首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 应用海人藻酸(Kainic acid,KA)在C57BL/6免疫缺陷小鼠建立了神经退行性病变并观察了免疫活性B细胞和T细胞亚型在病变过程中的作用。方法 经鼻滴入海人藻酸观察其临床和病理变化,细胞流式仪检测和分析脾细胞表面标记。结果 海人藻酸引起了CD4(CD4-/-)、CD8(CD8-/-)、CD48(CD48-/-)和B细胞(Igh6-/-)基因敲除鼠的临床抽搐症状和海马损伤。其临床症状在CD4(-/-)鼠最重,CD8(-/-)、Igh6(-/-)以及野生型鼠次之,而CD4CD8双重基因缺陷鼠最轻。病理变化大约和临床症状相平行,脾细胞表面标记的表达也证实了上述发现。结论 获得性免疫反应参与了海人藻酸引起的海马损伤,CD4T细胞和B细胞在病变过程中可能起到了保护作用,而CD8T细胞则加重神经退行性病变。  相似文献   

2.
目的应用海人藻酸在C57BL/6免疫缺陷小鼠建立了神经退行性病变并观察了免疫活性B细胞和T细胞亚型在病变过程中的作用。方法经鼻滴人海人藻酸观察其临床和病理变化、细胞流式仪检测和分析脾细胞表面标记。结果海人藻酸引起了CD_4基因敲除(CD_4-/-)、CD_8(CD_8-/-)、CD_(48)(CD_(48)-/-)和B细胞(Igh6-/-)基因敲除鼠的临床抽搐症状和海马损伤。其临床症状在CD_4(-/-)鼠最重,CD_8(-/-),Igh6(-/-)以及野生型鼠次之,而CD_4、CD_8双重基因缺陷鼠最轻。病理变化大约和临床症状相平行,脾细胞表面标记的表达也证实了上述发现。结论获得性免疫反应参与了海人藻酸引起的海马损伤。CD_4T细胞和B细胞在病变过程中可能起到了保护作用,而CD8T细胞则加重神经退行性病变。  相似文献   

3.
Kainic acid (KA)-induced hippocampal injury is a good model for studying human neurodegenerative diseases. To investigate the roles of immune cells and age related changes in neurodegeneration, we used this model to assess reactions in young and middle-aged wild-type and CD4/CD8(-/-) mice by intranasal administration of KA. We found that CD4/CD8-deficiency resulted in a significant reduction of the severity of clinical signs and pathological changes in KA-treated young, but not in KA-treated middle-aged mice. Middle-aged wild-type mice had a similar reaction to KA insult as young and middle-aged CD4/CD8(-/-) mice. CD4/CD8(-/-) mice exhibited decreased locomotor and rearing activities as they approached to middle-aged state, which was not seen in wild-type mice. In addition, CD4/CD8-deficiency and increased age prevented KA-induced increase of both locomotor and rearing activities. The results suggest that a decline of immunological function is associated with aging, and both of them may contribute to the relative resistance to KA-induced neurotoxicity.  相似文献   

4.
Apolipoprotein E (apoE) has an intricate biological function in modulating immune responses and apoE isoforms exhibit diverse effects on neurodegenerative and neuroinflammatory disorders. In the present study, we investigated the individual roles of apoE isoforms in the kainic acid (KA)-induced hippocampal neurodegeneration with focus on immune response and microglia functions. ApoE2, 3 and 4 transgenic mice as well as wild-type (WT) mice were treated with KA by intranasal route. ApoE4 overexpressing mice revealed several peculiarities as compared with other transgenic mice and WT mice, i.e. (1) they had more severe KA-induced seizures than apoE2 and 3 mice, (2) they exhibited neuron loss in hippocampus that was higher than in apoE2, 3 and WT mice, (3) KA administration resulted in higher counts of their head drops in the cross-area of elevated plus-maze, (4) they showed lower KA-induced rearing activity than apoE2 mice in the open-field test, (5) their KA-induced microglial expression of MHC-II and CD86 was elevated compared to apoE3 mice, (6) the KA-induced increase of microglial iNOS was higher than that in the other groups of mice, and (7) the TNF-α and IL-6 expression was decreased 7 days after KA application compared to untreated mice and mice treated 1 day with KA. However, the signaling pathway of NFκB or Akt seemed not to be involved in apoE-isoform dependent susceptibility to KA-induced neurotoxicity. In conclusion, over-expression of apoE4 deteriorated KA-induced hippocampal neurodegeneration in C57BL/6 mice, which might result from a higher up-regulation of microglia activation compared to apoE2 and 3 transgenic mice and WT mice.  相似文献   

5.
The role of IL-12 in excitotoxic neurodegeneration of brain is largely unknown. To address this issue, we used the model of kainic acid (KA)-induced hippocampal injury in IL-12p35 knockout (KO) mice, a well-characterized model for human neurodegenerative diseases. After KA treatment, hippocampal neurodegeneration was significantly less severe in the IL-12p35 KO mice than in wild-type mice as demonstrated by reduced pathological changes and astrogliosis. One day after KA treatment, levels of F4/80 and CD86 expression on microglia were significantly lower in IL-12p35 KO mice than in wild-type mice analyzed by flow cytometry, indicating that IL-12p35 deficiency resulted in lower levels of microglial activation. Five days after KA treatment, CD86 expression on microglia of wild-type mice was still higher, whereas F4/80 expression in wild-type mice decreased and was similar to that in IL-12p35 KO mice. Because microglial activation is necessary for KA-induced neurodegeneration, the lower level of microglial activation in the absence of IL-12p35 may alleviate hippocampal injury in KO mice. In summary, this study indicates that IL-12 may play a critical role in excitotoxin-induced brain injury.  相似文献   

6.
Kainic acid (KA)-induced seizure induces the hippocampal cell death. There are reports that AMP-activated protein kinase (AMPK), which is an important regulator of energy homeostasis of cells, has been proposed as apoptotic molecule. In this study, we investigated the altered expression of AMPK cascade in the hippocampus of mice during KA-induced hippocampal cell death. Mice were killed at 2, 6, 24 or 48 h after KA (30 mg/kg) injection. Histological evaluation of KA-treated hippocampus revealed hippocampal cell death first at 6 h and appearing prominently by 48 h after KA injection. Immunoreactivity of Ca2+/calmodulin-dependent protein kinase kinaseβ (CaMKKβ) was increased after KA treatment. In Western blot analysis, AMPK activation was increased 2 h after KA treatment. The proteins of downstream AMPK, including those of glucose transporter1 (GLUT1) and phosphorylation of Acetyl CoA Carboxylase (ACC) were increased in the hippocampus after KA treatment. These results indicate that sustained AMPK activation might be a mechanism by which KA-induced seizure causes hippocampal cell death of mice.  相似文献   

7.
The protective effect of topiramate (TPM) on seizure-induced neuronal injury is well known; however, its molecular basis has yet to be elucidated. We investigated the effect and signaling mediators of TPM on seizure-induced hippocampal cell death in kainic acid (KA)-treated ICR mice. KA-induced hippocampal cell death was identified by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. Immunoreactivity (IR) of p-Erk, p-Jnk, p-P38, and caspase-3, and caspase-3 activity were observed in the hippocampal region 3 h after KA (0.1 microg/5 microL, i.c.v.) administration, and/or TPM (100 mg/kg, i.p.) pretreatment. TPM attenuated seizure-induced neuronal cell death and reduced KA-induced p-Erk IR in the CA3 region of the hippocampus, but did not affect p-Jnk and p-P38. In addition, TPM reduced caspase-3 IR and activation by KA. KA-induced seizures were also suppressed by TPM pretreatment. TPM inhibits seizures, and decreases Erk phosphorylation and caspase-3 activation by KA, thereby contributing to protection from neuronal injury.  相似文献   

8.
Intra-hippocampal injection of kainic acid (KA) in adult mice causes a focal lesion in the CA1 area and hilus of the dentate gyrus, as well as pronounced granule cell hypertrophy and dispersion. The lesion results in chronic focal seizures, with a two-week delay following KA-induced status epilepticus. Furthermore, seizures are preceded by infiltration of T lymphocytes into the lesioned tissue and of macrophage-like cells, strongly immunopositive for the monocyte marker F4/80, into the dentate gyrus, where they regulate granule cell dispersion and survival. Unexpectedly, depletion of CD4(+) and/or CD8(+) T lymphocytes by targeted gene deletion results in a marked shortening of the delay prior to seizure onset, suggesting a role of adaptive immunity in epileptogenesis (Zattoni et al. 2011, J. Neurosci. 31, 4037). Here, we investigated the specific role of adaptive immunity in this TLE model by adoptive i.v. transfer of immunopurified T cells in mutant mice lacking either CD4(+) T cells (MHCII-knockout), CD8(+) T cells (β2-microglobulin-knockout), or both populations (RAG1-knockout mice). EEG analysis in mutants mice injected with KA two days after the T cell transfer revealed that grafting of the missing T cell population had no influence on seizure onset, but strongly influenced F4/80(+) macrophage-like cell infiltration in the dentate gyrus. Specifically, CD8(+) T cells in β2-microgloblin-knockout mice enhanced macrophage recruitment, whereas CD4(+) T cells transferred in MHCII-knockout and in RAG1-knockout mice blocked macrophage infiltration, leading to reduced granule cell dispersion and survival, thereby worsening the KA-induced lesion. These results suggest that intact adaptive immunity is required for delayed seizure onset in this mouse model of TLE and unravel complex interactions between T cells and mononuclear phagocytes for the control of neuronal integrity and survival in the lesioned brain.  相似文献   

9.
Kainic acid (KA) is a well-known excitatory and neurotoxic substance. In ICR mice, morphological damage of hippocampus induced by KA administered intracerebroventricularly (i.c.v.) was markedly concentrated on the hippocampal CA3 pyramidal neurons. In the present study, the possible role of adenosine receptors in hippocampal cell death induced by KA (0.1 microg) administered i.c.v. was examined. It has been shown that 3,7-dimethyl-1-propargylxanthine (DMPX; A2 adenosine receptors antagonist, 20 microg) reduced KA-induced CA3 pyramidal cell death. KA dramatically increased the phosphorylated extracellular signal-regulated kinase (p-ERK) immunoreactivities (IR) in dentate gyrus (DG) and mossy fibers. In addition, c-Jun, c-Fos, Fos-related antigen 1 (Fra-1) and Fos-related antigen 2 (Fra-2) protein levels were increased in hippocampal area in KA-injected mice. DMPX attenuated KA-induced p-ERK, c-Jun, Fra-1 and Fra-2 IR. However, 1,3-dipropyl-8-(2-amino-4-chlorophenyl)-xanthine (PACPX; A1 adenosine receptor antagonist, 20 microg) did not affect KA-induced p-ERK, c-Jun, Fra-1 and Fra-2 IR. KA also increased the complement receptor type 3 (OX-42) IR in CA3 region of hippocampus. DMPX, but not PACPX, blocked KA-induced OX-42 IR. Our results suggest that p-ERK and c-Jun may function as important regulators responsible for the hippocampal cell death induced by KA administered i.c.v. in mice. Activated microglia, which was detected by OX-42 IR, may be related to phagocytosis of degenerated neuronal elements by KA excitotoxicity. Furthermore, it is implicated that A2, but not A1, adenosine receptors appear to be involved in hippocampal CA3 pyramidal cell death induced by KA administered i.c.v. in mice.  相似文献   

10.
The purpose of this study was to determine the role that dentate granule cells play in wet dog shakes (WDS), behavioral seizures, and hippocampal cell loss caused by systemic administration of kainic acid (KA). Rats were given bilateral injections of colchicine (COL) into the hippocampal formation to selectively lesion dentate granule cells. Two weeks later, they were injected subcutaneously with KA and were observed for WDS and seizures. Seizures were terminated with pentobarbital 2.5 hr after KA injection, and the rats were killed 48 hr later. The integrity of hippocampal cell populations and projections to the hippocampal formation from entorhinal cortex was assessed with radioimmunoassay and immunostaining for methionine-enkephalin (ME) and dynorphin (DYN) A, as well as with Timm and Nissl staining. Results indicate that COL injections eliminated KA-induced WDS, did not affect the latency to onset of seizures, and potentiated KA-induced cell loss in the CA3 region of hippocampus. COL lesions eliminated ME and DYN immunostaining of granule cells, but not ME immunostaining of entorhinal afferents to the dentate gyrus or Ammon's horn. These findings indicate that granule cells are an essential neuronal link in the expression of KA-induced WDS, but that seizures propagate along other pathways in the limbic system.  相似文献   

11.
The protective effect of topiramate (TPM) on seizure-induced neuronal injury is well known; however, its molecular basis has yet to be elucidated. We investigated the effect and signaling mediators of TPM on seizure-induced hippocampal cell death in kainic acid (KA)-treated ICR mice. KA-induced hippocampal cell death was identified by terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling. Immunoreactivity (IR) of p-Erk, p-Jnk, p-P38, and caspase-3, and caspase-3 activity were observed in the hippocampal region 3 h after KA (0.1 μg/5 μL, i.c.v.) administration, and/or TPM (100 mg/kg, i.p.) pretreatment. TPM attenuated seizure-induced neuronal cell death and reduced KA-induced p-Erk IR in the CA3 region of the hippocampus, but did not affect p-Jnk and p-P38. In addition, TPM reduced caspase-3 IR and activation by KA. KA-induced seizures were also suppressed by TPM pretreatment. TPM inhibits seizures, and decreases Erk phosphorylation and caspase-3 activation by KA, thereby contributing to protection from neuronal injury.  相似文献   

12.
Kainic acid (KA) is a well-known excitatory, neurotoxic substance. In mice, morphological damage of hippocampus induced by KA administered intracerebroventricularly (i.c.v.) was markedly concentrated on the CA3 pyramidal neurons. In the present study, the possible role of nicotinic acetylcholine receptors (nAchRs) in hippocampal cell death induced by KA (0.1 microg) administered i.c.v. was examined. Methyllycaconitine (MC; nAchRs antagonist, 20 microg) attenuated KA-induced CA3 pyramidal cell death. KA increased immunoreactivities (IRs) of phorylated extracellular signal-regulated kinase (p-ERK; at 30 min), p-CaMK II (at 30 min), c-Fos (at 2 h), c-Jun (at 2 h), glial fibrillary acidic protein (GFAP at 1 day), and the complement receptor type 3 (OX-42; at 1 day) in hippocampal area. MC attenuated selectively KA-induced p-CaMK II, GFAP and OX-42 IR in the hippocampal CA3 region. Our results suggest that p-CaMK II may play as an important regulator responsible for the hippocampal cell death induced by KA administered i.c.v. in mice. Reactive astrocytes, which was meant by GFAP IR, and activated microglia, which was meant by OX-42 IR, may be a good indicator for measuring the cell death in hippocampal regions by KA-induced excitotoxicity. Furthermore, it is implicated that niconitic receptors appear to be involved in hippocampal CA3 pyramidal cell death induced by KA administered i.c.v. in mice.  相似文献   

13.
Experimental autoimmune neuritis (EAN) is a T cell-mediated autoimmune disease of the peripheral nervous system that duplicates the clinical, pathological, and electrophysiological features of Guillain-Barré syndrome in humans. However, the molecular pathogenesis of EAN remains controversial. Therefore, for this study, we induced EAN with P0 protein peptide 180-199 in CD4(-/-), CD8(-/-), CD4(-)8(-), and B cell knockout (microMT) mice to further investigate the roles of these cells in EAN. Our results showed that the severity of clinical signs and histopathological manifestations of EAN and the T cell response to P0 peptide 180-199 in CD4(-/-) mice were significantly lower than those in their wild-type counterparts. CD8(-/-) mice also had a milder clinical course, less histopathological change, and a diminished T cell response to P0 peptide 180-199. However, more severe clinical and histopathological manifestations, a stronger T cell response to P0 peptide 180-199, and enhanced IFN-gamma production in the spleen were observed in the EAN of CD4(-)8(-) and microMT mice, but these were not obviously different from those of wild-type mice. Levels of IgG production were similar in sera from CD4(-/-), CD8(-/-), and CD4(-)8(-), and wild-type mice. These findings suggest that the induction and control of murine EAN are dependent on both CD4(+) and CD8(+) T cells and that B cells apparently do not perpetuate the related inflammatory demyelination.  相似文献   

14.
Astrocytes perform a variety of functions in the adult central nervous system. Recent evidence suggests that the upregulation of glial fibrillary acidic protein (GFAP), an astrocyte-specific intermediate filament component, is a biological marker of neurotoxicity after cerebral injury. We herein compared the response to traumatic brain injury or kainic acid (KA)-induced neurotoxicity in GFAP knockout (GFAP-KO) and wild-type (WT) mice. Seventy-two hours after injury, all GFAP-KO mice showed hippocampal CA3 neurodegeneration, whereas WT mice did not show neurodegeneration. Seventy-two hours after KA administration, GFAP-KO mice were more susceptible to KA-induced seizures and had an increased number of pyknotic damaged CA3 neurons than did WT mice. These results indicate that GFAP plays a crucial role in pyramidal neuronal survival after injury or KA-induced neurotoxicity.  相似文献   

15.
The capacity of facial motor neurons (FMN) to survive injury and successfully regenerate is substantially compromised in immunodeficient mice, which lack T and B lymphocytes (). The goal of the present study was to determine which T cell subset (CD4+ and/or CD8+), and whether the B lymphocyte, is involved in FMN survival after nerve injury. All mice were subjected to a right facial nerve axotomy, with the left (uncut) side serving as an internal control. FMN survival, of the right (cut) side, was measured 4 weeks post-operative, and expressed as a percentage of the left (uncut) control side. FMN survival in wild-type mice was 86%+/-1.5. In contrast, FMN survival in CD4 KO mice was 60%+/-2.0. Reconstitution of either CD4 KO mice, or recombinase activating gene-2 knockout (RAG-2 KO) mice (which lack functional T and B cells) with CD4+ T cells alone restored FMN survival to wild-type levels (85%+/-1.2 and 84%+/-2.5, respectively). There was no difference in FMN survival between wild-type, CD8 KO and MmuMT (B cell deficient) mice. Reconstitution of RAG-2 KO mice with CD8+ T cells alone, or B cells alone, failed to restore FMN survival levels (65%+/-1.5 and 63%+/-1.0, respectively). It is concluded that, of the population of FMN that do not survive injury, CD4+ T lymphocytes, but not CD8+ T lymphocytes or B cells, mediate FMN survival after peripheral nerve injury.  相似文献   

16.
Experimental autoimmune encephalomyelitis (EAE) was induced with myelin oligodendrocyte glycoprotein (MOG(1-125)) in CD4(-/-) and CD8(-/-) DBA/1 mice. Both gene-deleted mice developed clinical signs of EAE, albeit milder than in wild-type mice, suggesting that both CD4(+) and CD8(+) cells participate in disease development. Demyelination and inflammation in the central nervous system was reduced in the absence of CD8(+) T cells. Antibody depletion of CD4(+) cells completely protected CD8(-/-) mice from MOG-induced EAE while depletion of CD8(+) cells in CD4(-/-) mice resulted in fewer EAE incidence compared to that in control antibody-treated mice. Antibody depletion of CD4(+) cells in wild-type mice protected from EAE, but not depletion of CD8(+) cells, although demyelination was reduced on removal of CD8(+) T cells. Immunization with immunodominant MOG(79-96) peptide led to EAE only in the presence of pertussis toxin (PT) in the inoculum. PT also triggered an earlier onset and more severe EAE in CD8(-/-) mice. We interpret our findings such that in an ontogenic lack of CD4(+) T cells, EAE is mediated by CD8(+) and elevated levels of alphabetaCD4(-)CD8(-) cells, and that CNS damage is partly enacted by the activity of CD8(+) T cells.  相似文献   

17.
Genetic dissection of the signals that induce synaptic reorganization   总被引:7,自引:0,他引:7  
Synaptic reorganization of mossy fibers following kainic acid (KA) administration has been reported to contribute to the formation of recurrent excitatory circuits, resulting in an epileptogenic state. It is unclear, however, whether KA-induced mossy fiber sprouting results from neuronal cell loss or the seizure activity that KA induces. We have recently demonstrated that certain strains of mice are resistant to excitotoxic cell death, yet exhibit seizure activity similar to what has been observed in rodents susceptible to KA. The present study takes advantage of these strain differences to explore the roles of seizure activity vs cell loss in triggering mossy fiber sprouting. In order to understand the relationships between gene induction, cell death, and the sprouting response, we assessed the regulation of two molecules associated with the sprouting response, c-fos and GAP-43, in mice resistant (C57BL/6) and susceptible (FVB/N) to KA-induced cell death. Following administration of KA, increases in c-fos immunoreactivity were observed in both strains, although prolonged induction of c-fos was present only in the hippocampal neurons of FVB/N mice. Mossy fiber sprouting following KA administration was also only observed in FVB/N mice, while induction of GAP-43, a marker associated with mossy fiber sprouting, was not observed in either strain. These results indicate that: (i) KA-induced seizure activity alone is insufficient to induce mossy fiber sprouting; (ii) mossy fiber sprouting may be due to the loss of hilar neurons following kainate administration; and (iii) induction of GAP-43 is not a necessary component of the sprouting response that occurs following KA in mice.  相似文献   

18.
CD28 provides a critical costimulatory signal for antigen-specific T cell activation. Because CD28 is an important factor in the development of autoimmune diseases, we investigated its role in T cell-mediated experimental autoimmune neuritis (EAN), an animal model of Guillain-Barré syndrome in humans. CD28-deficient mutant (CD28-/-) C57BL/6 mice and corresponding wild-type mice were immunized with P0 peptide 180-199, a purified component of peripheral nerve myelin, and Freund's complete adjuvant. As a result, all wild-type mice developed severe EAN, in contrast, none of the CD28-/- mice manifested clinical signs of disease. Additionally, CD28-/- mice had fewer IL-12 producing cells in sciatic nerve sections and fewer IFN-gamma secreting splenic cells than wild-type mice on day 24 post immunization, i.e., at the peak of clinical EAN. At that time point, CD28-/- mice had milder infiltration of such inflammatory cells as macrophages, CD4+ T cells and monocytes into sciatic nerve tissues and less demyelination than wild-type mice. Moreover, the CD28-deficiency led to reduced production of specific anti-P0 peptide 180-199 antibodies compared with wild-type mice. Evidently, CD28 is required for interaction with B7 to regulate the activation of T and B cells that initiates development of EAN.  相似文献   

19.
Noh HS  Kim YS  Lee HP  Chung KM  Kim DW  Kang SS  Cho GJ  Choi WS 《Epilepsy research》2003,53(1-2):119-128
This study was designed to evaluate the antiapoptotic effects of a ketogenic diet (KD) through histological (cresyl violet staining, TUNEL staining and immunohistochemistry) and behavioral studies using kainic acid (KA, 25mg/kg i.p.)-induced seizures in male ICR mice. KA-induced seizure in rodents is widely used as an experimental model for human temporal lobe epilepsy because of their behavioral and pathological similarities. A KA-induced seizure causes neuronal damage in hippocampal pyramidal neurons and involves a caspase-3-mediated apoptotic pathway. In this study, the seizure onset time of the KD-fed group was delayed compared to that of the group fed a normal diet (ND) after a systemic KA injection. Histological studies revealed that KA caused pyknosis in most of the hippocampal areas in the ND-fed group, however, well-preserved pyramidal neurons were detected in the hippocampus of mice that had been on KD for 1 month, which began on postnatal day 21. The number of TUNEL-positive cells and caspase-3-positive cells in the hippocampus of the KD-fed group was lower than that of the ND-fed group. These findings indicate that KD has an antiepileptic effect via a neuroprotective action that involves the inhibition of caspase-3-mediated apoptosis of hippocampal neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号