首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to determine whether the transient receptor potential vanilloid (TRPV1) receptor protein as well as the calcitonin gene-related peptide (CGRP) content could be enhanced after the i.p. administration of 5 mg/kg lipopolysaccharide (LPS) to Sprague-Dawley rats. In tongue tissue, used as a representative model of TRPV1 receptors expression, there was a significant increase in the abundance of TRPV1 receptor protein 6 h after LPS administration. In mesenteric arteries, the density of the CGRP-positive nerves as well as the release of CGRP induced by 10 microM anandamide was also significantly increased 6 h after LPS administration. The relaxant responses induced by anandamide in mesenteric beds isolated from either untreated or LPS-treated rats were abolished after a 2 h exposure to 10 microM capsaicin. Moreover, anandamide-induced relaxations of untreated mesenteries were potentiated by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 0.1 microM), but not by its inactive analogue 4alpha-phorbol (0.1 microM). The potentiation of anandamide effects caused by the PKC activator was accompanied by a significant increase in the overflow of CGRP induced by anandamide in the untreated rats. It is proposed that the overexpression of the TRPV1 receptors and the increased content of CGRP could contribute to the enhancement of anandamide effects during the endotoxemic shock. An eventual phosphorylation event linked to the overflow of CGRP could also participate in the enhanced relaxation caused by anandamide in endotoxemia.  相似文献   

2.
In rat isolated mesenteric beds, anandamide induced a concentration-dependent reduction (0.01-50 microM) of the contractile responses elicited by bolus administration of noradrenaline. The anandamide-induced reductions of noradrenaline responses were unmodified by the in vitro exposure to the nitric oxide synthase (NOS) inhibitor, 100 microM L-N(G)-nitro-L-arginine methyl ester (L-NAME), whereas they were significantly potentiated after the long-term in vivo administration of L-NAME (70 mg/kg/day during 4 weeks). Responses to anandamide were not potentiated and even reduced in mesenteric beds from rats made hypertensive by aortic coarctation. In mesenteric beds isolated from either untreated or in vivo L-NAME treated rats, concentration-response curves to anandamide were significantly attenuated by the non-selective K+ channel blocker tetraethylammonium (TEA) but were not modified by either endothelium removal, or the soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ) or the cannabinoid receptor antagonists 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl] (4-methoxyphenyl) methanone (AM630) and 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide (AM281). On the other hand, the vanilloid receptor agonist (E)-N-[4-hydroxy-3-methoxyphenyl)methyl]-8-methyl-6-nonenamide (capsaicin) induced a concentration-dependent inhibition of noradrenaline-induced vasoconstriction, and the vanilloid receptor antagonist N-[2-(4-chlorophenyl)ethyl]-1,3,4,5-tetrahydro-7,8-dihydroxy-2H-2-benzazepine-2-carbothioamide (capsazepine) caused a significant reduction of anandamide-induced responses in mesenteric beds isolated from both control and chronic L-NAME treated rats. The non-metabolizable analogue of anandamide, methanandamide, produced higher reductions of noradrenaline responses than anandamide in mesenteric beds isolated from controls but not from the L-NAME treated rats. Moreover, in mesenteric beds from untreated but not from L-NAME treated rats, the effects of anandamide were significantly potentiated by the inhibitor of endocannabinoid degradation, 200 microM phenylmethylsulphonyl fluoride (PMSF), and by the inhibitor of anandamide uptake, 5 microM (all Z)-N-(4-hydroxyphenyl)-5,8,11,14-eicosatetraenamide (AM404). It is concluded that long-term inhibition of NOS potentiates anandamide-induced relaxations probably through changes in either endocannabinoid metabolism or uptake. A possible compensatory role for endocannabinoids in vascular function in situations in which nitric oxide (NO) synthesis is long-term impaired arises from the present results.  相似文献   

3.
The in vitro exposure to anandamide elicits greater relaxations in mesenteric beds isolated from female compared to male rats. The present work shows that in mesenteric beds precontracted with noradrenaline the removal of endothelium increased the relaxation caused by anandamide in male and ovariectomized female but not in sham-operated female rats. The nitric oxide synthase inhibition with 100 microM N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME) and the sensory in vivo denervation through neonatal administration of capsaicin also reduced anandamide-induced relaxations but these effects had the same extent in male and in female mesenteries. The content of calcitonin gene related peptide (CGRP) in mesenteric beds, that was higher in intact female than in male rats, was reduced by ovariectomy and restored to control values 21 days after a 3 weekly i.m. administration of 450 microg/kg 17beta-oestradiol. This latter treatment also increased CGRP content in mesenteries from males up to the same levels observed in females. The basal release of CGRP in mesenteric beds was equivalent in either sex, but the exposure to anandamide increased CGRP release solely in female mesenteries. The ratio prostacyclin/thromboxane A(2) was selectively reduced in mesenteries from male rats after exposure to anandamide, due to the decrease of the tissue levels of prostacyclin. Moreover, the cyclooxygenase-2 inhibitor 0.1 microM N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulphonamide (NS-398) diminished the relaxations caused by anandamide solely in female rats. It is proposed that relaxing factors such as CGRP and prostacyclin contribute to the higher relaxations caused by anandamide in the vasculature of female rats.  相似文献   

4.
BACKGROUND AND PURPOSE: Since the vasorelaxant potency of the endocannabinoid anandamide is enhanced in perfused mesenteric vascular beds from rats made hypertensive by chronic inhibition of NO synthase (L-NAME in drinking water), we hypothesized that in vivo, anandamide-induced vasodilatation would be similarly enhanced in L-NAME-treated animals. EXPERIMENTAL APPROACH: Male Sprague-Dawley rats were given L-NAME in drinking water (7.5 mg kg(-1) day(-1)) for 4 weeks. Relaxant effects of anandamide were measured in perfused mesenteric vascular beds and in isolated small mesenteric arteries. Renal, mesenteric and hindquarters haemodynamic responses to anandamide, methanandamide, the synthetic cannabinoid agonist WIN-55212-2 and the cannabinoid receptor antagonist AM251 were assessed in conscious, chronically-instrumented rats. KEY RESULTS: Vasorelaxant responses to anandamide were enhanced in the perfused mesentery but not in isolated mesenteric resistance vessels. In vivo, anandamide caused vasodilatation only in the hindquarters vascular bed and only in control rats. Methanandamide caused a late-onset (40 min after administration) tachycardia, mesenteric and hindquarters vasoconstriction, and renal vasodilatation, which did not differ between control and L-NAME-treated rats. AM251 had no effect on resting blood pressure in control or L-NAME-treated rats and WIN55212-2 caused pressor and renal and mesenteric vasoconstrictor responses, with hindquarters vasodilatation in both groups of animals. CONCLUSIONS AND IMPLICATIONS: The results provide no in vivo evidence for enhanced vasodilator responses to cannabinoids, or up-regulation of endocannabinoids or their receptor activity, following chronic NO synthase inhibition.  相似文献   

5.
1. We wanted to search for the mechanism(s) responsible for the brief pressor response induced by anandamide in urethane-anaesthetized rats. 2. The anandamide-induced pressor effect was not modified by the antagonists of cannabinoid CB(1) and vanilloid TRPV(1) receptors, SR 141716A (3 micromol kg(-1)) and capsazepine (1 micromol kg(-1)), respectively, by bilateral vagotomy and by pithing. Replacement of urethane by pentobarbitone virtually abolished the pressor effect of anandamide, both in pithed and vagotomized and in 'intact' rats (i.e. not treated in this manner). 3.The pressor effect of anandamide was reduced by the nonselective TRPV family inhibitor ruthenium red (3 micromol kg(-1)) and by the blocker of L-type calcium channels nifedipine (1 micromol kg(-1)), both in pithed urethane-anaesthetized rats and in 'intact' urethane-anaesthetized rats. The nonselective beta-adrenoceptor antagonist propranolol (0.1 or 0.3 micromol kg(-1)) and the nonselective NMDA receptor antagonist MK-801 (1 micromol kg(-1)) diminished the anandamide-induced vasopressor response in 'intact' but not in pithed rats. The inhibitory effect of propranolol in 'intact' rats was mimicked by the beta(2)-adrenoceptor antagonist ICI 118551 (1 micromol kg(-1)), but not by the beta(1)-adrenoceptor antagonist CGP 20712 (1 micromol kg(-1)). 4. The present study revealed that two mechanisms may be responsible for the anandamide-induced pressor response in urethane-anaesthetized rats. The first involves the central nervous system (probably the medulla oblongata) and is sensitive to propranolol and MK-801. The second, which is located peripherally (most probably in blood vessels), is sensitive to nifedipine, ruthenium red and pentobarbitone and, hence, probably represents a Ca(2+)-dependent mode of action.  相似文献   

6.
1. The effects of the endocannabinoid, anandamide, and its metabolically stable analogue, methanandamide, on induced tone were examined in sheep coronary artery rings in vitro. 2. In endothelium-intact rings precontracted to the thromboxane A(2) mimetic, U46619, anandamide (0.01 - 30 microM) induced slowly developing concentration-dependent relaxations (pEC(50) [negative log of EC(50)]=6.1+/-0.1; R(max) [maximum response]=81+/-4%). Endothelium denudation caused a 10 fold rightward shift of the anandamide concentration-relaxation curve without modifying R(max). Methanandamide was without effect on U46619-induced tone. 3. The anandamide-induced relaxation was unaffected by the cannabinoid receptor antagonist, SR 141716A (3 microM), the vanilloid receptor antagonist, capsazepine (3 and 10 microM) or the nitric oxide synthase inhibitor, L-NAME (100 microM). 4. The cyclo-oxygenase inhibitor, indomethacin (3 and 10 microM) and the anandamide amidohydrolase inhibitor, PMSF (70 and 200 microM), markedly attenuated the anandamide response. The anandamide transport inhibitor, AM 404 (10 and 30 microM), shifted the anandamide concentration-response curve to the right. 5. Precontraction of endothelium-intact rings with 25 mM KCl attenuated the anandamide-induced relaxations (R(max)=7+/-7%), as did K(+) channel blockade with tetraethylammonium (TEA; 3 microM) or iberiotoxin (100 nM). Blockade of small conductance, Ca(2+)-activated K(+) channels, delayed rectifier K(+) channels, K(ATP) channels or inward rectifier K(+) channels was without effect. 6. These data suggest that the relaxant effects of anandamide in sheep coronary arteries are mediated in part via the endothelium and result from the cellular uptake and conversion of anandamide to a vasodilatory prostanoid. This, in turn, causes vasorelaxation, in part, by opening potassium channels.  相似文献   

7.
Migraine pathophysiology is believed to involve the release of neuropeptides via the activation of trigeminal afferents that innervate the cranial vasculature. Anandamide, the endogenous ligand to the cannabinoid receptor, is able to inhibit neurogenic dural vasodilatation, calcitonin gene-related peptide (CGRP)-induced and nitric oxide-induced dural vessel dilation in the intravital microscopy model. In an in vitro setting anandamide is also able to activate the vanilloid type 1 (TRPV1) receptor and cause vasodilation, via the release of CGRP. In this study we used intravital microscopy to study whether anandamide behaves as a TRPV1 receptor agonist in the trigeminovascular system. We examined if anandamide-induced dural vasodilation involves CGRP release that can be reversed by the CGRP receptor antagonist, CGRP(8-37), and whether like capsaicin the anandamide effect could be reversed by the TRPV1 receptor antagonist, capsazepine. Anandamide 1 (19+/-9%, n=12), 3 (29+/-5%, n=37), 5 (74+/-7%, n=13) and 10 mg kg(-1) (89+/-18%, n=6) was able to cause a dose-dependent increase in dural vessel diameter. Capsazepine (3 mg kg(-1), t(5)=6.2, P<0.05) and CGRP(8-37) (300 micrograms kg(-1), t(6)=11.1, P<0.05) attenuated the anandamide-induced dural vessel dilation when compared to control (Student's paired t-test). AM251 (3 mg kg(-1)), a cannabinoid type 1 (CB(1)) receptor antagonist, was unable to reverse this anandamide-induced dilation. The study demonstrates that anandamide acts as a TRPV1 receptor agonist in the trigeminovascular system, activating TRPV1 receptors that promote CGRP release and cause vasodilation independent of any action at the CB(1) receptor. Anandamide has been shown previously to inhibit trigeminovascular neurons and prevent vasodilation, through an action at CB(1) receptors.  相似文献   

8.
1 In order to address mechanistic differences between arterial vessel types, we have compared the vasorelaxant actions of anandamide in resistance (G3) and conduit (G0) mesenteric arteries. 2 Anandamide produced concentration-dependent relaxations of pre-constricted G3 arteries with a maximal response that was significantly greater than seen in G0. 3 The CB1 receptor selective antagonists SR141716A (100 nm) and AM251 (100 nm) caused reductions in the vasorelaxant responses to anandamide in both arteries. Maximal vasorelaxant responses to anandamide were reduced in both arteries after treatment with capsaicin to deplete sensory neurotransmitters (10 microm for 1 h). 4 Vasorelaxation to anandamide was not affected by the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 300 microm) in either artery. Only responses in G3 arteries were sensitive to removal of the endothelium. In G3 vessels only, vasorelaxation to anandamide was reduced by inhibition of EDHF activity with a combination of charybdotoxin (100 nm) and apamin (500 nm) in the presence of L-NAME (300 microm) and indomethacin (10 microm). 5 Antagonism of the novel endothelial cannabinoid receptor (O-1918, 1 microm) caused a reduction in the sensitivity to anandamide in G3 but not G0. 6 G3, but not G0, vessels showed a small reduction in vasorelaxant responses to anandamide after inhibition of gap junctional communication with 18alpha-GA (100 microm). 7 These results demonstrate that there are differences in the mechanisms of vasorelaxation to anandamide between conduit and resistance mesenteric arteries. In small resistance vessels, vasorelaxation occurs through stimulation of vanilloid receptors, CB1 receptors, and an endothelial receptor coupled to EDHF release. By contrast, in the larger mesenteric artery, vasorelaxation is almost entirely due to stimulation of vanilloid receptors and CB1 receptors, and is endothelium-independent.  相似文献   

9.
1. The influence of 17 beta-oestradiol on pressurized isolated rat mesenteric and coronary small arteries was investigated. 2. 17 beta-oestradiol caused rapid (t1.0 < 5 mins) concentration-dependent relaxations of pre-contracted pressurized (50 mmHg) isolated rat mesenteric and coronary arteries. Similar responses were observed in both vessel types. Significant relaxations were only observed at concentrations exceeding 3 microM. 3. The vasodilatory responses in both types of artery were unaffected by 10 microM L-nitro arginine (L-NNA) alone or in the presence of 10 microM indomethacin, inhibitors of nitric oxide and prostaglandin synthesis respectively. They were also unaffected by the pre-contracting agent used i.e. high K+ or U46619 (a thromboxane analogue). 4. Neither the oestrogen receptor antagonist ICI 182,780 (10 microM) nor the protein synthesis inhibitor cycloheximide (100 microM) had any effect on the responses of mesenteric arteries to 17 beta-oestradiol. 5. 17 alpha-oestradiol had only a minor effect on mesenteric arterial diameter over a concentration range similar to the effective vasodilatory range for 17 beta-oestradiol. 6. Membrane impermeant 17 beta-oestradiol conjugated to bovine serum albumin (beta-oestradiol-17-hemisuccinate-BSA) (E-H-BSA) resulted in a vasodilatation of pressurized arteries. 7. Wortmannin, an inhibitor of myosin light chain kinase, near maximally relaxed pressurized mesenteric arteries although the time course for the response was significantly slower than that for 17 beta-oestradiol. 8. These results taken together suggest that the acute effects of 17 beta-oestradiol on isolated pressurized arterial tone may be due to effects directly on the vascular smooth muscle via non-genomic mechanisms that involve a stereospecific interaction at the plasma membrane.  相似文献   

10.
In the present study, the vasodilator actions of methanandamide and capsaicin in the rat isolated mesenteric arterial bed and small mesenteric arterial segments were investigated. Methanandamide elicited concentration-dependent relaxations of preconstricted mesenteric arterial beds (pEC(50)=6.0+/-0.1, E(max)=87+/-3%) and arterial segments (pEC(50)=6.4+/-0.1, E(max)=93+/-3%). In arterial beds, in vitro capsaicin pre-treatment blocked vasorelaxation to 1 and 3 microM methanandamide, and reduced to 12+/-7% vasorelaxation to 10 microM methanandamide. Methanandamide failed to relax arterial segments pre-treated in vitro with capsaicin. In arterial beds from rats treated as neonates with capsaicin to cause destruction of primary afferent nerves, methanandamide at 1 and 3 microM did not evoke vasorelaxation, and relaxation at 10 microM methanandamide was reduced to 26+/-4%. Ruthenium red (0.1 microM), an inhibitor of vanilloid responses, attenuated vasorelaxation to methanandamide in arterial beds (pEC(50)=5.6+/-0.1, E(max)=89+/-1%). Ruthenium red at 1 microM abolished the response to 1 microM methanandamide, and greatly attenuated relaxation at 3 and 10 microM methanandamide in arterial beds. In arterial segments, ruthenium red (0.15 microM) blocked vasorelaxation to methanandamide, but not to CGRP. In arterial segments, the vanilloid receptor antagonist capsazepine (1 microM) inhibited, and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8 - 37) (3 microM) abolished, methanandamide-induced relaxations. CGRP(8 - 37), but not capsazepine, attenuated significantly relaxation to exogenous CGRP. These data show that capsaicin and ruthenium red attenuate vasorelaxation to methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arterial segments. In addition, CGRP(8 - 37) and capsazepine antagonize responses to methanandamide in mesenteric arterial segments. In conclusion, vanilloid receptors on capsaicin-sensitive sensory nerves play an important role in the vasorelaxant action of methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arterial segments.  相似文献   

11.
The Bezold-Jarisch reflex is characterized by a sudden bradycardia associated with hypotension induced by the activation of the vanilloid TRPV1 and serotonin 5-HT(3) receptors. This reflex is associated with several health conditions, including myocardial infarction. The aim of the present study was to elucidate the influence of acute experimental myocardial ischemia on the reflex bradycardia induced by anandamide and phenylbiguanide, agonists of the TRPV1 and 5-HT(3) receptors, respectively. In urethane-anesthetized rats, the rapid iv injection of anandamide (0.6 μmol/kg) or phenylbiguanide (0.03 μmol/kg) decreased heart rate (HR) by about 7-10% of the basal values. Myocardial ischemia (MI) was induced by ligation of the left anterior coronary artery. The agonists were injected 5 min before MI (S(1)) and 10, 20 and 30 min thereafter (S(2)-S(4)). MI potentiated the anandamide-induced reflex bradycardia by approximately 105% at S(2) and 70% at S(3) but had no effect at S(4). This amplificatory effect of MI was virtually abolished by the TRPV1 receptor antagonist capsazepine (1 μmol/kg) and was not modified by the cannabinoid CB(1) receptor antagonist rimonabant (0.1 μmol/kg). MI also amplified the reflex bradycardia elicited by phenylbiguanide by approximately 110, 60 and 90% (S(2), S(3) and S(4), respectively), and this effect was sensitive to the 5-HT(3) receptor antagonist ondansetron (3 μmol/kg). In conclusion, our results suggest that acute myocardial ischemia augments the Bezold-Jarisch reflex induced via activation of TRPV1 and 5-HT(3) receptors located on sensory vagal nerves in the heart.  相似文献   

12.
BACKGROUND AND PURPOSE: The endocannabinoids, N-arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol (2-AG) are rapidly degraded by fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL). Whilst these lipid mediators are known to modulate vascular tone, the extent to which they are inactivated via local metabolism in the vasculature remains unclear. EXPERIMENTAL APPROACH: In rat isolated small mesenteric arteries, the regulatory role of FAAH, MGL and cyclooxygenase (COX) in relaxant responses to anandamide and 2-AG was evaluated by using inhibitors of these enzymes. Relaxations to non-hydrolysable analogues of endocannabinoids and arachidonic acid were also examined. KEY RESULTS: Relaxation to anandamide but not 2-AG was potentiated by the selective FAAH inhibitor, URB597 (1 microM). In contrast, MAFP (10 microM; an inhibitor of FAAH and MGL) enhanced responses to both anandamide and 2-AG. Inhibition of COX-1 by indomethacin (10 microM) potentiated relaxations to 2-AG, whereas inhibition of COX-2 by nimesulide (10 microM) potentiated anandamide-induced relaxation. With the exception of MAFP, effects of FAAH and COX inhibitors were dependent on the endothelium. Relaxation to methanandamide and noladin ether, the non-hydrolysable analogues of anandamide and 2-AG respectively, were insensitive to the enzyme inhibitors. CONCLUSION AND IMPLICATIONS: This study shows that local activity of FAAH, MGL and COX, which is present largely in the endothelium, limits the vasodilator action of endocannabinoids in rat small mesenteric arteries. Despite the differential roles played by these enzymes on relaxation to anandamide versus 2-AG, our results suggest that inhibitors of these enzymes enhance the vascular impact of endocannabinoids.  相似文献   

13.
Changes in vascular responsiveness are proposed as the basis for some of the cardiovascular complications in cholestasis. Cholestasis is also associated with accumulation of endogenous opioid peptides and evidence of nitric oxide (NO) overproduction. On the other hand, it is well known that anandamide, an endogenous cannabinoid ligand, causes hypotension and a decrease in systemic vascular resistance. In the present study, the possible role of the cannabinoid system in cholestasis-induced mesenteric vascular bed responsiveness was investigated. Mesenteric arteries of bile duct-ligated and sham-operated rats receiving daily administrations of saline were used for evaluating phenylephrine or anandamide dose-response, acute effects of N(G)-nitro-L-arginine methyl ester (L-NAME, 100 microM), a non-selective inhibitor of NO synthase (NOS), or naltrexone, an opioid receptors antagonist (1 microM). The other groups of bile duct-ligated and sham-operated rats received daily intraperitoneal administration of L-NAME (20 mg/kg/day), aminoguanidine, a selective inducible NOS (iNOS) inhibitor (150 mg/kg/day) or naltrexone (10 mg/kg/day). After 7 days, the superior mesenteric artery was cannulated and the mesenteric vascular bed was perfused according to the McGregor method. Anandamide-induced relaxation was significantly potentiated in mesenteric vascular beds of bile duct-ligated rats. Chronic treatment of bile duct-ligated animals with L-NAME and aminoguanidine blocked this hyperresponsiveness while the hyperresponsiveness was potentiated at large doses of anandamide on chronic treatment of these animals with naltrexone. Although acute L-NAME treatment of mesenteric beds completely blocked the anandamide-induced vasorelaxation in sham-operated rats, this vasorelaxation still was present in bile duct-ligated animals. Anandamide-induced vasorelaxation remained unaffected after acute naltrexone treatment of mesenteric beds in both bile duct-ligated and sham-operated rats. Our results indicate that (1) there is enhanced anandamide-induced vasorelaxation in cholestatic rats, probably due to a defect in cannabinoid or vanilloid receptors and (2) NO overproduction may be involved in cholestasis-induced vascular hyperresponsiveness.  相似文献   

14.
1. The cannabinoid arachidonyl ethanolamide (anandamide) caused concentration-dependent relaxation of 5-HT-precontracted, myograph-mounted, segments of rat left anterior descending coronary artery. 2. This relaxation was endothelium-independent, unaffected by the fatty acid amide hydrolase inhibitor, arachidonyl trifluoromethyl ketone (10 microM), and mimicked by the non-hydrolysable anandamide derivative, methanandamide. 3. Relaxations to anandamide were attenuated by the cannabinoid receptor antagonist, SR 141716A (3 microM), but unaffected by AM 251 (1 microM) and AM 630 (1 microM), more selective antagonists of cannabinoid CB(1) and CB(2) receptors respectively. Palmitoylethanolamide, a selective CB(2) receptor agonist, did not relax precontracted coronary arteries. 4. Anandamide relaxations were not affected by inhibition of sensory nerve transmission with capsaicin (10 microM) or blockade of vanilloid VR1 receptors with capsazepine (5 microM). Nevertheless capsaicin relaxed coronary arteries in a concentration-dependent and capsazepine-sensitive manner, confirming functional sensory nerves were present. In contrast, capsazepine and capsaicin did inhibit anandamide relaxations in methoxamine-precontracted rat small mesenteric arteries. 5. Relaxations to anandamide were inhibited by TEA (1 mM) or iberiotoxin (50 nM), blockers of large conductance, Ca(2+)-activated K(+) channels (BK(Ca)). Gap junction inhibition with 18alpha-glycyrrhetinic acid (100 microM) did not affect anandamide relaxations. 6. This study shows anandamide relaxes the rat coronary artery by a novel mechanism. Anandamide-induced relaxations do not involve the endothelium, degradation into active metabolites, or activation of cannabinoid CB(1) or CB(2) receptors, but may involve activation of BK(Ca). Vanilloid receptor activation also has no role in the effects of anandamide in coronary arteries, even though functional sensory nerves are present.  相似文献   

15.

Background and purpose:

The endocannabinoid N-arachidonoylethanolamide (anandamide) is co-synthesized with other N-acylethanolamides, namely N-palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), which have been shown to potentiate anandamide responses (so-called ‘entourage effects'') in non-vascular tissues. It remains unclear whether such interactions occur in the circulation.

Experimental approach:

In rat isolated small mesenteric arteries, the effects of PEA and OEA on relaxation to anandamide and tissue contents of the N-acylethanolamides were examined under myographic conditions.

Key results:

Anandamide-induced relaxation was potentiated by pretreatment with PEA (10 μM) or OEA (1 μM), or in combination. The potentiation by PEA and OEA was endothelium-independent and abolished by treatment with capsaicin (10 μM), which desensitizes the transient receptor potential vanilloid type 1 (TRPV1) receptor system, or by the TRPV1 receptor antagonist, N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791) (2 μM). It was also observed at molar ratios of anandamide and PEA (or OEA) similar to those found in mesenteric arteries. PEA and inhibition of anandamide hydrolysis by 3′-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate (URB597) (1 μM) additively potentiated anandamide responses. On the other hand, PEA and OEA also induced vasorelaxation per se (rank order of potency: anandamide>OEA>PEA), but relaxation to the three N-acylethanolamides displayed different sensitivity to treatment with capsaicin, SB366791 and URB597. For example, relaxations to anandamide and OEA, but not PEA, were attenuated by both capsaicin and SB366791.

Conclusion and implications:

This study shows that PEA and OEA potentiate relaxant responses to anandamide through TRPV1 receptors in rat small mesenteric arteries. The congeners also induce vasorelaxation per se, suggesting a function for the N-acylethanolamides in vascular control.  相似文献   

16.
The purpose of this study was to investigate the effect of the endogenous cannabinoid anandamide on the nonadrenergic noncholinergic (NANC) relaxant responses to electrical field stimulation in isolated rat corpus cavernosum. The corporal strips were mounted under tension in a standard oxygenated organ bath with guanethidine sulfate (5 microM) and atropine (1 microM) (to produce adrenergic and cholinergic blockade). The strips were precontracted with phenylephrine hydrochloride (7.5 microM) and electrical field stimulation was applied at different frequencies to obtain NANC-mediated relaxation. The expression of CB1, CB2 and vanilloid receptor proteins within the rat corpus cavernosum was evaluated using western blot analysis. The results showed that the relaxant responses to electrical stimulation were significantly enhanced in the presence of anandamide at 1 and 3 microM. The potentiating effect of anandamide (1 microM) on relaxation responses was significantly attenuated by either the selective cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251; 1 microM) or the vanilloid receptor antagonist capsazepine (3 microM), but not by the selective cannabinoid CB2 receptor antagonist 6-iodo-2-methyl-1-[2-(4-morpholinyl) ethyl]-1H-indol-3-yl (4-methoxyphenyl)methanone (AM630; 1 microM). Neither of these antagonists had influence on relaxation responses. Indomethacin (20 microM) had no effect on NANC-mediated relaxation in the presence or absence of anandamide (1 microM). Preincubation with Nw-Nitro-L-Arginine Methyl Ester (L-NAME; 1 microM) significantly inhibited the relaxation responses in the presence or absence of 1 microM anandamide. Although at 30 nM, L-NAME did not cause a significant inhibition of relaxant responses individually, it significantly inhibited the potentiating effect of anandamide (1 microM) on relaxation responses. Anandamide (1 microM) had no influence on concentration-dependent relaxant responses to sodium nitroprusside (10 nM-1 mM), a nitric oxide (NO) donor. The western blotting of corporal tissues demonstrated the existence of both vanilloid and CB1 receptors in corporal strips. In conclusion, our results showed that anandamide has a potentiating effect on NANC-mediated relaxation of rat corpus cavernosum through both CB1 and vanilloid receptors and the NO-mediated component of the NANC relaxant responses to electrical stimulation is involved in this enhancement.  相似文献   

17.
BACKGROUND AND PURPOSE: Studies in isolated preparations of vascular tissue (mainly resistance vessels) provide evidence that anandamide exerts vasorelaxation. The aim of the present work was to further characterize the mechanisms involved in the vascular response induced by anandamide in a conduit vessel, rat aorta. EXPERIMENTAL APPROACH: Isometric tension changes in response to a cumulative concentration-response curve of anandamide (1 nM-100 micro M) were recorded in aortic rings from male Wistar rats. The involvement of a number of factors in this relaxation was investigated including endothelium-derived vasorelaxant products, cannabinoid and vanilloid receptors (transient potential vanilloid receptor-1 (TRPV1)), release of calcitonin gene-related peptide (CGRP), anandamide metabolism and the membrane transporter for anandamide. KEY RESULTS: Anandamide caused a significant concentration-dependent vasorelaxation in rat aorta. This vasorelaxation was significantly inhibited by Pertussis toxin, by a non-CB1/non-CB2 cannabinoid receptor antagonist, by endothelial denudation, by inhibition of nitric oxide synthesis or inhibition of prostanoid synthesis via cyclooxygenase-2 (COX-2), by blockade of prostaglandin receptors EP4 and by a fatty acid amino hydrolase inhibitor. Antagonists for CB1, CB2, TRPV1 or CGRP receptors, an inhibitor of the release of endothelium-derived hyperpolarizing factor, and an inhibitor of anandamide transport did not modify the vascular response to anandamide. CONCLUSIONS AND IMPLICATIONS: Our results demonstrate, for the first time, the involvement of the non-CB1/non-CB2 cannabinoid receptor and an anandamide-arachidonic acid-COX-2 derived metabolite (which acts on EP4 receptors) in the endothelial vasorelaxation caused by anandamide in rat aorta.  相似文献   

18.
The possibility that the anandamide transport inhibitor N-(4-hydroxyphenyl)-5,8,11,14-eicosatetraenamide (AM404), structurally similar to the vanilloid receptor agonists anandamide and capsaicin, may also activate vanilloid receptors and cause vasodilation was examined. AM404 evoked concentration-dependent relaxations in segments of rat isolated hepatic artery contracted with phenylephrine. Relaxations were abolished in preparations pre-treated with capsaicin. The calcitonin-gene related peptide (CGRP) receptor antagonist CGRP-(8-37) also abolished relaxations. The vanilloid receptor antagonist capsazepine inhibited vasodilation by AM404 and blocked AM404-induced currents in patch-clamp experiments on Xenopus oocytes expressing the vanilloid subtype 1 receptor (VR1). In conclusion, AM404 activates native and cloned vanilloid receptors.  相似文献   

19.
1. It has been proposed that the cardiovascular protective actions of 17beta-oestradiol may involve calcium antagonistic actions. We have examined the effects of 17beta-oestradiol on contractions to noradrenaline and KCl in male rat small mesenteric artery and aorta. 2. In rat mesenteric artery, 17beta-oestradiol (10 microM) significantly reduced the maximum contraction to noradrenaline (67.7 +/- 5.8% of control) and KCl (38.8 +/- 3.1% of control) without affecting potency. 3. In rat aorta, 17beta-oestradiol (10 microM) also significantly reduced contractions to noradrenaline (77.5 +/- 4.8% of control), and the effects were mimicked by droloxifene (10 microM). The effect of oestrogen was not prevented by the protein synthesis inhibitor cycloheximide (10 microM). In experiments carried out in calcium-free solution in which calcium stores were depleted, 17beta-oestradiol (10 microM) significantly reduced the contraction to calcium restoration in rat aorta. 4. In aorta from female rats, 17beta-oestradiol (10 microM) significantly reduced contractions to noradrenaline (73.6 +/- 10.8% of control), but this effect of oestrogen was not prevented by cycloheximide (10 microM). 5. In summary, 17beta-oestradiol diminishes the maximum contractile response to noradrenaline in both rat small mesenteric artery and aorta, an effect which at least in the aorta is mimicked by the oestrogen receptor antagonist/partial agonist droloxifene, and may be due to restriction of calcium entry by a nongenomic action.  相似文献   

20.
The contractile responses to capsaicin and anandamide, exogenous and endogenous agonists for transient receptor potential vanilloid receptor 1 (TRPV1), respectively, were investigated in muscle strips isolated from the rat urinary bladder. Capsaicin and anandamide produced concentration-dependent contractions of the muscle strips. The contractile response induced by capsaicin disappeared within approximately 20 min. In contrast, anandamide produced contractile responses lasting at least for 30 min. Capsaicin produced additive contractile responses in anandamide-treated muscle strips. The contractile response to anandamide was attenuated, but not abolished in strips desensitized by capsaicin. The response to capsaicin was abolished in the presence of a TRPV1 antagonist, N-(4-tertiarybutylphenyl)-4-(3-chlorphyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), but not altered in the presence of either tetrodotoxin, atropine or indomethacin. In the presence of SR140333, a tachykinin NK1 receptor antagonist or SR48968, an NK2 receptor antagonist, the response to capsaicin was attenuated. The response to anandamide was partially attenuated in the presence of ONO8130, a prostanoid EP1 receptor antagonist, URB597, a fatty-acid amide hydrolase inhibitor, BCTC, SR140333 or SR48968, and almost completely abolished by indomethacin. Neither tetrodotoxin, atropine, a cannabinoid CB1 receptor antagonist, AM251, nor a cannabinoid CB2 receptor antagonist, AM630, had any effect on the response to anandamide. These results indicate that capsaicin produces muscle contractions by stimulating the TRPV1 receptor, followed by release of neuropeptides that can activate tachykinin NK1 and/or NK2 receptors in the bladder and that the contractile response to anandamide is mediated at least in part by activation of prostanoid EP1 receptors due to production of prostaglandins in addition to TRPV1 receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号