首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consider the electromagnetic scattering of a time-harmonic plane wave by an open cavity which is embedded in a perfectly electrically conducting infinite ground plane. This paper is concerned with the numerical solutions of the transverse electric and magnetic polarizations of the open cavity scattering problems. In each polarization, the scattering problem is reduced equivalently into a boundary value problem of the two-dimensional Helmholtz equation in a bounded domain by using the transparent boundary condition (TBC). An a posteriori estimate based adaptive finite element method with the perfectly matched layer (PML) technique is developed to solve the reduced problem. The estimate takes account ofboththe finite element approximation error and the PML truncation error, where the latter is shown to decay exponentially with respect to the PML medium parameter and the thickness of the PML layer. Numerical experiments are presented and compared with the adaptive finite element TBC method for both polarizations to illustrate the competitive behavior of the proposed method.  相似文献   

2.
Elastic wave scattering has received ever-increasing attention in military and medical fields due to its high-precision solution. In this paper, an edge-based smoothed finite element method (ES-FEM) combined with the transparent boundary condition (TBC) is proposed to solve the elastic wave scattering problem by a rigid obstacle with smooth surface, which is embedded in an isotropic and homogeneous elastic medium in two dimensions. The elastic wave scattering problem satisfies Helmholtz equations with coupled boundary conditions obtained by Helmholtz decomposition. Firstly, the TBC of the elastic wave scattering is constructed by using the analytical solution to Helmholtz equations, which can truncate the boundary value problem (BVP) in an unbounded domain into the BVP in a bounded domain. Then the formulations of ES-FEM with the TBC are derived for Helmholtz equations with coupled boundary conditions. Finally, several numerical examples illustrate that the proposed ES-FEM with the TBC (ES-FEM-TBC) can work effectively and obtain more stable and accurate solution than the standard FEM with the TBC (FEM-TBC) for the elastic wave scattering problem.  相似文献   

3.
The paper addresses the construction of a non spurious mixed spectral finite element (FE) method to problems in the field of computational aeroacoustics. Based on a computational scheme for the conservation equations of linear acoustics, the extension towards convected wave propagation is investigated. In aeroacoustic applications, the mean flow effects can have a significant impact on the generated sound field even for smaller Mach numbers. For those convective terms, the initial spectral FE discretization leads to non-physical, spurious solutions. Therefore, a regularization procedure is proposed and qualitatively investigated by means of discrete eigenvalues analysis of the discrete operator in space. A study of convergence and an application of the proposed scheme to simulate the flow induced sound generation in the process of human phonation underlines stability and validity.  相似文献   

4.
A distributed Lagrangian moving-mesh finite element method is applied to problems involving changes of phase. The algorithm uses a distributed conservation principle to determine nodal mesh velocities, which are then used to move the nodes. The nodal values are obtained from an ALE (Arbitrary Lagrangian-Eulerian) equation, which represents a generalization of the original algorithm presented in Applied Numerical Mathematics, 54:450–469 (2005). Having described the details of the generalized algorithm it is validated on two test cases from the original paper and is then applied to one-phase and, for the first time, two-phase Stefan problems in one and two space dimensions, paying particular attention to the implementation of the interface boundary conditions. Results are presented to demonstrate the accuracy and the effectiveness of the method, including comparisons against analytical solutions where available.  相似文献   

5.
We present a novel adaptive finite element method (AFEM) for elliptic equations which is based upon the Centroidal Voronoi Tessellation (CVT) and superconvergent gradient recovery. The constructions of CVT and its dual Centroidal Voronoi Delaunay Triangulation (CVDT) are facilitated by a localized Lloyd iteration to produce almost equilateral two dimensional meshes. Working with finite element solutions on such high quality triangulations, superconvergent recovery methods become particularly effective so that asymptotically exact a posteriori error estimations can be obtained. Through a seamless integration of these techniques, a convergent adaptive procedure is developed. As demonstrated by the numerical examples, the new AFEM is capable of solving a variety of model problems and has great potential in practical applications.  相似文献   

6.
The miscible displacement of one incompressible fluid by another in a porous medium is governed by a system of two equations. One is elliptic form equation for the pressure and the other is parabolic form equation for the concentration of one of the fluids. Since only the velocity and not the pressure appears explicitly in the concentration equation, we use a mixed finite element method for the approximation of the pressure equation and mixed finite element method with characteristics for the concentration equation. To linearize the mixed-method equations, we use a two-grid algorithm based on the Newton iteration method for this full discrete scheme problems. First, we solve the original nonlinear equations on the coarse grid, then, we solve the linearized problem on the fine grid used Newton iteration once. It is shown that the coarse grid can be much coarser than the fine grid and achieve asymptotically optimal approximation as long as the mesh sizes satisfy $h=H^2$ in this paper. Finally, numerical experiment indicates that two-grid algorithm is very effective.  相似文献   

7.
An adaptive moving mesh method is developed for the numerical solution of two-dimensional phase change problems modelled by the phase-field equations. The numerical algorithm is relatively simple and is shown to be more efficient than fixed grid methods. The phase-field equations are discretized by a Galerkin finite element method. An adaptivity criterion is used that ensures that the mesh spacing at the phase front scales with the diffuse interface thickness.  相似文献   

8.
In this paper, we propose a uniformly convergent adaptive finite element method with hybrid basis (AFEM-HB) for the discretization of singularly perturbed nonlinear eigenvalue problems under constraints with applications in Bose-Einstein condensation (BEC) and quantum chemistry. We begin with the time-independent Gross-Pitaevskii equation and show how to reformulate it into a singularly perturbed nonlinear eigenvalue problem under a constraint. Matched asymptotic approximations for the problem are reviewed to confirm the asymptotic behaviors of the solutions in the boundary/interior layer regions. By using the normalized gradient flow, we propose an adaptive finite element with hybrid basis to solve the singularly perturbed nonlinear eigenvalue problem. Our basis functions and the mesh are chosen adaptively to the small parameter ε. Extensive numerical results are reported to show the uniform convergence property of our method. We also apply the AFEM-HB to compute the ground and excited states of BEC with box/harmonic/optical lattice potential in the semiclassical regime (0<ε≪1). In addition, we give a detailed error analysis of our AFEM-HB to a simpler singularly perturbed two point boundary value problem, show that our method has a minimum uniform convergence order $\mathcal{O}$(1/$(NlnN)^\frac{2}{3}$).  相似文献   

9.
We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on usingcontinuous and discrete a priori L estimates. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme are demonstrated with FETK through comparisons with the original regularization approach for a model problem. The convergence and accuracy of the overall AFEM algorithm is also illustrated by numerical approximation of electrostatic solvation energy for an insulin protein.  相似文献   

10.
For numerical simulation of one-dimensional diffraction gratings both in TE and TM polarization, an enhanced adaptive finite element method is proposed in this paper. A modified perfectly matched layer (PML) formulation is proposed for the truncation of the unbounded domain, which results in a homogeneous Dirichlet boundary condition and the corresponding error estimate is greatly simplified. The a posteriori error estimates for the adaptive finite element method are provided. Moreover, a lower bound is obtained to demonstrate that the error estimates obtained are sharp.  相似文献   

11.
In this work, we propose an efficient multi-mesh adaptive finite element method for simulating the dendritic growth in two- and three-dimensions. The governing equations used are the phase field model, where the regularity behaviors of the relevant dependent variables, namely the thermal field function and the phase field function, can be very different. To enhance the computational efficiency, we approximate these variables on different h-adaptive meshes. The coupled terms in the system are calculated based on the implementation of the multi-mesh h-adaptive algorithm proposed by Li (J. Sci. Comput., pp. 321-341, 24 (2005)). It is illustrated numerically that the multi-mesh technique is useful in solving phase field models and can save storage and the CPU time significantly.  相似文献   

12.
A hybrid finite element (FEM) and Fourier transform method is implemented to analyze the time domain scattering of a plane wave incident on a 2-D overfilled cavity embedded in the infinite ground plane. The algorithm first removes the time variable by Fourier transform, through which a frequency domain problem is obtained. An artificial boundary condition is then introduced on a hemisphere enclosing the cavity that couples the fields from the infinite exterior domain to those inside. The exterior problem is solved analytically via Fourier series solutions, while the interior region is solved using finite element method. In the end, the image functions in frequency domain are numerically inverted into the time domain. The perfect link over the artificial boundary between the FEM approximation in the interior and analytical solution in the exterior indicates the reliability of the method. A convergence analysis is also performed.  相似文献   

13.
In this paper, we propose, analyze, and numerically validate an adaptive finite element method for the Cahn–Hilliard–Navier–Stokes equations. The adaptive method is based on a linear, decoupled scheme introduced by Shen and Yang [30]. An unconditionally energy stable discrete law for the modified energy is shown for the fully discrete scheme. A superconvergent cluster recovery based a posteriori error estimations are constructed for both the phase field variable and velocity field function, respectively. Based on the proposed space and time discretization error estimators, a time-space adaptive algorithm is designed for numerical approximation of the Cahn–Hilliard–Navier–Stokes equations. Numerical experiments are presented to illustrate the reliability and efficiency of the proposed error estimators and the corresponding adaptive algorithm.  相似文献   

14.
Time-domain acoustic scattering problems in two dimensions are studied. The numerical scheme relies on the use of the Convolution Quadrature (CQ) method to reduce the time-domain problem to the solution of frequency-domain Helmholtz equations with complex wavenumbers. These equations are solved with the method of fundamental solutions (MFS), which approximates the solution by a linear combination of fundamental solutions defined at source points inside (outside) the scatterer for exterior (interior) problems. Numerical results show that the coupling of both methods works efficiently and accurately for multistep and multistage based CQ.  相似文献   

15.
A hybrid finite element-Laplace transform method is implemented to analyze the time domain electromagnetic scattering induced by a 2-D overfilled cavity embedded in the infinite ground plane. The algorithm divides the whole scattering domain into two, interior and exterior, sub-domains. In the interior sub-domain which covers the cavity, the problem is solved via the finite element method. The problem is solved analytically in the exterior sub-domain which slightly overlaps the interior subdomain and extends to the rest of the upper half plane. The use of the Laplace transform leads to an analytical link condition between the overlapping sub-domains. The analytical link guides the selection of the overlapping zone and eliminates the need to use the conventional Schwartz iteration. This dramatically improves the efficiency for solving transient scattering problems. Numerical solutions are tested favorably against analytical ones for a canonical geometry. The perfect link over the artificial boundary between the finite element approximation in the interior and analytical solution in the exterior further indicates the reliability of the method. An error analysis is also performed.  相似文献   

16.
In this paper we consider the numerical solution of the Allen-Cahn type diffuse interface model in a polygonal domain. The intersection of the interface with the re-entrant corners of the polygon causes strong corner singularities in the solution. To overcome the effect of these singularities on the accuracy of the approximate solution, for the spatial discretization we develop an efficient finite element method with exponential mesh refinement in the vicinity of the singular corners, that is based on ($k$−1)-th order Lagrange elements, $k$≥2 an integer. The problem is fully discretized by employing a first-order, semi-implicit time stepping scheme with the Invariant Energy Quadratization approach in time, which is an unconditionally energy stable method. It is shown that for the error between the exact and the approximate solution, an accuracy of $\mathcal{O}$($h^k$+$τ$) is attained in the $L^2$-norm for the number of $\mathcal{O}$($h^{−2}$ln$h^{−1}$) spatial elements, where $h$ and $τ$ are the mesh and time steps, respectively. The numerical results obtained support the analysis made.  相似文献   

17.
In this paper, we compute a phase field (diffuse interface) model of Cahn-Hilliard type for moving contact line problems governing the motion of isothermal multiphase incompressible fluids. The generalized Navier boundary condition proposed by Qian et al. [1] is adopted here. We discretize model equations using a continuous finite element method in space and a modified midpoint scheme in time. We apply a penalty formulation to the continuity equation which may increase the stability in the pressure variable. Two kinds of immiscible fluids in a pipe and droplet displacement with a moving contact line under the effect of pressure driven shear flow are studied using a relatively coarse grid. We also derive the discrete energy law for the droplet displacement case, which is slightly different due to the boundary conditions. The accuracy and stability of the scheme are validated by examples, results and estimate order.  相似文献   

18.
The discontinuous Galerkin finite element method (DG-FEM) is a high-precision numerical simulation method widely used in various disciplines. In this paper, we derive the auxiliary ordinary differential equation complex frequency-shifted multi-axial perfectly matched layer (AODE CFS-MPML) in an unsplit format and combine it with any high-order adaptive DG-FEM based on an unstructured mesh to simulate seismic wave propagation. To improve the computational efficiency, we implement Message Passing Interface (MPI) parallelization for the simulation. Comparisons of the numerical simulation results with the analytical solutions verify the accuracy and effectiveness of our method. The results of numerical experiments also confirm the stability and effectiveness of the AODE CFS-MPML.  相似文献   

19.
We consider the finite element based computation of topological quantities of implicitly represented surfaces within a diffuse interface framework. Utilizing an adaptive finite element implementation with effective gradient recovery techniques, we discuss how the Euler number can be accurately computed directly from the numerically solved phase field functions or order parameters. Numerical examples and applications to the topological analysis of point clouds are also presented.  相似文献   

20.
We consider scattering of a time harmonic incident plane wave by a convex polygon with piecewise constant impedance boundary conditions. Standard finite or boundary element methods require the number of degrees of freedom to grow at least linearly with respect to the frequency of the incident wave in order to maintain accuracy. Extending earlier work by Chandler-Wilde and Langdon for the sound soft problem, we propose a novel Galerkin boundary element method, with the approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh with smaller elements closer to the corners of the polygon. Theoretical analysis and numerical results suggest that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency of the incident wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号