、48及72hpf斑马鱼胚胎总RNA并反转录为cDNA,用实时定量PCR方法检测FGF受体基因(fgfrs)mRNA的相对表达量。结果斑马鱼胚胎发育过程fgfrs mRNA动态表达水平有明显峰谷变化(P0.01),胚胎fgfrs开始表达阶段依次为fgfr1a与fgfr1b(囊胚期)、fgfr4(原肠胚初期)、fgfr2(原肠胚期)及fgfr3(原肠胚后期),其表达高峰期分别在原肠胚期、原肠胚后期、体节期及胚胎发育中后期。旁系同源基因fgfr1a与fgfr1b动态表达趋势相似(r=0.830,P0.05)。fgfr1a与fgfr3、fgfr1b与fgfr4、fgfr2与fgfr3 mRNA表达量之间相关分析也有意义(r值分别为-0.726,0.821及0.772,P0.05)。结论斑马鱼胚胎发育过程fgfrs时序性表达有一定规律性,fgfr1、fgfr4主要参与胚胎早期发育调控,fgfr2、fgfr3主要参与胚胎中、后期发育调控。fgfr1a与fgfr1b共表达使其调控作用具有冗余能力。fgfr1和fgfr3之间在表达上可能存在相互制约关系。  相似文献   

16.
We report the cloning and expression patterns of three novel zebrafish Roundabout homologs. The Roundabout (robo) gene encodes a transmembrane receptor that is essential for axon guidance in Drosophila and Robo family members have been implicated in cell migration. Analysis of extracellular domains and conserved cytoplasmic motifs shows that zebrafish Robo1 and Robo2 are orthologs of mammalian Robo1 and Robo2, respectively, while zebrafish Robo3 is likely to be an ortholog of mouse Rig-1. The three zebrafish robos are expressed in distinct but overlapping patterns during embryogenesis. They are highly expressed in the developing nervous system, including the olfactory system, visual system, hindbrain, cranial ganglia, spinal cord, and posterior lateral line primordium. They are also expressed in several nonneuronal tissues, including somites and fin buds. The timing and patterns of expression suggest roles for zebrafish robos in axon guidance and cell migration. Wiley-Liss, Inc.  相似文献   

17.
Branching processes such as nerves and vessels share molecular mechanisms of path determination. Our study focuses on unc5b, a member of the unc5 axon guidance gene family. Here, we have cloned the full-length zebrafish ortholog of unc5b, mapped its chromosome location in the zebrafish genome, and compared its expression patterns to robo4, another axon guidance family member. In situ show that unc5b is expressed predominantly in sensory structures such as the eye, ear, and brain. Both unc5b and robo4 show robust expression in all three compartments of the embryonic brain, namely forebrain, midbrain, and hindbrain. In particular, the hindbrain rhombomere expression displays interesting patterns in that robo4 is expressed in medial rhombomere cell clusters when compared to unc5b expressed in lateral rhombomere clusters. A similar medial-lateral theme is observed in other neural structures such as the neural tube. Our expression analysis provides a starting point for studying the role of axon guidance genes in embryonic hindbrain patterning.  相似文献   

18.
We have identified three novel members of the zebrafish forkhead class I gene family, which we have named foxi2, foxi3a, and foxi3b. We have reported previously the identification of zebrafish foxi1, which is required for otic placode and jaw development. Expression analysis shows that foxi2 is expressed within the chordamesoderm during early somitogenesis and the retina and pharyngeal arches during later stages. The foxi3a and foxi3b genes likely represent a recently duplicated pair, and they are similarly expressed in epidermal mucous cells throughout embryogenesis and early larval stages. None of these newly identified FoxI genes are expressed in otic precursor cells and, therefore, are unlikely to share functional overlap with foxi1 in the development of the inner ear. In addition to these zebrafish FoxI paralogs, we have identified 16 new FoxI sequences in species ranging from Ciona intestinalis to Homo sapiens. We present an extensive phylogenetic analysis of the FoxI class that includes these new sequences together with those previously reported. This analysis supports the existence of three subfamilies within the FoxI class, each containing at least one zebrafish member.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号