首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Intensity-modulated radiotherapy (IMRT) treatment plan verification is often done using Kodak EDR2 film and a Vidar Dosimetry PRO film digitizer. However, since many hospitals are moving towards a filmless environment, access to a film processor may not be available. Therefore, we have investigated a newly available Gafchromic EBT film for IMRT dosimetry. Planar IMRT dose distributions are delivered to both EBT and EDR2 film and scanned with the Vidar VXR-16 as well as an Epson Expression 1680 flatbed scanner. The measured dose distributions are then compared to those calculated with a Pinnacle treatment planning system. The IMRT treatments consisted of 7-9 6 MV beams for treatment of prostate, head and neck, and a few other sites. The films were analyzed using FilmQATM (3cognition LLC) software. Comparisons between measured and calculated dose distributions are reported as dose difference (DD) (pixels within +/-5%), distance to agreement (DTA) (3 mm), as well as gamma values (y) (dose= +/-3%, dist. =2 mm). Using EDR2 with the Vidar scanner is an established technique and agreement between calculated and measured dose distributions was better than 90% in all indices (DD, DTA, and gamma). However, agreement with calculations deteriorated reaching the lower 80% for EBT film scans with the Vidar scanner in logarithmic mode. The EBT Vidar scans obtained in linear mode showed an improved agreement to the upper 80% range, but artifacts were still observed across the scan. These artifacts were very distinct in all EBT scans and can be attributed to the way the film is transported through the scanner. In the Epson scanner both films are rigidly immobilized and the light source scans over the film. It was found that the Epson scanner performed equally well with both types of film giving agreement to better than 90% in all indices.  相似文献   

2.
Film dosimetry is an attractive tool for dose distribution verification in intensity modulated radiotherapy (IMRT). A critical aspect of radiochromic film dosimetry is the scanner used for the readout of the film: the output needs to be calibrated in dose response and corrected for pixel value and spatial dependent nonuniformity caused by light scattering; these procedures can take a long time. A method for a fast and accurate calibration and uniformity correction for radiochromic film dosimetry is presented: a single film exposure is used to do both calibration and correction. Gafchromic EBT films were read with two flatbed charge coupled device scanners (Epson V750 and 1680Pro). The accuracy of the method is investigated with specific dose patterns and an IMRT beam. The comparisons with a two-dimensional array of ionization chambers using a 18 x 18 cm2 open field and an inverse pyramid dose pattern show an increment in the percentage of points which pass the gamma analysis (tolerance parameters of 3% and 3 mm), passing from 55% and 64% for the 1680Pro and V750 scanners, respectively, to 94% for both scanners for the 18 x 18 open field, and from 76% and 75% to 91% for the inverse pyramid pattern. Application to an IMRT beam also shows better gamma index results, passing from 88% and 86% for the two scanners, respectively, to 94% for both. The number of points and dose range considered for correction and calibration appears to be appropriate for use in IMRT verification. The method showed to be fast and to correct properly the nonuniformity and has been adopted for routine clinical IMRT dose verification.  相似文献   

3.
Post-irradiation colouration of Gafchromic EBT radiochromic film   总被引:1,自引:0,他引:1  
Gafchromic EBT (International Specialty Products, NJ, USA), radiochromic film is one of the newest radiation-induced auto-developing x-ray analysis films available for therapeutic radiation dosimetry in radiotherapy applications. Part of any radiochromic film product which undergoes a polymerization reaction for automatic darkening is an associated post-irradiation colouration whereby the film continues to darken after irradiation has ceased. The Gafchromic EBT film has been shown to produce an approximate 6% to 9% increase in post-irradiation optical density within the first 12 h of irradiation within the 1 Gy to 5 Gy dose range. This is compared to approximately 13%, 15% and 19% for MD-55-2, XR type T and HS radiochromic film, respectively. It is also shown that the EBT film's post-irradiation growth stabilizes to within 1% within the first 6 h. Thus EBT provides a reduced post-irradiation growth effect. However, to increase the accuracy of the film analysis, it is recommended that films be left for a significant period (at least 6 h) before the analysis is performed to provide a high level of accuracy. Also, calibration films must be read out with the same post-irradiation time to further enhance the accuracy of dosimetry.  相似文献   

4.
Complex dose delivery techniques like intensity-modulated radiation therapy (IMRT) require dose measurement in three dimensions for comprehensive validation. Previously, we demonstrated the feasibility of the "PRESAGE/optical-computed tomography (CT)" system for the three-dimensional verification of simple open beam dose distributions where the planning system was known to be accurate. The present work extends this effort and presents the first application of the PRESAGE/optical-CT system for the verification of a complex IMRT distribution. A highly modulated 11 field IMRT plan was delivered to a cylindrical PRESAGE dosimeter (16 cm in diameter and 11 cm in height), and the dose distribution was readout using a commercial scanning-laser optical-CT scanner. Comparisons were made with independent GAFCHROMIC EBT film measurements, and the calculated dose distribution from a commissioned treatment planning system (ECLIPSE). Isodose plots, dose profiles, gamma maps, and dose-volume histograms were used to evaluate the agreement. The isodose plots and dose profiles from the PRESAGE/optical-CT system were in excellent agreement with both the EBT measurements and the ECLIPSE calculation at all points except within 3 mm of the outer edge of the dosimeter where an edge artifact occurred. Excluding this 3 mm rim, gamma map comparisons show that all three distributions mutually agreed to within a 3% (dose difference) and 3 mm (distance-to-agreement) criteria. A 96% gamma pass ratio was obtained between the PRESAGE and ECLIPSE distributions over the entire volume excluding this rim. In conclusion, for the complex IMRT plan studied, and in the absence of inhomogeneities, the ECLIPSE dose calculation was found to agree with both independent measurements, to within 3%, 3 mm gamma criteria.  相似文献   

5.
The capability of the new GafChromic EBT prototype B for external beam dose verification is investigated in this paper. First the general characteristics of this film (dose response, postirradiation coloration, influence of calibration field size) were derived using a flat-bed scanner. In the dose range from 0.1 to 8 Gy, the sensitivity of the EBT prototype B film is ten times higher than the response of the GafChromic HS, which so far was the GafChromic film with the highest sensitivity. Compared with the Kodak EDR2 film, the response of the EBT is higher by a factor of 3 in the dose range from 0.1 to 8 Gy. The GafChromic EBT almost does not show a temporal growth of the optical density and there is no influence of the chosen calibration field size on the dose response curve obtained from this data. A MatLab program was written to evaluate the two-dimensional dose distributions from treatment planning systems and GafChromic EBT film measurements. Verification of external beam therapy (SRT, IMRT) using the above-mentioned approach resulted in very small differences between the planned and the applied dose. The GafChromic EBT prototype B together with the flat-bed scanner and MatLab is a successful approach for making the advantages of the GafChromic films applicable for verification of external beam therapy.  相似文献   

6.
Curative breast radiotherapy typically leaves patients with varying degrees of cosmetic damage. One problem interfering with cosmetically acceptable breast radiotherapy is the external contour for large pendulous breasts which often results in high doses to skin folds. Thermoplastic casts are often employed to secure the breasts to maintain setup reproducibility and limit the presence of skin folds. This paper aims to determine changes in surface dose that can be attributed to the use of thermoplastic immobilization casts. Skin dose for a clinical hybrid conformal/IMRT breast plan was measured using radiochromic film and MOSFET detectors at a range of water equivalent depths representative of the different skin layers. The radiochromic film was used as an integrating dosimeter, while the MOSFETs were used for real-time dosimetry to isolate the contribution of skin dose from individual IMRT segments. Strips of film were placed at various locations on the breast and the MOSFETs were used to measure skin dose at 16 positions spaced along the film strips for comparison of data. The results showed an increase in skin dose in the presence of the immobilization cast of up to 45.7% and 62.3% of the skin dose without the immobilization cast present as measured with Gafchromic EBT film and MOSFETs, respectively. The increase in skin dose due to the immobilization cast varied with the angle of beam incidence and was greatest when the beam was normally incident on the phantom. The increase in surface dose with the immobilization cast was greater under entrance dose conditions compared to exit dose conditions.  相似文献   

7.
白凯        张鹏程  黄盛聪      祁宁  李强      刘新国     《中国医学物理学杂志》2023,(1):13-18
目的:消除EBT3胶片数字化过程中的横向响应伪影,优化EBT3胶片的治疗计划验证结果。方法:覆盖双面镀膜的减反射玻璃进行胶片数字化,通过净光密度与扫描仪不同位置间的抛物线拟合关系来消除横向响应伪影后,借助剂量刻度曲线将胶片净光密度转换为剂量。使用辐照面积较大的治疗计划进行验证,对胶片与计划剂量分布进行γ分析。结果:在3%/3 mm标准下对不小于0.1 Gy的剂量点进行γ分析,消除横向响应伪影后胶片与计划剂量分布的γ通过率为95%,相比未消除横向响应伪影的剂量分布提升了3%的通过率。结论:利用该方法可以有效消除横向响应伪影,提高EBT3胶片治疗计划验证的γ通过率。  相似文献   

8.
The introduction of radiochromic films has solved some of the problems associated with conventional 2D radiation detectors. Their high spatial resolution, low energy dependence, and near-tissue equivalence make them ideal for measurement of dose distributions in radiation fields with high dose gradients. Precise knowledge of the absorption spectra of these detectors can help to develop more suitable optical densitometers and potentially extend the use of these films to other areas such as the measurement of the radiation beam spectral information. The goal of this study is to present results of absorption spectra measurements for the new GAFCHROMIC film, EBT type, exposed to 6 MV photon beam in the dose range from 0 to 6 Gy. Spectroscopic analysis reveals that in addition to the two main absorption peaks, centered at around 583 and 635 nm, the absorption spectrum in the spectral range from 350 to 800 nm contains six more absorption bands. Comparison of the absorption spectra reveals that previous HD-810, MD-55, as well as HS GAFCHROMIC film models, have nearly the same sensitive layer base material, whereas the new EBT model, GAFCHROMIC film has a different composition of its sensitive layer. We have found that the two most prominent absorption bands in EBT model radiochromic film do not change their central wavelength position with change in a dose deposited to the film samples.  相似文献   

9.
The purpose of this study was to investigate the value of a commercially available flatbed scanner for film dosimetry with radiochromic film for external radiotherapy. The EPSON Pro 1680 Expression scanner was examined as a densitometer for two-dimensional film dosimetry with Gafchromic EBT film. An accurate and efficient scanning procedure was established. Possible drift and warm-up effects of the scanner were studied and the direct physical influence of the scanner light on the radiochromic film was assessed. Next, we investigated the scan field uniformity. Also, we examined if the accuracy of radiochromic film was improved by subtracting the optical density of the unirradiated blank film from the optical density of the irradiated film. To assess the accuracy of Gafchromic EBT film when the EPSON scanner was used as a densitometer, the depth dose of a 2 x 15 cm(2) field and the in-plane and cross-plane profiles of a 15 x 15 cm(2) field were measured and compared with diamond detector measurements. When taking consecutive scans, we found that the optical density taken from the first scan was about 1% higher than the optical density taken from subsequent scans. We attribute this to the warming up of the lamp of the scanner. Longer-term drift of the scanner was found to be absent. We found that the use of a correction matrix was necessary to correct for the non-uniform scanner response over the scan field. Subtracting the optical density of the unirradiated blank film from the irradiated film improves the precision of the Gafchromic EBT film. Depth dose and profile measurements with Gafchromic EBT film and the diamond detector are in agreement within 2.5%. The EPSON Pro 1680 Expression scanner is an excellent tool for accurate two-dimensional film dosimetry with Gafchromic EBT film provided that some precautions and corrections are taken into account.  相似文献   

10.
Sohn JW  Dempsey JF  Suh TS  Low DA 《Medical physics》2003,30(9):2432-2439
Application of intensity modulated radiation therapy (IMRT) using multileaf collimation often requires the use of small beamlets to optimize the delivered radiation distribution. Small-beam dose distribution measurements were compared to dose distributions calculated using a commercial treatment planning system that models its data acquired using measurements from relatively large fields. We wanted to evaluate only the penumbra, percent depth-dose (PDD) and output model, so we avoided dose distribution features caused by rounded leaf ends and interleaf leakage by making measurements using the secondary collimators. We used a validated radiochromic film dosimetry system to measure high-resolution dose distributions of 6 MV photon beams. A commercial treatment planning system using the finite size pencil beam (FSPB) dose calculation algorithm was commissioned using measured central axis outputs from 4.0x4.0 to 40.0x40.0 cm2 beams and radiographic-film profile measurements of a 4.0x4.0 cm2 beam at twice the depth of maximum dose (dmax). Calculated dose distributions for square fields of 0.5x0.5 cm2, and 1.0x1.0 cm2, to 6.0x6.0 cm2, in 1.0x1.0 cm2, increments were compared against radiochromic film measurements taken with the film oriented parallel to the beam central axis in a water equivalent phantom. The PDD of the smaller field sizes exhibited behavior typical of small fields, namely a decrease in dmax with decreasing field size. The FSPB accurately modeled the depth-dose and central axis output for depths deeper than the nominal dmax of 1.5 cm plus 0.5 cm. The dose distribution in the build-up and penumbra regions was not accurately modeled for depths less than 2 cm, especially for the fields of 2.0x2.0 cm2 and smaller. Using the gamma function with 2 mm and 2% criteria, the dose model was shown to accurately predict the penumbra. While for single small beams the compared dose distributions passed the gamma function criteria, the clinical appropriateness of these criteria is not clear for a composite IMRT plan. Further investigation of the cumulative impact of the observed dose discrepancies is warranted. We speculate that the observed differences in the penumbra regions arise from some energy dependent artifact in the radiographic-film profiles used for commissioning. In the future, radiochromic film based commissioning might provide a more accurate data set for dose modeling.  相似文献   

11.
Guo P  Adamovics J  Oldham M 《Medical physics》2006,33(10):3962-3972
There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of < or = 1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R2 value of 0.9979 and a standard error of estimation of approximately 1%) relative to independent measurement. The overall performance of the PRESAGE/OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed more closely with each other than with the calculated plan, consistent with penumbral blurring in the planning data which was acquired with an ion chamber. In summary, our results support the conclusion that the PRESAGE optical-CT combination represents a significant step forward in 3D dosimetry, and provides a robust, clinically effective and viable high-resolution relative 3D dosimetry system for radiation therapy.  相似文献   

12.
Film dosimetry provides a convenient tool to determine dose distributions, especially for verification of IMRT plans. However, the film response to radiation shows a significant dependence on depth, energy and field size that compromise the accuracy of measurements. Kodak's XV2 film has a low saturation dose (approximately 100 cGy) and, consequently, a relatively short region of linear dose-response. The recently introduced Kodak extended range EDR2 film was reported to have a linear dose-response region extending to 500 cGy. This increased dose range may be particularly useful in the verification of IMRT plans. In this work, the dependence of Kodak EDR2 film's response on the depth, field size and energy was evaluated and compared with Kodak XV2 film. Co-60, 6 MV, 10 MV and 18 MV beams were used. Field sizes were 2 x 2, 6 x 6, 10 x 10, 14 x 14, 18 x 18 and 24 x 24 cm2. Doses for XV2 and EDR2 films were 80 cGy and 300 cGy, respectively. Optical density was converted to dose using depth-corrected sensitometric (Hurter and Driffield, or H&D) curves. For each field size, XV2 and EDR2 depth-dose curves were compared with ion chamber depth-dose curves. Both films demonstrated similar (within 1%) field size dependence. The deviation from the ion chamber for both films was small forthe fields ranging from 2 x 2 to 10 x 10 cm2: < or =2% for 6, 10 and 18 MV beams. No deviation was observed for the Co-60 beam. As the field size increased to 24 x 24 cm2, the deviation became significant for both films: approximately 7.5% for Co-60, approximately 5% for 6 MV and 10 MV, and approximately 6% for 18 MV. During the verification of IMRT plans, EDR2 film showed a better agreement with the calculated dose distributions than the XV2 film.  相似文献   

13.
目的:评估基于Gafchromic EBT3胶片的剂量测量系统用于螺旋断层放射治疗计划验证的可靠性,确定该系统的正确使用方法。 方法:使用Gafchromic EBT3胶片和Vidar DosimetryPro Advantage Red扫描仪组成的剂量测量系统,测试并确定系统的一些重要特性对测量结果的影响。此外,使用该系统验证螺旋断层放射治疗计划,借助Gamma指数分析对胶片测量的剂量分布与计划系统计算结果之间进行比较。 结果:胶片辐照后一开始透光度随时间变化比较明显,直到约4 h以后胶片着色渐趋饱和,4 h内扫描值变化最高达11.6%。扫描仪扫描重复性相对标准差小于0.5%。胶片正反方向放置扫描结果之间差别小于0.6%、横向和纵向放置扫描结果之间差别最高达7.0%。Gamma参数设置为3%/3 mm时,横向和纵向放置扫描验证平均通过率分别为96.5%±2.9%和95.7%±3.6%,方差分析显示两种扫描方式的验证通过率在a=0.05水平上没有统计学差异。 结论:使用文中的胶片剂量测量系统时,应居中放置扫描,并使验证胶片和刻度胶片保持相同的扫描方向。通过直接建立扫描值与胶片吸收剂量之间的一一对应关系,将验证胶片的扫描值转换成吸收剂量的方法简便易行。  相似文献   

14.
The purpose of this paper is to evaluate the energy dependence of the response of two new high sensitivity models of radiochromic films EBT and XR-QA. We determined the dose response curves of these films for four different radiation sources, namely, 6 MV photon beams (6 MVX), Ir-192, I-125, and Pd-103. The first type (EBT) is designed for intensity modulated radiation therapy (IMRT) dosimetry, and the second type (XR-QA) is designed for kilovoltage dosimetry. All films were scanned using red (665 nm) and green (520 nm) light sources in a charge-coupled device-based densitometer. The dose response curves [net optical density (NOD) versus dose] were plotted and compared for different radiation energies and light sources. Contrary to the early GAFCHROMIC film types (such as models XR, HS, MD55-2, and HD810), the net optical densities of both EBT and XR-QA were higher with a green (520 nm) than those with a red (665 nm) light source due to the different absorption spectrum of the new radiochromic emulsion. Both film types yield measurable optical densities for doses below 2 Gy. EBT film response is nearly independent of radiation energy, within the uncertainty of measurement. The NOD values of EBT film at 1 and 2 Gy are 0.13 and 0.25 for green, and 0.1 and 0.17 for red, respectively. In contrast, the XR-QA film sensitivity varies with radiation energy. The doses required to produce NOD of 0.5 are 6.9, 5.4, 0.7, and 0.9 Gy with green light and 19, 13, 1.7, and 1.5 Gy with red light, for 6 MVX, Ir-192, I -125, and Pd-103, respectively. EBT film was found to have minimal photon energy dependence of response for the energies tested and is suitable for dosimetry of radiation with a wide energy spectrum, including primary and scattered radiation. XR-QA film is promising for kilovoltage sources with a narrow energy spectra. The new high sensitivity radiochromic films are promising tools in radiation dosimetry.  相似文献   

15.
Wuu CS  Xu Y 《Medical physics》2006,33(5):1412-1419
Dose distributions generated from intensity-modulated-radiation-therapy (IMRT) treatment planning present high dose gradient regions in the boundaries between the target and the surrounding critical organs. Dose accuracy in these areas can be critical, and may affect the treatment. With the increasing use of IMRT in radiotherapy, there is an increased need for a dosimeter that allows for accurate determination of three-dimensional (3D) dose distributions with high spatial resolution. In this study, polymer gel dosimetry and an optical CT scanner have been employed to implement 3D dose verification for IMRT. A plastic cylinder of 17 cm diameter and 12 cm height, filled with BANG3 polymer gels (MGS Research, Inc., Madison, CT) and modified to optimal dose-response characteristics, was used for IMRT dose verification. The cylindrical gel phantom was immersed in a 24 x 24 x 20 cm water tank for an IMRT irradiation. The irradiated gel sample was then scanned with an optical CT scanner (MGS Research Inc., Madison, CT) utilizing a single He-Ne laser beam and a single photodiode detector. Similar to the x-ray CT process, filtered back-projection was used to reconstruct the 3D dose distribution. The dose distributions measured from the gel were compared with those from the IMRT treatment planning system. For comparative dosimetry, a solid water phantom of 24 x 24 x 20 cm, having the same geometry as the water tank for the gel phantom, was used for EDR2 film and ion chamber measurements. Root mean square (rms) deviations for both dose difference and distance-to-agreement (DTA) were used in three-dimensional analysis of the dose distribution comparison between treatment planning calculations and the gel measurement. Comparison of planar dose distributions among gel dosimeter, film, and the treatment planning system showed that the isodose lines were in good agreement on selected planes in axial, coronal, and sagittal orientations. Absolute point-dose verification was performed with ion chamber measurements at four different points, varying from 48% to 110% of the prescribed dose. The measured and calculated doses were found to agree to within 4.2% at all measurement points. For the comparison between the gel measurement and treatment planning calculations, rms deviations were 2%-6% for dose difference and 1-3 mm for DTA, at 60%-110% doses levels. The results from this study show that optical CT based polymer gel dosimetry has the potential to provide a high resolution, accurate, three-dimensional tool for IMRT dose distribution verification.  相似文献   

16.
Gafchromic EBT radiochromic film is one of the newest radiation-induced auto-developing x-ray analysis films available for therapeutic radiation dosimetry in radiotherapy applications. The spectral absorption properties in the visible wavelengths have been investigated and results show two main peaks in absorption located at 636 nm and 585 nm. These absorption peaks are different to many other radiochromic film products such as Gafchromic MD-55 and HS film where two peaks were located at 676 nm and 617 nm respectively. The general shape of the absorption spectra is similar to older designs. A much higher sensitivity is found at high-energy x-rays with an average 0.6 OD per Gy variation in OD seen within the first Gy measured at 636 nm using 6 MV x-rays. This is compared to approximately 0.09 OD units for the first Gy at the 676 nm absorption peak for HS film at 6 MV x-ray energy. The film's blue colour is visually different from older varieties of Gafchromic film with a higher intensity of mid-range blue within the film. The film provides adequate relative absorbed dose measurement for clinical radiotherapy x-ray assessment in the 1-2 Gy dose range which with further investigation may be useful for fractionated radiotherapy dose assessment.  相似文献   

17.
Saur S  Frengen J 《Medical physics》2008,35(7):3094-3101
Film dosimetry using radiochromic EBT film in combination with a flatbed charge coupled device scanner is a useful method both for two-dimensional verification of intensity-modulated radiation treatment plans and for general quality assurance of treatment planning systems and linear accelerators. Unfortunately, the response over the scanner area is nonuniform, and when not corrected for, this results in a systematic error in the measured dose which is both dose and position dependent. In this study a novel method for background correction is presented. The method is based on the subtraction of a correction matrix, a matrix that is based on scans of films that are irradiated to nine dose levels in the range 0.08-2.93 Gy. Because the response of the film is dependent on the film's orientation with respect to the scanner, correction matrices for both landscape oriented and portrait oriented scans were made. In addition to the background correction method, a full dose uncertainty analysis of the film dosimetry procedure was performed. This analysis takes into account the fit uncertainty of the calibration curve, the variation in response for different film sheets, the nonuniformity after background correction, and the noise in the scanned films. The film analysis was performed for film pieces of size 16 x 16 cm, all with the same lot number, and all irradiations were done perpendicular onto the films. The results show that the 2-sigma dose uncertainty at 2 Gy is about 5% and 3.5% for landscape and portrait scans, respectively. The uncertainty gradually increases as the dose decreases, but at 1 Gy the 2-sigma dose uncertainty is still as good as 6% and 4% for landscape and portrait scans, respectively. The study shows that film dosimetry using GafChromic EBT film, an Epson Expression 1680 Professional scanner and a dedicated background correction technique gives precise and accurate results. For the purpose of dosimetric verification, the calculated dose distribution can be compared with the film-measured dose distribution using a dose constraint of 4% (relative to the measured dose) for doses between 1 and 3 Gy. At lower doses, the dose constraint must be relaxed.  相似文献   

18.
A convolution-based calibration procedure has been developed to use an amorphous silicon flat-panel electronic portal imaging device (EPID) for accurate dosimetric verification of intensity-modulated radiotherapy (IMRT) treatments. Raw EPID images were deconvolved to accurate, high-resolution 2-D distributions of primary fluence using a scatter kernel composed of two elements: a Monte Carlo generated kernel describing dose deposition in the EPID phosphor, and an empirically derived kernel describing optical photon spreading. Relative fluence profiles measured with the EPID are in very good agreement with those measured with a diamond detector, and exhibit excellent spatial resolution required for IMRT verification. For dosimetric verification, the EPID-measured primary fluences are convolved with a Monte Carlo kernel describing dose deposition in a solid water phantom, and cross-calibrated with ion chamber measurements. Dose distributions measured using the EPID agree to within 2.1% with those measured with film for open fields of 2 x 2 cm2 and 10 x 10 cm2. Predictions of the EPID phantom scattering factors (SPE) based on our scatter kernels are within 1% of the SPE measured for open field sizes of up to 16 x 16 cm2. Pretreatment verifications of step-and-shoot IMRT treatments using the EPID are in good agreement with those performed with film, with a mean percent difference of 0.2 +/- 1.0% for three IMRT treatments (24 fields).  相似文献   

19.
Low dose fraction behavior of high sensitivity radiochromic film   总被引:1,自引:0,他引:1  
A high sensitivity (HS) model of radiochromic film is receiving increasing use. The film's linear sensitometric response in the range of 0.5-40 Gy would make this film an ideal candidate for complex dosimetry applications that require tissue equivalence. This study investigates the potential use for clinical dosimetry of typical radiotherapy fractions at relatively low doses (0.5-5 Gy). The experiment involved exposing 25 pre-exposed pieces of HS film to five equal fractions of doses from 0.5 to 5 Gy 24 hours apart. The cumulative dose for each film was carefully monitored and optical density measurements were used as the sole determination of film response to dose. The average behavior of the various fractionation schemes was roughly consistent with previous observations of the MD-55 radiochromic film with about twice the overall sensitivity as expected. However, at low doses and low dose increments, unexpected variations beyond a well-documented low dose nonlinearity were observed. These unexpected variations may indicate complex polymer kinetics at low doses. This type of film would require extra care beyond that described in TG-55 for accurate use at low doses or low dose fraction schemes.  相似文献   

20.
Bohm TD  Mourtada FA  Das RK 《Medical physics》2001,28(8):1770-1775
Studies of intravascular brachytherapy to prevent restenosis following angioplasty have shown many promising results. Accurate dose rate tables based on detailed models of the brachytherapy sources are necessary for treatment planning. This work will present an away and along dose rate table for a 27 mm long catheter based 32P beta source. MD-55-2 radiochromic film has been exposed at five different depths (0.5 mm-4 mm) in a polystyrene phantom using a 27 mm long Guidant 32P beta source. The total dose to the active region of the film was determined using the absolute detector response of the MD-55-2 radiochromic film. The Monte Carlo code MCNP4B2 was also used to calculate the dose to the active region of the film using a detailed model of the source, encapsulation, and radiochromic film. The dose to film calculations showed good agreement with the measurements presented in this work with an average difference of 7%. The Monte Carlo calculations were also verified against previously published depth dose in water measurements determined using radiochromic film and plastic scintillator. The depth dose calculations in water showed good agreement with the previously published measurements with the calculations being about 2.5% lower than the film measurements and about 2.5% higher than the scintillator measurements. This work then uses the verified Monte Carlo code to present a dose rate table for the 32P intravascular beta source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号