首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many partial differential equations can be written as a multi-symplectic Hamiltonian system, which has three local conservation laws, namely multi-symplectic conservation law, local energy conservation law and local momentum conservation law. In this paper, we systematically give a unified framework to construct the local structure-preserving algorithms for general conservative partial differential equations starting from the multi-symplectic formulation and using the concatenating method. We construct four multi-symplectic algorithms, two local energy-preserving algorithms and two local momentum-preserving algorithms, which are independent of the boundary conditions and can be used to integrate any partial differential equations written in multi-symplectic Hamiltonian form. Among these algorithms, some have been discussed and widely used before while most are novel schemes. These algorithms are illustrated by the nonlinear Schrödinger equation and the Klein-Gordon-Schrödinger equation. Numerical experiments are conducted to show the good performance of the proposed methods.  相似文献   

2.
We propose a hierarchy of novel absorbing boundary conditions for the one-dimensional stationary Schrödinger equation with general (linear and nonlinear) potential. The accuracy of the new absorbing boundary conditions is investigated numerically for the computation of energies and ground-states for linear and nonlinear Schrödinger equations. It turns out that these absorbing boundary conditions and their variants lead to a higher accuracy than the usual Dirichlet boundary condition. Finally, we give the extension of these ABCs to N-dimensional stationary Schrödinger equations.  相似文献   

3.
This paper explores the discrete singular convolution method for Hamiltonian PDEs. The differential matrices corresponding to two delta type kernels of the discrete singular convolution are presented analytically, which have the properties of high-order accuracy, band-limited structure and thus can be excellent candidates for the spatial discretizations for Hamiltonian PDEs. Taking the nonlinear Schrödinger equation and the coupled Schrödinger equations for example, we construct two symplectic integrators combining this kind of differential matrices and appropriate symplectic time integrations, which both have been proved to satisfy the square conservation laws. Comprehensive numerical experiments including comparisons with the central finite difference method, the Fourier pseudospectral method, the wavelet collocation method are given to show the advantages of the new type of symplectic integrators.  相似文献   

4.
This paper studies a local discontinuous Galerkin method combined with fourth order exponential time differencing Runge-Kutta time discretization and a fourth order conservative method for solving the nonlinear Schrödinger equations. Based on different choices of numerical fluxes, we propose both energy-conserving and energy-dissipative local discontinuous Galerkin methods, and have proven the error estimates for the semi-discrete methods applied to linear Schrödinger equation. The numerical methods are proven to be highly efficient and stable for long-range soliton computations. Extensive numerical examples are provided to illustrate the accuracy, efficiency and reliability of the proposed methods.  相似文献   

5.
In this paper, we develop a novel energy-preserving wavelet collocation method for solving general multi-symplectic formulations of Hamiltonian PDEs. Based on the autocorrelation functions of Daubechies compactly supported scaling functions, the wavelet collocation method is conducted for spatial discretization. The obtained semi-discrete system is shown to be a finite-dimensional Hamiltonian system, which has an energy conservation law. Then, the average vector field method is used for time integration, which leads to an energy-preserving method for multi-symplectic Hamiltonian PDEs. The proposed method is illustrated by the nonlinear Schrödinger equation and the Camassa-Holm equation. Since differentiation matrix obtained by the wavelet collocation method is a cyclic matrix, we can apply Fast Fourier transform to solve equations in numerical calculation. Numerical experiments show the high accuracy, effectiveness and conservation properties of the proposed method.  相似文献   

6.
By performing a particular spatial discretization to the nonlinear Schrödinger equation (NLSE), we obtain a non-integrable Hamiltonian system which can be decomposed into three integrable parts (L-L-N splitting). We integrate each part by calculating its phase flow, and develop explicit symplectic integrators of different orders for the original Hamiltonian by composing the phase flows. A 2nd-order reversible constructed symplectic scheme is employed to simulate solitons motion and invariants behavior of the NLSE. The simulation results are compared with a 3rd-order non-symplectic implicit Runge-Kutta method, and the convergence of the formal energy of this symplectic integrator is also verified. The numerical results indicate that the explicit symplectic scheme obtained via L-L-N splitting is an effective numerical tool for solving the NLSE.  相似文献   

7.
In this paper, we present local discontinuous Galerkin methods (LDG) to simulate an important application of the 2D stationary Schrödinger equation called quantum transport phenomena on a typical quantum directional coupler, which frequency change mainly reflects in $y$-direction. We present the minimal dissipation LDG (MD-LDG) method with polynomial basis functions for the 2D stationary Schrödinger equation which can describe quantum transport phenomena. We also give the MD-LDG method with polynomial basis functions in $x$-direction and exponential basis functions in $y$-direction for the 2D stationary Schrödinger equation to reduce the computational cost. The numerical results are shown to demonstrate the accuracy and capability of these methods.  相似文献   

8.
In this paper we propose stochastic multi-symplectic conservation law for stochastic Hamiltonian partial differential equations, and develop a stochastic multi-symplectic method for numerically solving a kind of stochastic nonlinear Schrödinger equations. It is shown that the stochastic multi-symplectic method preserves the multi-symplectic structure, the discrete charge conservation law, and deduces the recurrence relation of the discrete energy. Numerical experiments are performed to verify the good behaviors of the stochastic multi-symplectic method in cases of both solitary wave and collision.  相似文献   

9.
The paper is concerned with the numerical solution of Schrödinger equations on an unbounded spatial domain. High-order absorbing boundary conditions for one-dimensional domain are derived, and the stability of the reduced initial boundary value problem in the computational interval is proved by energy estimate. Then a second order finite difference scheme is proposed, and the convergence of the scheme is established as well. Finally, numerical examples are reported to confirm our error estimates of the numerical methods.  相似文献   

10.
Strong-scattering inversion or the inverse problem for strong scattering has different physical-mathematical foundations from the weak-scattering case. Seismic inversion based on wave equation for strong scattering cannot be directly solved by Newton's local optimization method which is based on weak-nonlinear assumption. Here I try to illustrate the connection between the Schrödinger inverse scattering (inverse problem for Schrödinger equation) by GLM (Gel'fand-Levitan-Marchenko) theory and the direct envelope inversion (DEI) using reflection data. The difference between wave equation and Schrödinger equation is that the latter has a potential independent of frequency while the former has a frequency-square dependency in the potential. I also point out that the traditional GLM equation for potential inversion can only recover the high-wavenumber components of impedance profile. I propose to use the Schrödinger impedance equation for direct impedance inversion and introduce a singular impedance function which also corresponds to a singular potential for the reconstruction of impedance profile, including discontinuities and long-wavelength velocity structure. I will review the GLM theory and its application to impedance inversion including some numerical examples. Then I analyze the recently developed multiscale direct envelope inversion (MS-DEI) and its connection to the inverse Schrödinger scattering. It is conceivable that the combination of strong-scattering inversion (inverse Schrödinger scattering) and weak-scattering inversion (local optimization based inversion) may create some inversion methods working for a whole range of inversion problems in geophysical exploration.  相似文献   

11.
A novel adaptive approach to compute the eigenenergies and eigenfunctions of the two-particle (electron-hole) Schrödinger equation including Coulomb attraction is presented. As an example, we analyze the energetically lowest exciton state of a thin one-dimensional semiconductor quantum wire in the presence of disorder which arises from the non-smooth interface between the wire and surrounding material. The eigenvalues of the corresponding Schrödinger equation, i.e., the one-dimensional exciton Wannier equation with disorder, correspond to the energies of excitons in the quantum wire. The wavefunctions, in turn, provide information on the optical properties of the wire. We reformulate the problem of two interacting particles that both can move in one dimension as a stationary eigenvalue problem with two spacial dimensions in an appropriate weak form whose bilinear form is arranged to be symmetric, continuous, and coercive. The disorder of the wire is modelled by adding a potential in the Hamiltonian which is generated by normally distributed random numbers. The numerical solution of this problem is based on adaptive wavelets. Our scheme allows for a convergence proof of the resulting scheme together with complexity estimates. Numerical examples demonstrate the behavior of the smallest eigenvalue, the ground state energies of the exciton, together with the eigenstates depending on the strength and spatial correlation of disorder.  相似文献   

12.
In this paper, we present the use of the orthogonal spline collocation method for the semi-discretization scheme of the one-dimensional coupled nonlinear Schrödinger equations. This method uses the Hermite basis functions, by which physical quantities are approximated with their values and derivatives associated with Gaussian points. The convergence rate with order O(h42) and the stability of the scheme are proved. Conservation properties are shown in both theory and practice. Extensive numerical experiments are presented to validate the numerical study under consideration.  相似文献   

13.
In this paper, we numerically study the ground and first excited states of the fractional Schrödinger equation in an infinite potential well. Due to the nonlocality of the fractional Laplacian, it is challenging to find the eigenvalues and eigenfunctions of the fractional Schrödinger equation analytically. We first introduce a normalized fractional gradient flow and then discretize it by a quadrature rule method in space and the semi-implicit Euler method in time. Our numerical results suggest that the eigenfunctions of the fractional Schrödinger equation in an infinite potential well differ from those of the standard (non-fractional) Schrödinger equation. We find that the strong nonlocal interactions represented by the fractional Laplacian can lead to a large scattering of particles inside of the potential well. Compared to the ground states, the scattering of particles in the first excited states is larger. Furthermore, boundary layers emerge in the ground states and additionally inner layers exist in the first excited states of the fractional nonlinear Schrödinger equation. Our simulated eigenvalues are consistent with the lower and upper bound estimates in the literature.  相似文献   

14.
In this contribution, we introduce numerical continuation methods and bifurcation theory, techniques which find their roots in the study of dynamical systems, to the problem of tracing the parameter dependence of bound and resonant states of the quantum mechanical Schrödinger equation. We extend previous work on the subject [1] to systems of coupled equations. Bound and resonant states of the Schrödinger equation can be determined through the poles of the S-matrix, a quantity that can be derived from the asymptotic form of the wave function. We introduce a regularization procedure that essentially transforms the S-matrix into its inverse and improves its smoothness properties, thus making it amenable to numerical continuation. This allows us to automate the process of tracking bound and resonant states when parameters in the Schrödinger equation are varied. We have applied this approach to a number of model problems with satisfying results.  相似文献   

15.
The quantum lattice Boltzmann (qlB) algorithm solves the 1D Dirac equations and has been used to solve approximately the classical (i.e., non-relativistic) Schrödinger equation. We point out that the qlB method actually approximates the hyperbolic version of the non-relativistic Schrödinger equation, whose solution is thus obtained at the price of an additional small error. Such an error is of order of $(ω_c\tau)^{−1},$ where $ω_c:=\frac{mc^2}{h}$ is the Compton frequency, $ħ$ being the reduced Planck constant, $m$ the rest mass of the electrons, $c$ the speed of light, and $\tau$ a chosen reference time (i.e., 1 s), and hence it vanishes in the non-relativistic limit $c → +∞.$ This asymptotic result comes from a singular perturbation process which does not require any boundary layer and, consequently, the approximation holds uniformly, which fact is relevant in view of numerical approximations. We also discuss this occurrence more generally, for some classes of linear singularly perturbed partial differential equations.  相似文献   

16.
In this paper, we present solutions for the one-dimensional coupled nonlinear Schrödinger (CNLS) equations by the Constrained Interpolation Profile-Basis Set (CIP-BS) method. This method uses a simple polynomial basis set, by which physical quantities are approximated with their values and derivatives associated with grid points. Nonlinear operations on functions are carried out in the framework of differential algebra. Then, by introducing scalar products and requiring the residue to be orthogonal to the basis, the linear and nonlinear partial differential equations are reduced to ordinary differential equations for values and spatial derivatives. The method gives stable, less diffusive, and accurate results for the CNLS equations.  相似文献   

17.
Based on the numerical evidences, an analytical expression of the Dirichlet-to-Neumann mapping in the form of infinite product was first conjectured for the one-dimensional characteristic Schrödinger equation with a sinusoidal potential in [Commun. Comput. Phys., 3(3): 641-658, 2008]. It was later extended for the general second-order characteristic elliptic equations with symmetric periodic coefficients in [J. Comp. Phys., 227: 6877-6894, 2008]. In this paper, we present a proof for this Dirichlet-to-Neumann mapping.  相似文献   

18.
In this paper, we propose a wavelet collocation splitting (WCS) method, and a Fourier pseudospectral splitting (FPSS) method as comparison, for solving one-dimensional and two-dimensional Schrödinger equations with variable coefficients in quantum mechanics. The two methods can preserve the intrinsic properties of original problems as much as possible. The splitting technique increases the computational efficiency. Meanwhile, the error estimation and some conservative properties are investigated. It is proved to preserve the charge conservation exactly. The global energy and momentum conservation laws can be preserved under several conditions. Numerical experiments are conducted during long time computations to show the performances of the proposed methods and verify the theoretical analysis.  相似文献   

19.
This paper is concerned with the pattern dynamics of the generalized nonlinear Schrödinger equations (NSEs) related with various nonlinear physical problems in plasmas. Our theoretical and numerical results show that the higher-order nonlinear effects, acting as a Hamiltonian perturbation, break down the NSE integrability and lead to chaotic behaviors. Correspondingly, coherent structures are destroyed and replaced by complex patterns. Homoclinic orbit crossings in the phase space and stochastic partition of energy in Fourier modes show typical characteristics of the stochastic motion. Our investigations show that nonlinear phenomena, such as wave turbulence and laser filamentation, are associated with the homoclinic chaos. In particular, we found that the unstable manifolds W(u)possessing the hyperbolic fixed point correspond to an initial phase θ =45and 225, and the stable manifolds W(s) correspond to θ=135 and 315.  相似文献   

20.
Many physical processes are described by elliptic or parabolic partial differential equations. For linear stability problems associated with such equations, the inverse Laplacian provides a very effective preconditioner. In addition, it is also readily available in most scientific calculations in the form of a Poisson solver or an implicit diffusive time step. We incorporate Laplacian preconditioning into the inverse Arnoldi method, using BiCGSTAB to solve the large linear systems. Two successful implementations are described: spherical Couette flow described by the Navier-Stokes equations and Bose-Einstein condensation described by the nonlinear Schrödinger equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号