首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite extensive experience with recombinant adeno-associated virus (rAAV) 2 vectors in the lung, gene expression has been low in the context of cystic fibrosis (CF) gene therapy, where the large size of the cystic fibrosis transmembrane conductance regulator (CFTR) coding sequence has prompted the use of compact endogenous promoter elements. We evaluated the possibility that gene expression from recombinant adeno-associated virus (rAAV) could be improved by using alternate AAV capsid serotypes that target different cell-surface receptors (i.e., rAAV5) and/or using stronger promoters. The relative activities of the cytomegalovirus (CMV) Rous sarcoma virus (RSV) promoter, the CMV enhancer/beta-actin (CB) promoter combination, and the CMV enhancer/RSV promoter hybrid were assessed in vitro in a CF bronchial cell line. The CB promoter was the most efficient. AAV capsid serotypes, rAAV2 and rAAV5, were also compared, and rAAV5 was found to be significantly more efficient. Based on these studies a rAAV5-CB-promoter-driven CFTR minigene vector was then used to correct the CF chloride transport defect in vitro, as well as the hyperinflammatory lung phenotype in Pseudomonas-agarose bead challenged CF mouse lungs in vivo. These studies provide functional characterization of a new version of rAAV-CFTR vectors.  相似文献   

2.
The potential for gene therapy to be an effective treatment for cystic fibrosis (CF) airway disease has been limited by inefficient gene transfer vector particle delivery and lack of persistent gene expression. We have developed an airway conditioning process that, when combined with a human immunodeficiency virus (HIV)-derived lentivirus (LV) vector, resulted in persistent in vivo expression of transgenes in airway epithelium. Pretreatment of mouse nasal epithelium with the detergent lysophosphatidylcholine (LPC) prior to instillation of a single dose of an LV vector carrying the LacZ marker gene produced significant LacZ gene expression in nasal airway epithelium for at least 92 days. Transduction of the cystic fibrosis transmembrane conductance regulator (CFTR) gene using the same LV vector system resulted in partial recovery of electrophysiologic function in the nasal airway epithelium of CF mice (cftr(tm1Unc) knockout) for at least 110 days. This first demonstration of LV-mediated in vivo recovery of CFTR function in CF airway epithelium illustrates the potential of combining a preconditioning of the airway surface with a simple and brief LV vector exposure to produce therapeutic gene expression in airway.  相似文献   

3.
Cystic fibrosis airway epithelia exhibit a spectrum of ion transport properties that differ from normal, including not only defective cAMP-mediated Cl- secretion, but also increased Na+ absorption and increased Ca(2+)-mediated Cl- secretion. In the present study, we examined whether adenovirus-mediated (Ad5) transduction of CFTR can correct all of these CF ion transport abnormalities. Polarized primary cultures of human CF and normal nasal epithelial cells were infected with Ad5-CBCFTR at an moi (10(4)) which transduced virtually all cells or Ad5-CMV lacZ as a control. Consistent with previous reports, Ad5-CBCFTR, but not Ad5-CMV lacZ, corrected defective CF cAMP-mediated Cl- secretion. Basal Na+ transport rates (basal Ieq) in CF airway epithelial sheets (-78.5 +/- 9.8 microA/cm2) were reduced to levels measured in normal epithelial sheets (-30.0 +/- 2.0 microA/cm2) by Ad5-CBCFTR (-36.9 +/- 4.8 microA/cm2), but not Ad5-CMV lacZ (-65.8 +/- 6.1 microA/cm2). Surprisingly, a significant reduction in delta Ieq in response to ionomycin, a measure of Ca(2+)-mediated Cl- secretion, was observed in CFTR-expressing (corrected) CF epithelial sheets (-6.9 +/- 11.8 microA/cm2) when compared to uninfected CF epithelial sheets (-76.2 +/- 15.1 microA/cm2). Dose response effects of Ad5-CBCFTR on basal Na+ transport rates and Ca(2+)-mediated Cl- secretion suggest that the mechanism of regulation of these two ion transport functions by CFTR may be different. In conclusion, efficient transduction of CFTR corrects hyperabsorption of Na+ in primary CF airway epithelial cells and restores Ca(2+)-mediated Cl- secretion to levels observed in normal airway epithelial cells. Moreover, assessment of these ion transport abnormalities may represent important endpoints for testing the efficacy of gene therapy for cystic fibrosis.  相似文献   

4.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent chloride channel in epithelial cells; recently, we identified it in mast cells. Previous work that we confirmed showed that interferon gamma (IFNgamma) down-regulated CFTR expression in epithelial cells (T84), but by contrast, we found that IFNgamma up-regulated CFTR mRNA and protein expression in rat and human mast cells. IFNgamma up-regulation of CFTR in mast cells was inhibited by p38 and extracellular signal-regulated kinase (ERK) kinase inhibitors but not a Janus tyrosine kinase (JAK)2 inhibitor, whereas in T84 cells IFNgamma-mediated down-regulation of CFTR was JAK2-dependent and ERK- and p38-independent. Furthermore, IFNgamma down-regulation of CFTR in T84 epithelial cells was STAT1-dependent, but up-regulation of CFTR in mast cells was STAT1-independent. Thus, differential regulatory pathways of CFTR expression in mast cells and epithelial cells exist that depend upon either p38/ERK or JAK/STAT pathways, respectively. Surprisingly, IFNgamma treatment of mast cells inhibited Cl(-) efflux, in contrast to up-regulation of CFTR/mRNA and protein expression. However, down-regulation of Cl(-) flux correlated with IFNgamma-mediated inhibition of mediator secretion. This and other work suggests that the effect of IFNgamma on CFTR expression in mast cells is important for their function.  相似文献   

5.
Tumour recurrence following chemotherapy remains a major obstacle to the cure of many cancers. This is exemplified by small-cell lung cancer (SCLC). Host-tumour interactions are central to tumour survival and proliferation. We hypothesized that a factor(s) within the local environment of SCLC cells could provide a survival signal or block a death signal, thereby accounting for the protection of SCLC cells from chemotherapy-induced apoptosis. Here we review recent work undertaken in our laboratory addressing this issue. We have shown that, in vivo, SCLC cells are surrounded by an extensive stroma of extracellular matrix (ECM) at both primary and metastatic sites which contains, among other proteins, fibronectin, laminin and collagen IV. Furthermore, adhesion of SCLC cells to fibronectin, laminin and collagen IV through beta1 integrins enhances tumorigenicity and confers resistance to apoptosis induced by standard chemotherapeutic agents, including etoposide, cis-platinum and adriamycin. Adhesion to ECM proteins stimulated protein tyrosine kinase (PTK) activity in both untreated and etoposide-treated cells. This effect could be completely blocked by a selective PTK inhibitor or by a function-blocking beta1 integrin antibody. PTK activation was found to block chemotherapy-induced activation of the death protease caspase-3 and, hence, apoptosis. Adhesion to ECM or treatment with a PTK inhibitor did not affect etoposide inhibition of topoisomerase II. Thus adhesion to ECM through beta1 integrins protects SCLC cells from chemotherapy-induced caspase-3 activation and apoptosis by activating PTK signalling downstream of DNA damage. Survival of tumour cells attached to ECM within this microenvironment could explain the local recurrence of SCLC and other tumours that is often seen clinically after chemotherapy.  相似文献   

6.
To find more efficient vectors for the transfer of CFTR cDNA, lactosylated polylysine was explored for transfer into airway epithelial cells in primary culture. The efficacy and high efficiency of transfection were shown by several criteria: expression of both mRNA and protein for CFTR and the functional correction of the Cl- channel activity. Using specific combinations of agents to enhance the transfection, an efficiency of 90% was obtained as detected by in situ hybridization with digoxigenin-labeled probes generated against exon 14 of CFTR. The highest efficiency was observed by adding E5CA peptide (10 microg) and 5% glycerol to the transfection mixture. The degree of transfection could be controlled by the enhancing agents, thus modulating the efficiency of transfection. The highest level of transfection efficiency is equivalent to that reported for viral vectors. None of the agents or their combinations in the concentrations used were cytotoxic to the primary cells. Antibody pAb3145 was used to detect the expression of the CFTR protein in the cells. When an N-terminal GFP-CFTR fusion gene was used to transfect the CF cells a functional correction of the CFTR Cl- channel was detected by patch-clamp electrophysiology. The high efficiency of CFTR gene transfer with lactosylated polylysine leads to the conclusion that lactosylated polylysine is a promising vector to transfer the CFTR gene into human airway cells in culture.  相似文献   

7.
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. We report on a novel nonsense mutation that leads to exon skipping and the activation of a cryptic exon. Screening of genomic DNA from 700 German patients with CF uncovered four cases with the nonsense mutation E92X, a G-->T transversion that creates a termination codon and affects the first base of exon 4 of the CFTR gene. Lymphocyte RNA of two CF patients heterozygous for E92X was found to contain the wild type sequence and a differentially spliced isoform lacking exon 4. In RNA derived from nasal epithelial cells of E92X patients, a third fragment of longer size was observed. Sequencing revealed the presence of E92X and an additional 183-bp fragment, inserted between exons 3 and 4. The 183-bp sequence was mapped to intron 3 of the CFTR gene. It is flanked by acceptor and donor splice sites. We conclude that the 183-bp fragment in intron 3 is a cryptic CFTR exon that can be activated in epithelial cells by the presence of the E92X mutation. E92X abolishes correctly spliced CFTR mRNA and leads to severe cystic fibrosis.  相似文献   

8.
9.
In vitro and in vivo studies have demonstrated that gene transfer of the CFTR (cystic fibrosis transmembrane conductance regulator) cDNA into human respiratory cells through nonviral vectors can occur safely and can be done repeatedly. Although functional evaluation of CFTR in cystic fibrosis (CF) patients enrolled in phase I clinical trials using cationic liposomes has shown a partial correction of nasal potential difference, a biological assay indicating a therapeutic relevance of CFTR gene transfer is still missing. Our aims were to study the induction of killing activity toward Pseudomonas aeruginosa (PA) in CF cells by cationic vector-mediated CFTR gene transfer and to use this assay as a therapeutic end point. Luciferase expression and GFP FACS analysis were used to evaluate the optimal vector and the efficiency of gene transfer into non-CF human respiratory cells growing from nasal polyp explants at the air-liquid interface. To prove that transgenic CFTR was expressed in CF cell cultures under the same experimental conditions, a specific RT-PCR was performed. Challenge of the outgrowths with a known amount of PA showed a bacterial clearance activity by non-CF respiratory cells, while in the case of CF cells it even resulted in bacterial growth. Cationic vector-mediated CFTR cDNA determined the recovery of bacterial clearance activity only under those conditions yielding 5% or more of GFP-positive cells. The results shown in this study might be helpful in considering cationic vectors as therapeutic nonviral vectors for transferring CFTR into human CF respiratory cells, as well as for restoring the bacterial killing activity defective in cystic fibrosis.  相似文献   

10.
Recombinant adeno-associated virus serotype 2 (rAAV2)-based human gene therapy for cystic fibrosis has progressed through a series of preclinical studies and phase I and II clinical trials. This agent has shown an encouraging safety profile, consistent levels of DNA transfer, and positive evidence of short-term clinical improvement in lung function in a prospective, placebo-controlled phase II trial of aerosol administration. Nonetheless, it has been difficult to assess the relationship between its molecular action and the observed clinical improvements, because of the lack of positive results from a highly specific assay for vector mRNA. This issue is further complicated by the fact that the clinical vector utilizes a small cryptic rAAV2 promoter sequence that is less robust for mRNA expression than typical viral promoters. In this paper, we report the results of more sensitive assays performed on primary nasal cells harvested from rAAV2-CFTR gene therapy recipients. These studies demonstrate a correlation between the presence of rAAV2-CFTR vector genomes, CFTR mRNA expression, and cAMP-activated chloride channel function in these cells. The observation of sizeable physiological correction in the face of low mRNA levels may reflect the regulatory role of low levels of CFTR protein as an activator of other chloride channels.  相似文献   

11.
A third-generation adenoviral vector containing recombinant human cystic fibrosis transmembrane conductance regulator (CFTR) gene was delivered by bronchoscope in escalating doses to the conducting airway of 11 volunteers with cystic fibrosis. Assessments of dose-limiting toxicity (DLT), efficiency of gene transfer, and cell-mediated and humoral immune responses to vector administration were performed. DLT, manifest by flulike symptoms and transient radiographic infiltrates, was seen at 2.1 x 10(11) total viral particles. A highly specific assay for gene transfer was developed using in situ hybridization with an oligoprobe against unique vector sequence. Detectable gene transfer was observed in harvested bronchial epithelial cells (<1%) 4 days after vector instillation, which diminished to undetectable levels by day 43. Adenovirus-specific cell-mediated T cells were induced in most subjects, although only mild increases in systemic humoral immune response were observed. These results demonstrate that gene transfer to epithelium of the lower respiratory tract can be achieved in humans with adenoviral vectors but that efficiency is low and of short duration in the native CF airway.  相似文献   

12.
Cystic fibrosis (CF) is a common autosomal recessive disease caused by mutations in the CF transmembrane conductance regulator gene. Recombinant adenoviruses have shown promise as vectors for transfer of CF transmembrane conductance regulator cDNA to airway epithelia and correction of the Cl- transport defect. However, because adenovirus-mediated gene transfer is transient, use of adenovirus as a vector for treatment of CF would require repeated administration. Therefore, we evaluated repeat administration of an adenovirus vector to the nasal epithelium of patients with CF with five escalating doses of up to 10(10) infectious units. There were no detectable adverse affects. All subjects were initially seropositive but developed additional humoral immune responses. The vector partially corrected the defect in airway epithelial Cl- transport in some subjects, although there was variability between subjects and there was less correction with subsequent administration, perhaps because the immune response limited gene transfer. Future work must focus on vectors with increased efficiency and with the ability to evade host defenses.  相似文献   

13.
14.
15.
The fetal pulmonary epithelium secretes fluid. Cl transport is presumed to provide the driving force for net fluid secretion, although the cellular mechanisms have not been well identified in the fetus. The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP- and nucleoside triphosphate-regulated Cl channel; mutations in CFTR cause cystic fibrosis. We hypothesized that if CFTR is involved in fetal lung fluid transport, the fetal pulmonary epithelium should express CFTR mRNA. We used the technique of in situ hybridization with 3H-anti-sense and, as a control, 3H-sense CFTR cRNA probes to localize CFTR mRNA in human fetal lung tissue and cultured lung explants and determine when in gestation it is expressed. Epithelial cells of both first and second trimester lung tissues expressed CFTR mRNA. A decreasing gradient of CFTR mRNA expression was present from the proximal to the distal pulmonary epithelium. Cultured second trimester lung tissue explants expressed more CFTR mRNA than the uncultured starting tissue, suggesting CFTR gene expression increased during the five days in culture. Furthermore, alveolar type II cells in cultured explants expressed CFTR mRNA, suggesting that these cells are Cl-secretory and may be involved in lung fluid transport. These data confirm that CFTR mRNA is expressed in the human fetal pulmonary epithelium, consistent with the Cl-secretory properties of the fetal lung.  相似文献   

16.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-gated Cl(-) channel that regulates other epithelial transport proteins by uncharacterized mechanisms. We employed a yeast two-hybrid screen using the COOH-terminal 70 residues of CFTR to identify proteins that might be involved in such interactions. The alpha1 (catalytic) subunit of AMP-activated protein kinase (AMPK) was identified as a dominant and novel interacting protein. The interaction is mediated by residues 1420-1457 in CFTR and by the COOH-terminal regulatory domain of alpha1-AMPK. Mutations of two protein trafficking motifs within the 38-amino acid region in CFTR each disrupted the interaction. GST-fusion protein pull-down assays in vitro and in transfected cells confirmed the CFTR-alpha1-AMPK interaction and also identified alpha2-AMPK as an interactor with CFTR. AMPK is coexpressed in CFTR-expressing cell lines and shares an apical distribution with CFTR in rat nasal epithelium. AMPK phosphorylated full-length CFTR in vitro, and AMPK coexpression with CFTR in XENOPUS: oocytes inhibited cAMP-activated CFTR whole-cell Cl(-) conductance by approximately 35-50%. Because AMPK is a metabolic sensor in cells and responds to changes in cellular ATP, regulation of CFTR by AMPK may be important in inhibiting CFTR under conditions of metabolic stress, thereby linking transepithelial transport to cell metabolic state.  相似文献   

17.
Gene therapy using recombinant adeno-associated virus (rAAV2) vectors for cystic fibrosis has shown gene transfer and remarkable safety, yet indeterminate expression. A new construct has been characterized with a powerful exogenous promoter, the cytomegalovirus enhancer/chicken beta-actin promoter, driving a truncated CF transmembrane conductance regulator (CFTR), pseudotyped in an AAV5 viral coat. Our goal is to demonstrate that airway delivery of a pseudotyped rAAV5 vector results in gene transfer as well as expression in non-human primates. Aerosolized pseudotyped rAAV5-DeltaCFTR or rAAV5-GFP (green fluorescent protein) genes were delivered to four and six lungs, respectively. The pseudotyped rAAV5 vector did result in GFP gene transfer (1.005x10(6) copies/mug DNA on average) and quantifiable gene expression. Microscopy confirmed protein expression in airway epithelium. Similarly, the vector also resulted in vector-specific CFTR DNA (1.24x10(5) copies/microg) and mRNA expression. Immunoprecipitation and (32)P phosphoimaging were used to demonstrate CFTR protein expression, as qualitatively enhanced beyond the barely detectable endogenous expression in untreated animals. Based on these promising studies, this CFTR minigene construct is a therapeutic candidate.  相似文献   

18.
Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.  相似文献   

19.
20.
Cystic fibrosis (CF) is characterized by a defect in cAMP-regulated chloride channels in epithelial cells. The CF gene product CF transmembrane conductance regulator (CFTR) is expressed in the apical membrane of pancreatic duct cells, and mutant CFTR accounts for the pathology in the CF pancreas. PANC 1, a pancreatic duct cell line, has not been considered a good model for studying CFTR and pancreatic chloride transport because CFTR mRNA and protein are undetectable using standard methods. Using electronic cell sizing and cell volume reduction under isotonic conditions, PANC 1 cells were found to possess both cAMP and calcium-activated chloride conductances. Using CFTR antisense oligodeoxynucleotides, the cAMP-activated conductance could be specifically inhibited in a concentration- and time-dependent manner. These findings demonstrate that PANC 1 cells express CFTR and a CFTR-independent calcium-activated chloride channel. With electronic cell sizing and CFTR antisense oligodeoxynucleotides, PANC 1 cells can provide an ideal system for the study of pancreatic duct cell physiology and pathophysiology with respect to the role of CFTR in the pancreas. These findings also suggest that antisense oligodeoxynucleotides may provide a more sensitive yet highly specific means of detecting low levels of expression of CFTR than currently available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号