首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
If H5N1 influenza viruses become transmissible among humans, vaccination will offer the most effective option to limit their spread. Two human vaccine candidates recently generated by reverse genetics are based on antigenically different hemagglutinin (HA) glycoproteins derived from the A/HK/213/03 (H5N1) and A/Vietnam/1203/04 (H5N1) viruses. Their HA1 amino acid sequences differ at 10 positions, one of which (N154) introduces a potential glycosylation site in A/Vietnam/1203/04 (H5N1). To assess the impact of five amino acids in the putative antigenic sites on immunogenicity and immune protection, we generated a series of whole-virus vaccines that differed only in one or two HA amino acids. Sera from ferrets vaccinated with these inactivated preparations had high virus neutralization titers, but their hemagglutination inhibition (HI) titers were usually low. Interestingly, a recombinant virus in which the HA amino acid S223 (characteristic of 2004 viruses) was converted to N223 (as in A/HK/213/03) resulted in higher HI titers. This observation indicates that specific HA residues, such as N223, increase the sensitivity of the HI assay by altering receptor specificity and/or antibody-antigen binding. Ferrets vaccinated with mutant vaccine viruses were protected against lethal challenge with wild-type A/Vietnam/1203/04 virus. Our results suggest that inclusion of the N223 residue in the HA glycoproteins of diagnostic reference viruses may facilitate the evaluation of vaccine efficacy in humans.  相似文献   

2.
BACKGROUND: Multiple cases of transmission of avian H5N1 influenza viruses to humans illustrate the urgent need for an efficacious, cross-protective vaccine. METHODS: Ferrets were immunized with inactivated whole-virus vaccine produced by reverse genetics with the hemagglutinin (HA) and neuraminidase genes of A/HK/213/03 virus. Ferrets received a single dose of vaccine (7 or 15 microg of HA) with aluminum hydroxide adjuvant or 2 doses (7 microg of HA each) without adjuvant and were challenged with 10(6) 50% egg infectious doses of A/HK/213/03, A/HK/156/97, or A/Vietnam/1203/04 virus. RESULTS: One or 2 doses of vaccine induced a protective antibody response to the vaccine strain. All immunization regimens completely protected ferrets from challenge with homologous wild-type A/HK/213/03 virus: no clinical signs of infection were observed, virus replication was significantly reduced (P<.05) and was restricted to the upper respiratory tract, and spread of virus to the brain was prevented. Importantly, all vaccinated ferrets were protected against lethal challenge with the highly pathogenic strain A/Vietnam/1203/04. The 2-dose schedule induced higher levels of antibodies that were cross-reactive to antigenically distinct H5N1 viruses. CONCLUSIONS: H5N1 vaccines may stimulate an immune response that is more cross-protective than what might be predicted by in vitro assays and, thus, hold potential for being stockpiled as "initial" pandemic vaccines.  相似文献   

3.
Please cite this paper as: Verity et al. (2011) Rapid generation of pandemic influenza virus vaccine candidate strains using synthetic DNA. Influenza and Other Respiratory Viruses DOI:10.1111/j.1750‐2659.2011.00273.x. Background Vaccination is considered the most effective means of reducing influenza burden. The emergence of H5N1 and pandemic spread of novel H1N1/2009 viruses reinforces the need to have strategies in place to rapidly develop seed viruses for vaccine manufacture. Methods Candidate pandemic vaccine strains consisting of the circulating strain haemagglutinin (HA) and neuraminidase (NA) in an A/PR/8/34 backbone were generated using alternative synthetic DNA approaches, including site‐directed mutagenesis of DNA encoding related virus strains, and rapid generation of virus using synthetic DNA cloned into plasmid vectors. Results Firstly, synthetic A/Bar Headed Goose/Qinghai/1A/2005 (H5N1) virus was generated from an A/Vietnam/1194/2004 template using site‐directed mutagenesis. Secondly, A/Whooper Swan/Mongolia/244/2005 (H5N1) and A/California/04/09 (H1N1) viruses were generated using synthetic DNA encoding the viral HA and NA genes. Replication and antigenicity of the synthetic viruses were comparable to that of the corresponding non‐synthetic viruses. Conclusions In the event of an influenza pandemic, the use of these approaches may significantly reduce the time required to generate and distribute the vaccine seed virus and vaccine manufacture. These approaches also offer the advantage of not needing to handle wild‐type virus, potentially diminishing biocontainment requirements.  相似文献   

4.
Please cite this paper as: Pedersen et al. (2011) Matrix‐M adjuvanted virosomal H5N1 vaccine confers protection against lethal viral challenge in a murine model. Influenza and Other Respiratory Viruses 5(6), 426–437. Background A candidate pandemic influenza H5N1 vaccine should provide rapid and long‐lasting immunity against antigenically drifted viruses. As H5N1 viruses are poorly immunogenic, this may require a combination of immune potentiating strategies. An attractive approach is combining the intrinsic immunogenicity of virosomes with another promising adjuvant to further boost the immune response. As regulatory authorities have not yet approved a surrogate correlate of protection for H5N1 vaccines, it is important to test the protective efficacy of candidate H5N1 vaccines in a viral challenge study. Objectives This study investigated in a murine model the protective efficacy of Matrix‐M adjuvanted virosomal influenza H5N1 vaccine against highly pathogenic lethal viral challenge. Methods Mice were vaccinated intranasally (IN) or intramuscularly (IM) with 7·5 μg and 30 μg HA of inactivated A/Vietnam/1194/2004 (H5N1) (NIBRG‐14) virosomal adjuvanted vaccine formulated with or without 10 μg of Matrix‐M adjuvant and challenged IN with the highly pathogenic A/Vietnam/1194/2004 (H5N1) virus. Results and conclusions IM vaccination provided protection irrespective of dose and the presence of Matrix‐M adjuvant, whilst the IN vaccine required adjuvant to protect against the challenge. The Matrix‐M adjuvanted vaccine induced a strong and cross‐reactive serum antibody response indicative of seroprotection after both IM and IN administration. In addition, the IM vaccine induced the highest frequencies of influenza specific CD4+ and CD8+ T‐cells. The results confirm a high potential of Matrix‐M adjuvanted virosomal vaccines and support the progress of this vaccine into a phase 1 clinical trial.  相似文献   

5.
The 1918 influenza A H1N1 virus caused the worst pandemic of influenza ever recorded. To better understand the pathogenesis and immunity to the 1918 pandemic virus, we generated recombinant influenza viruses possessing two to five genes of the 1918 influenza virus. Recombinant influenza viruses possessing the hemagglutinin (HA), neuraminidase (NA), matrix (M), nonstructural (NS), and nucleoprotein (NP) genes or any recombinant virus possessing both the HA and NA genes of the 1918 influenza virus were highly lethal for mice. Antigenic analysis by hemagglutination inhibition (HI) tests with ferret and chicken H1N1 antisera demonstrated that the 1918 recombinant viruses antigenically most resembled A/Swine/Iowa/30 (Sw/Iowa/30) virus but differed from H1N1 viruses isolated since 1930. HI and virus neutralizing (VN) antibodies to 1918 recombinant and Sw/Iowa/30 viruses in human sera were present among individuals born before or shortly after the 1918 pandemic. Mice that received an intramuscular immunization of the homologous or Sw/Iowa/30-inactivated vaccine developed HI and VN antibodies to the 1918 recombinant virus and were completely protected against lethal challenge. Mice that received A/PR/8/34, A/Texas/36/91, or A/New Caledonia/20/99 H1N1 vaccines displayed partial protection from lethal challenge. In contrast, control-vaccinated mice were not protected against lethal challenge and displayed high virus titers in respiratory tissues. Partial vaccine protection mediated by baculovirus-expressed recombinant HA vaccines suggest common cross-reactive epitopes on the H1 HA. These data suggest a strategy of vaccination that would be effective against a reemergent 1918 or 1918-like virus.  相似文献   

6.
BACKGROUND: Avian H5N1 influenza A virus is an emerging pathogen with the potential to cause substantial human morbidity and mortality. We evaluated the ability of currently licensed seasonal influenza vaccine to confer cross-protection against highly pathogenic H5N1 influenza virus in mice. METHODS: BALB/c mice were inoculated 3 times, either intranasally or subcutaneously, with the trivalent inactivated influenza vaccine licensed in Japan for the 2005-2006 season. The vaccine included A/NewCaledonia/20/99 (H1N1), A/NewYork/55/2004 (H3N2), and B/Shanghai/361/2002 viral strains and was administered together with poly(I):poly(C(12)U) (Ampligen) as an adjuvant. At 14 days after the final inoculation, the inoculated mice were challenged with either the A/HongKong/483/97, the A/Vietnam/1194/04, or the A/Indonesia/6/05 strain of H5N1 influenza virus. RESULTS: Compared with noninoculated mice, those inoculated intranasally manifested cross-reactivity of mucosal IgA and serum IgG with H5N1 virus, as well as both a reduced H5N1 virus titer in nasal-wash samples and increased survival, after challenge with H5N1 virus. Subcutaneous inoculation did not induce a cross-reactive IgA response and did not afford protection against H5N1 viral infection. CONCLUSIONS: Intranasal inoculation with annual influenza vaccine plus the Toll-like receptor-3 agonist, poly(I):poly(C(12)U), may overcome the problem of a limited supply of H5N1 virus vaccine by providing cross-protective mucosal immunity against H5N1 viruses with pandemic potential.  相似文献   

7.
Antigenically well-matched vaccines against highly pathogenic avian influenza H5N1 viruses are urgently required. Human serum samples after immunization with MF59 or nonadjuvanted A/duck/Singapore/97 (H5N3) vaccine were tested for antibody to 1997-2004 human H5N1 viruses. Antibody responses to 3 doses of nonadjuvanted vaccine were poor and were higher after MF59-adjuvanted vaccine, with seroconversion rates to A/HongKong/156/97, A/HongKong/213/03, A/Thailand/16/04, and A/Vietnam/1203/04 of 100% (P < .0001), 100% (P < .0001), 71% (P = .0004), and 43% (P = .0128) in 14 subjects, respectively, compared with 27%, 27%, 0%, and 0% in 11 who received nonadjuvanted vaccine. These findings have implications for the rational design of pandemic vaccines against influenza H5.  相似文献   

8.
Avian influenza virus remains a threat for humans, and vaccines preventing both avian and human influenza virus infections are needed. Since virus-like particles (VLPs) expressing single neuraminidase (NA) subtype elicited limited heterosubtypic protection, VLPs expressing multiple NA subtypes would enhance the extent of heterosubtypic immunity. Here, we generated avian influenza VLP vaccines displaying H5 hemagglutinin (HA) antigen with or without avian NA subtypes (N1, N6, N8) in different combinations. BALB/c mice were intramuscularly immunized with the VLPs to evaluate the resulting homologous and heterosubtypic immunity upon challenge infections with the avian and human influenza viruses (A/H5N1, A/H3N2, A/H1N1). VLPs expressing H5 alone conferred homologous protection but not heterosubtypic protection, whereas VLPs co-expressing H5 and NA subtypes elicited both homologous and heterosubtypic protection against human influenza viruses in mice. We observed that VLP induced neuraminidase inhibitory activities (NAI), virus-neutralizing activity, and virus-specific antibody (IgG, IgA) responses were strongly correlated with the number of different NA subtype expressions on the VLPs. VLPs expressing all 3 NA subtypes resulted in the highest protection, indicated by the lowest lung titer, negligible body weight changes, and survival in immunized mice. These results suggest that expressing multiple neuraminidases in avian HA VLPs is a promising approach for developing a universal influenza A vaccine against avian and human influenza virus infections.  相似文献   

9.

Objectives

To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian “avian-like” (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs.

Design

Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice.

Sample

Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study.

Setting

Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses.

Main outcome measures

Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge.

Results and Conclusions

Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans.  相似文献   

10.
Background Highly pathogenic H5N1 avian influenza viruses currently circulating in birds have caused hundreds of human infections, and pose a significant pandemic threat. Vaccines are a major component of the public health preparedness for this likely event. The rapid evolution of H5N1 viruses has resulted in the emergence of multiple clades with distinct antigenic characteristics that require clade‐specific vaccines. A variant H5N1 virus termed clade 2.3.4 emerged in 2005 and has caused multiple fatal infections. Vaccine candidates that match the antigenic properties of variant viruses are necessary because inactivated influenza vaccines elicit strain‐specific protection. Objective To address the need for a suitable seed for manufacturing a clade 2.3.4 vaccine, we developed a new H5N1 pre‐pandemic candidate vaccine by reverse genetics and evaluated its safety and replication in vitro and in vivo. Methods A reassortant virus termed, Anhui/PR8, was produced by reverse genetics in compliance with WHO pandemic vaccine development guidelines and contains six genes from A/Puerto Rico/8/34 as well as the neuraminidase and hemagglutinin (HA) genomic segments from the A/Anhui/01/2005 virus. The multi‐basic cleavage site of HA was removed to reduce virulence. Results The reassortant Anhui/PR8 grows well in eggs and is avirulent to chicken and ferrets but retains the antigenicity of the parental A/Anhui/01/2005 virus. Conclusion These results indicate that the Anhui/PR8 reassortant lost a major virulent determinant and it is suitable for its use in vaccine manufacturing and as a reference vaccine virus against the H5N1 clade 2.3.4 viruses circulating in eastern China, Vietnam, Thailand, and Laos.  相似文献   

11.
Recombinant reassortment technology was used to prepare H5N1 influenza vaccine strains containing a modified hemagglutinin (HA) gene and neuraminidase gene from the A/Hong Kong/156/97 and A/Hong Kong/483/97 isolates and the internal genes from the attenuated cold-adapted A/Ann Arbor/6/60 influenza virus strain. The HA cleavage site (HA1/HA2) of each H5N1 isolate was modified to resemble that of "low-pathogenic" avian strains. Five of 6 basic amino acids at the cleavage site were deleted, and a threonine was added upstream of the remaining arginine. The H5 HA cleavage site modification resulted in the expected trypsin-dependent phenotype without altering the antigenic character of the H5 HA molecule. The temperature-sensitive and cold-adapted phenotype of the attenuated parent virus was maintained in the recombinant strains, and they grew to 108.5-9.4 EID50/mL in eggs. Both H5N1 vaccine virus strains were safe and immunogenic in ferrets and protected chickens against wild-type H5N1 virus challenge.  相似文献   

12.
The HA of influenza virus is a receptor-binding and fusion protein that is required to initiate infection. The HA receptor-binding domain determines the species of sialyl receptors recognized by influenza viruses. Here, we demonstrate that changes in the HA receptor-binding domain alter the ability of the H5N1 virus to spread systemically in mice. The A/Vietnam/1203/04 (VN1203) and A/Hong Kong/213/03 (HK213) viruses are consistently lethal to domestic chickens but differ in their pathogenicity to mammals. Insertion of the VN1203 HA and neuraminidase (NA) genes into recombinant HK213 virus expanded its tissue tropism and increased its lethality in mice; conversely, insertion of HK213 HA and NA genes into recombinant VN1203 virus decreased its systemic spread and lethality. The VN1203 and HK213 HAs differ by 10 aa, and HK213 HA has shown greater binding affinity for synthetic α2,6-linked sialyl receptor. Introduction of an S227N change and removal of N-linked glycosylation at residue 158 increased the α2,6-binding affinity of VN1203 HA. Recombinant VN1203 virus carrying the S227N change alone or with the residue-158 glycosylation site removed showed reduced lethality and systemic spread in mice but not in domestic chickens. Wild-type VN1203 virus exhibited the greatest efficiency in systemic spread after intramuscular inoculation and in infection of mouse bone marrow-derived dendritic cells and conventional pulmonary dendritic cells. These results show that VN1203 HA glycoprotein confers pathogenicity by facilitating systemic spread in mice; they also suggest that a minor change in receptor binding domain may modulate the virulence of H5N1 viruses.  相似文献   

13.
Please cite this paper as: Gambaryan et al. (2011) Comparative safety, immunogenicity, and efficacy of several anti‐H5N1 influenza experimental vaccines in a mouse and chicken models. Parallel testing of killed and live H5 vaccine. Influenza and Other Respiratory Viruses 6(3), 188–195. Objective Parallel testing of inactivated (split and whole virion) and live vaccine was conducted to compare the immunogenicity and protective efficacy against homologous and heterosubtypic challenge by H5N1 highly pathogenic avian influenza virus. Method Four experimental live vaccines based on two H5N1 influenza virus strains were tested; two of them had hemagglutinin (HA) of A/Vietnam/1203/04 strain lacking the polybasic HA cleavage site, and two others had hemagglutinins from attenuated H5N1 virus A/Chicken/Kurgan/3/05, with amino acid substitutions of Asp54/Asn and Lys222/Thr in HA1 and Val48/Ile and Lys131/Thr in HA2 while maintaining the polybasic HA cleavage site. The neuraminidase and non‐glycoprotein genes of the experimental live vaccines were from H2N2 cold‐adapted master strain A/Leningrad/134/17/57 (VN‐Len and Ku‐Len) or from the apathogenic H6N2 virus A/Gull/Moscow/3100/2006 (VN‐Gull and Ku‐Gull). Inactivated H5N1 and H1N1 and live H1N1 vaccine were used for comparison. All vaccines were applied in a single dose. Safety, immunogenicity, and protectivity against the challenge with HPAI H5N1 virus A/Chicken/Kurgan/3/05 were estimated. Results All experimental live H5 vaccines tested were apathogenic as determined by weight loss and conferred more than 90% protection against lethal challenge with A/Chicken/Kurgan/3/05 infection. Inactivated H1N1 vaccine in mice offered no protection against challenge with H5N1 virus, while live cold‐adapted H1N1 vaccine reduced the mortality near to zero level. Conclusions The high yield, safety, and protectivity of VN‐Len and Ku‐Len made them promising strains for the production of inactivated and live vaccines against H5N1 viruses.  相似文献   

14.
Please cite this paper as: Ducatez et al. (2012) Long‐term vaccine‐induced heterologous protection against H5N1 influenza viruses in the ferret model. Influenza and Other Respiratory Viruses 7(4), 506–512. Background Highly pathogenic H5N1 influenza viruses reemerged in humans in 2003 and have caused fatal human infections in Asia and Africa as well as ongoing outbreaks in poultry. These viruses have evolved substantially and are now so antigenically varied that a single vaccine antigen may not protect against all circulating strains. Nevertheless, studies have shown that substantial cross‐reactivity can be achieved with H5N1 vaccines. These studies have not, however, addressed the issue of duration of such cross‐reactive protection. Objectives To directly address this using the ferret model, we used two recommended World Health Organization H5N1 vaccine seed strains – A/Vietnam/1203/04 (clade 1) and A/duck/Hunan/795/02 (clade 2.1) – seven single, double, or triple mutant viruses based on A/Vietnam/1203/04, and the ancestral viruses A and D, selected from sequences at nodes of the hemagglutinin and neuraminidase gene phylogenies to represent antigenically diverse progeny H5N1 subclades as vaccine antigens. Results All inactivated whole‐virus vaccines provided full protection against morbidity and mortality in ferrets challenged with the highly pathogenic H5N1 strain A/Vietnam/1203/04 5 months and 1 year after immunization. Conclusion If an H5N1 pandemic was to arise, and with the hypothesis that one can extrapolate the results from three doses of a whole‐virion vaccine in ferrets to the available split vaccines for use in humans, the population could be efficiently immunized with currently available H5N1 vaccines, while the homologous vaccine is under production.  相似文献   

15.
Plasmid DNA (pDNA) vaccines represent an alternative to conventional inactivated influenza vaccines that are likely to experience supply constraints during a pandemic. Several Vaxfectin-formulated pDNA vaccines were tested in mice and ferrets for efficacy against a lethal challenge with the highly pathogenic A/Vietnam/1203/04 (H5N1) influenza virus strain; the vaccines encoded influenza A virus hemagglutinin (HA), and/or nucleoprotein (NP), and M2 protein. Complete protection from death and disease was achieved in mice and ferrets with 2 doses of a Vaxfectin-formulated vaccine containing H5 HA, NP, and M2 plasmids and in ferrets with only 1 dose. A Vaxfectin-formulated vaccine containing NP and M2 pDNA provided significant protection against death in mice and provided some benefit in ferrets (i.e., 17% survival, delayed time to illness and death, and significant reduction in viral load compared with that in negative control animals). These experiments support the clinical testing of pDNA vaccine candidates that may ultimately increase global vaccine supply options during pandemics.  相似文献   

16.
目的获得共表达H1N1和H3N2亚型猪源流感病毒(SIV)HA基因的重组伪狂犬病毒(PRV)。方法克隆H1N1以及H3N2亚型SIV的HA基因,将HA基因与PUC-TK转移载体进行酶切、连接来构建pUC-P-H1A-H3A重组表达质粒,用脂质体将其转染已感染PRV亲本病毒的Vero细胞,使其在Vero细胞内与PRV基因组发生同源重组。运用RT-PCR、间接免疫荧光等方法检测外源基因重组情况及其在Vero细胞内的表达,并通过Western-blot对表达产物进行免疫原性鉴定。结果实验结果显示,外源基因HA已重组入PRV基因组,并在Vero细胞中有效表达,且所表达蛋白具有免疫原性。结论HA基因重组PRV的构建成功为SIVHA基因重组PRV活载体疫苗的研究奠定了初步基础。  相似文献   

17.
The H5N1 subtype of the highly pathogenic (HP) avian influenza virus has been recognized for its ability to cause serious pandemics among humans. In the present study, new monoclonal antibodies (mAbs) against viral proteins were established for the immunological detection of H5N1 influenza virus for research and diagnostic purposes. B-cell hybridomas were generated from mice that had been hyperimmunized with purified A/Vietnam/1194/2004 (NIBRG-14) virion that had been inactivated by UV-irradiation or formaldehyde. After screening over 4,000 hybridomas, eight H5N1-specific clones were selected. Six were specific for hemagglutinin (HA) and had in vitro neutralization activity. Of these, four were able to broadly detect all tested clades of the H5N1 strains. Five HA-specific mAbs detected denatured HA epitope(s) in Western blot analysis, and two detected HP influenza virus by immunofluorescence and immunohistochemistry. A highly sensitive antigen-capture sandwich ELISA system was established by combining mAbs with different specificities. In conclusion, these mAbs may be useful for rapid and specific diagnosis of H5N1 influenza. Therapeutically, they may have a role in antibody-based treatment of the disease.  相似文献   

18.
Please cite this paper as: Bragstad et al. (2010) Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross‐reactive immunity in ferrets against infection with viruses drifted for decades. Influenza and Other Respiratory Viruses 5(1), 13–23. Background Alternative influenza vaccines and vaccine production forms are needed as the conventional protein vaccines do not induce broad cross‐reactivity against drifted strains. Furthermore, fast vaccine production is especially important in a pandemic situation, and broader vaccine reactivity would diminish the need for frequent change in the vaccine formulations. Objective In this study, we compared the ability of pandemic influenza DNA vaccines to induce immunity against distantly related strains within a subtype with the immunity induced by conventional trivalent protein vaccines against homologous virus challenge. Methods Ferrets were immunised by particle‐mediated epidermal delivery (gene gun) with DNA vaccines based on the haemagglutinin (HA) and neuraminidase (NA) and/or the matrix (M) and nucleoprotein genes of the 1918 H1N1 Spanish influenza pandemic virus or the 1968 H3N2 Hong Kong influenza pandemic virus. The animals were challenged with contemporary H1N1 or H3N2 viruses. Results We demonstrated that DNA vaccines encoding proteins of the original 1918 H1N1 pandemic virus induced protective cross‐reactive immune responses in ferrets against infection with a 1947 H1N1 virus and a recent 1999 H1N1 virus. Similarly, a DNA vaccine, based on the HA and NA of the 1968 H3N2 pandemic virus, induced cross‐reactive immune responses against a recent 2005 H3N2 virus challenge. Conclusions DNA vaccines based on pandemic or recent seasonal influenza genes induced cross‐reactive immunity against contemporary virus challenge as good as or superior to contemporary conventional trivalent protein vaccines. This suggests a unique ability of influenza DNA to induce cross‐protective immunity against both contemporary and long‐time drifted viruses.  相似文献   

19.
BACKGROUND. Control of highly pathogenic avian H5N1 influenza viruses is a major public-health concern. Antiviral drugs could be the only option early in the pandemic.METHODS. BALB/c mice were given oseltamivir (0.1, 1, or 10 mg/kg/day) twice daily by oral gavage; the first dose was given 4 h before inoculation with H5N1 A/Vietnam/1203/04 (VN1203/04) virus. Five- and 8-day regimens were evaluated.RESULTS. Oseltamivir produced a dose-dependent antiviral effect against VN1203/04 in vivo (P<.01). The 5-day regimen at 10 mg/kg/day protected 50% of mice; deaths in this treatment group were delayed and indicated the replication of residual virus after the completion of treatment. Eight-day regimens improved oseltamivir efficacy, and dosages of 1 and 10 mg/kg/day significantly reduced virus titers in organs and provided 60% and 80% survival rates, respectively (P<.05). Overall, the efficacy of the 5- and 8-day regimens differed significantly (death hazard ratio, 2.658; P<.01). The new H5N1 antigenic variant VN1203/04 was more pathogenic in mice than was A/HK/156/97 virus, and a prolonged and higher-dose oseltamivir regimen may be required for the most beneficial antiviral effect.CONCLUSIONS. Oseltamivir prophylaxis is efficacious against lethal challenge with VN1203/04 virus in mice. Viral virulence may affect the antiviral treatment schedule.  相似文献   

20.
Please cite this paper as: Vuong et al. (2013). The genetic match between vaccine strains and circulating seasonal influenza A viruses in Vietnam, 2001–2009. Influenza and Other Respiratory Viruses 7(6), 1151–1157. Background  Vietnam is currently developing domestic capability to manufacture influenza vaccines but information on the genetic and antigenic characteristics of locally circulating seasonal influenza viruses is limited. To assess the relevance of WHO recommended vaccine strains to the situation in Vietnam, we analyzed the genetic relatedness of the hemagglutinin (HA) gene of seasonal influenza A viruses circulating in Vietnam from 2001 to 2009 to WHO recommended vaccine strains over the same period. Methods and Principal findings  We sequenced the HA gene of 32 H1N1 and 44 H3N2 seasonal influenza A isolates from laboratory‐based sentinel surveillance sites in Hanoi from 2001 to 2005 and from a national influenza surveillance system from 2005 to 2009. H1 and H3 HA phylogenetic trees rooted to vaccine strains A/Beijing/295/1995 (H1N1) and A/Moscow/10/1999 (H3N2), respectively, were constructed with contemporary HA sequences of isolates from neighboring countries. We found some genetic differences between seasonal influenza H3N2 viruses and three WHO influenza vaccine strains recommended for use in the Northern and Southern Hemispheres for the 2001–2004 and 2007–2008 seasons and close genetic identity of circulating H3N2 strains with the recommended WHO Southern Hemisphere vaccine strains for 2004 and 2009 seasons. The genetic similarity of circulating H1N1 strains with the WHO recommended vaccine strains are described for the study period 2001–2009. Conclusions  The HA gene of seasonal influenza virus strains in Vietnam (especially influenza A/H3N2) showed varying degrees of genetic identity compared with those of the Northern or Southern Hemisphere vaccine strains recommended by WHO. The close relatedness of the HA of Vietnamese strains and contemporary strains from nearby countries indicate a good genetic match of circulating strains during study period. Greater representation of virus isolates from South East Asia in the vaccine strain selection process is desirable of influenza vaccine development in Vietnam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号