首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ContextSuccinic acid and irbesartan are commonly used drugs in cardiovascular disease treatment. The interaction might occur during their co-administration, which was still unclear.ObjectiveTo reveal the effect of succinic acid on the metabolism of irbesartan and its potential mechanism.Materials and methodsThe Sprague-Dawley rats (n = 6) were treated with a single dose of 30 mg/kg irbesartan (control) or the co-administration with the pre-treatment of 200 mg/kg succinic acid for 7 d. The effect of succinic acid on the metabolic stability and the activity of CYP2C9 was evaluated in rat liver microsomes.ResultsSuccinic acid increased the AUC (5328.71 ± 959.31 μg/L × h vs. 3340.23 ± 737.75 μg/L × h) and prolonged the half-life of irbesartan (from 12.79 ± 0.73 h to 20.59 ± 6.35 h). The Tmax (2.83 ± 0.75 h vs. 3.83 ± 1.10 h) and clearance rate (3.46 ± 1.13 L/h/kg vs. 6.91 ± 1.65 L/h/kg) of irbesartan was reduced by succinic acid. Consistently, succinic acid improved the metabolic stability (half-life from 23.32 ± 3.46 to 27.35 ± 2.15 min, intrinsic clearance rate from 59.43 ± 6.12 to 50.68 ± 5.64 μL/min/mg protein). Succinic acid was also found to inhibit the activity of CYP2C9 with the IC50 value of 13.87 μM.Discussion and conclusionsSuccinic acid increased the system exposure of irbesartan via inhibiting CYP2C9. The experiment design of this study also provides a reference for the further validation of this interaction in humans.  相似文献   

2.
ContextThe interaction between nobiletin and anemarsaponin BII could affect the pharmacological activity of these two drugs during their combination.ObjectiveThe co-administration of nobiletin and anemarsaponin BII was investigated to explore the interaction and the potential mechanism.Materials and methodsMale Sprague-Dawley rats were only orally administrated with 50 mg/kg nobiletin as the control and another six rats were pre-treated with 100 mg/kg anemarsaponin BII for 7 d followed by the administration of nobiletin. The transport and metabolic stability of nobiletin were evaluated in vitro, and the effect of anemarsaponin BII on the activity of CYP3A4 was also assessed to explore the potential mechanism underlying the interaction.ResultsThe increasing Cmax (2309.67 ± 68.06 μg/L vs. 1767.67 ± 68.86 μg/L), AUC (28.84 ± 1.34 mg/L × h vs. 19.57 ± 2.76 mg/L × h), prolonged t1/2 (9.80 ± 2.33 h vs. 6.24 ± 1.53 h), and decreased clearance rate (1.46 ± 0.26 vs. 2.42 ± 0.40) of nobilein was observed in rats. Anemarsaponin BII significantly enhanced the metabolic stability of nobiletin in rat liver microsomes (half-life increased from 31.56 min to 39.44 min) and suppressed the transport of nobiletin in Caco-2 cells (efflux rate decreased from 1.57 ± 0.04 to 1.30 ± 0.03). The inhibitory effect of anemarsaponin BII on CYP3A4 was also found with an IC50 value of 10.23 μM.Discussion and conclusionsThe interaction between anemarsaponin BII and nobiletin was induced by the inhibition of CYP3A4, which should draw special attention in their clinical co-administration.  相似文献   

3.
ContextBaicalein and simvastatin possess similar pharmacological activities and indications. The risk of their co-administration was unclear.ObjectiveThe interaction between baicalein and simvastatin was investigated to provide reference and guidance for the clinical application of the combination of these two drugs.Materials and methodsThe pharmacokinetics of simvastatin was investigated in Sprague–Dawley rats (n = 6). The rats were pre-treated with 20 mg/kg baicalein for 10 days and then administrated with 40 mg/kg simvastatin. The single administration of simvastatin was set as the control group. The rat liver microsomes were employed to assess the metabolic stability and the effect of baicalein on the activity of CYP3A4.ResultsBaicalein significantly increased the AUC(0–t) (2018.58 ± 483.11 vs. 653.05 ± 160.10 μg/L × h) and Cmax (173.69 ± 35.49 vs. 85.63 ± 13.28 μg/L) of simvastatin. The t1/2 of simvastatin was prolonged by baicalein in vivo and in vitro. The metabolic stability of simvastatin was also improved by the co-administration of baicalein. Baicalein showed an inhibitory effect on the activity of CYP3A4 with the IC50 value of 12.03 μM, which is responsible for the metabolism of simvastatin.Discussion and conclusionThe co-administration of baicalein and simvastatin may induce drug-drug interaction through inhibiting CYP3A4. The dose of baicalein and simvastatin should be adjusted when they are co-administrated.  相似文献   

4.
ContextGinkgo leaf tablet (GLT), a traditional Chinese herbal formula, is often combined with rosiglitazone (ROS) for type 2 diabetes mellitus treatment. However, the drug-drug interaction between GLT and ROS remains unknown.ObjectiveTo investigate the effects of GLT on the pharmacokinetics of ROS and its potential mechanism.Materials and methodsThe pharmacokinetics of 10 mg/kg ROS with 100/200 mg/kg GLT as single-dose and 10-day multiple-dose administration were investigated in Sprague-Dawley rats. In vitro, the effects of GLT on the activity of CYP2C8 and CYP2C9 were determined in recombinant human yeast microsomes and rat liver microsomes with probe substrates.ResultsThe t1/2 of ROS increased from 2.14 ± 0.38 (control) to 2.79 ± 0.37 (100 mg/kg) and 3.26 ± 1.08 h (200 mg/kg) in the single-dose GLT administration. The AUC0-t (139.69 ± 45.46 vs. 84.58 ± 39.87 vs. 66.60 ± 15.90 h·μg/mL) and t1/2 (2.75 ± 0.70 vs. 1.99 ± 0.44 vs. 1.68 ± 0.35 h) decreased significantly after multiple-dose GLT treatment. The IC50 values of quercetin, kaempferol, and isorhamnetin, GLT main constituents, were 9.32, 7.67, and 11.90 μmol/L for CYP2C8, and 27.31, 7.57, and 4.59 μmol/L for CYP2C9. The multiple-dose GLT increased rat CYP2C8 activity by 44% and 88%, respectively.Discussion and conclusionsThe metabolism of ROS is attenuated in the single dose of GLT by inhibiting CYP2C8 and CYP2C9 activity, and accelerated after the multiple-dose GLT treatment via inducing CYP2C8 activity in rats, indicating that the clinical dose of ROS should be adjusted when co-administrated with GLT.  相似文献   

5.
6.
ContextEllagic acid (EA) is a phenolic constituent in certain fruits and has largely been recognized for its role as an antioxidant compound.ObjectiveTo evaluate the effect of EA on beryllium sulphate-induced splenic toxicity in rats.Materials and methodsMale Sprague-Dawley rats were divided into four groups. The first group was used as control. Group 2 was exposed to BeSO4 (12 mg/kg, b.w.). Groups 3 and 4 were treated with EA (100 and 300 mg/kg, b.w.) daily for 6 weeks after exposing to BeSO4 (12 mg/kg, b.w.). Various biochemical and molecular biomarkers were assessed in blood and spleen.ResultsBeSO4-intoxicated rats showed significant higher WBC (6.74 ± 0.20 × 109/L vs. 11.02 ± 1.31 × 109/L, p < 0.05), Neu (1.14 ± 0.11 × 109/L vs. 2.45 ± 0.42 × 109/L, p < 0.05), Lym (3.80 ± 0.83 × 109/L vs. 9.64 ± 1.99 × 109/L, p < 0.05), and PLT (868.4 ± 43.2 × 109/L vs. 1408 ± 77.57 × 109/L, p < 0.05) than normal control animals. Moreover, an increase in MDA with depletion of GSH and SOD activity (all p < 0.05) occurred in the spleen of rats treated with BeSO4. Furthermore, BeSO4-treated rats displayed significantly higher levels of apoptotic markers (Bax, Caspase-3, PARP) (all p < 0.05). EA administration resulted in a significant reversal of hematological and apoptotic markers in beryllium sulphate-intoxicated rats.Discussion and conclusionsOur results suggest EA treatment exerts a significant protective effect on BeSO4-induced splenic toxicity in rats.  相似文献   

7.
ContextHuoXue QianYang QuTan Recipe (HQQR) is used to manage hypertension and cardiac remodelling, but the mechanism is elusive.ObjectiveTo determine the mechanism of HQQR on obesity hypertension (OBH)-related myocardial fibrosis.Materials and methodsOBH models were prepared using spontaneously hypertensive rats (SHRs) and divided (n = 6) into saline, low-dose (19.35 g/kg/d) HQQR, high-dose (38.7 g/kg/d) HQQR, and valsartan (30 mg/kg/d) groups for 10 weeks. Systolic blood pressure (SBP), and Lee’s index were measured. Heart tissues were examined by histology. HQQR’s effects were examined on cardiac fibroblasts (CFs) stimulated with angiotensin II and treated with HQQR, a caspase-1 inhibitor, siNLRP3, and oeNLRP3.ResultsHQQR(H) reduced SBP (201.67 ± 21.00 vs. 169.00 ± 10.00), Lee’s index (321.50 ± 3.87 vs. 314.58 ± 3.88), and left ventricle mass index (3.26 ± 0.27 vs. 2.71 ± 0.12) in vivo. HQQR reduced percentage of fibrosis area (18.99 ± 3.90 vs. 13.37 ± 3.39), IL-1β (10.07 ± 1.16 vs. 5.35 ± 1.29), and inhibited activation of NLRP3/caspase-1/IL-1β pathway. HQQR also inhibiting the proliferation (1.09 ± 0.02 vs. 0.84 ± 0.01), fibroblast to myofibroblast transition (14.74 ± 3.39 vs. 3.97 ± 0.53), and collagen deposition (Col I; 0.50 ± 0.02 vs. 0.27 ± 0.05 and Col III; 0.48 ± 0.21 vs. 0.26 ± 0.11) with different concentrations selected based on IC50 in vitro (all ps < 0.05). NLRP3 interference further confirmed HQQR inhibiting NLRP3 inflammasome signalling.ConclusionHQQR blunted cardiac fibrosis development in OBH and suppressed CFs proliferation by directly interfering with the NLRP3/caspase-1/IL-1β pathway.  相似文献   

8.
ContextToddalolactone, the main component of Toddalia asiatica (L.) Lam. (Rutaceae), has anticancer, antihypertension, anti-inflammatory, and antifungal activities.ObjectiveThis study investigated the metabolic characteristics of toddalolactone.Materials and methodsToddalolactone metabolic stabilities were investigated by incubating toddalolactone (20 μM) with liver microsomes from humans, rabbits, mice, rats, dogs, minipigs, and monkeys for 0, 30, 60, and 90 min. The CYP isoforms involved in toddalolactone metabolism were characterized based on chemical inhibition studies and screening assays. The effects of toddalolactone (0, 10, and 50 µM) on CYP1A1 and CYP3A5 protein expression were investigated by immunoblotting. After injecting toddalolactone (10 mg/kg), in vivo pharmacokinetic profiles using six Sprague–Dawley rats were investigated by taking 9-time points, including 0, 0.25, 0.5, 0.75, 1, 2, 4, 6 and 8 h.ResultsMonkeys showed the greatest metabolic capacity in CYP-mediated and UGT-mediated reaction systems with short half-lives (T1/2) of 245 and 66 min, respectively, while T1/2 of humans in two reaction systems were 673 and 83 min, respectively. CYP1A1 and CYP3A5 were the major CYP isoforms involved in toddalolactone biotransformation. Induction of CYP1A1 protein expression by 50 μM toddalolactone was approximately 50% greater than that of the control (0 μM). Peak plasma concentration (Cmax) for toddalolactone was 0.42 μg/mL, and Tmax occurred at 0.25 h post-dosing. The elimination t1/2 was 1.05 h, and the AUC0–t was 0.46 μg/mL/h.ConclusionsThese findings demonstrated the significant species differences of toddalolactone metabolic profiles, which will promote appropriate species selection in further toddalolactone studies.  相似文献   

9.
ContextPatients with non-alcoholic steatohepatitis (NASH) may have a simultaneous intake of pravastatin and evodiamine-containing herbs.ObjectiveThe effect of evodiamine on the pharmacokinetics of pravastatin and its potential mechanisms were investigated in NASH rats.Materials and methodsThe NASH model was conducted with feeding a methionine choline-deficient (MCD) diet for 8 weeks. Sprague-Dawley rats were randomised equally (n = 6) into NASH group, evodiamine group (10 mg/kg), pravastatin group (10 mg/kg), and evodiamine (10 mg/kg) + pravastatin (10 mg/kg) group. Normal control rats were fed a standard diet. Effects of evodiamine on the pharmacokinetics, distribution, and uptake of pravastatin were investigated.ResultsEvodiamine decreased Cmax (159.43 ± 26.63 vs. 125.61 ± 22.17 μg/L), AUC0-t (18.17 ± 2.52 vs. 14.91 ± 2.03 mg/min/L) and AUC0-∞ (22.99 ± 2.62 vs. 19.50 ± 2.31 mg/min/L) of orally administered pravastatin in NASH rats, but had no significant effect in normal rats. Evodiamine enhanced the uptake (from 154.85 ± 23.17 to 198.48 ± 26.31 pmol/mg protein) and distribution (from 736.61 ± 108.07 to 911.89 ± 124.64 ng/g tissue) of pravastatin in NASH rat liver. The expression of Oatp1a1, Oatp1a4, and Oatp1b2 was up-regulated 1.48-, 1.38-, and 1.51-fold by evodiamine. Evodiamine decreased the levels of IL-1β, IL-6, and TNF-α by 27.82%, 24.76%, and 29.72% in NASH rats, respectively.Discussion and conclusionsEvodiamine decreased the systemic exposure of pravastatin by up-regulating the expression of OATPs. These results provide a reference for further validation of this interaction in humans.  相似文献   

10.
ContextFerulic acid ethyl ester (FAEE) is abundant in Ligusticum chuanxiong Hort. (Apiaceae) and grains, and possesses diverse biological activities; but the effects of FAEE on osteoporosis has not been reported.ObjectiveThis study investigated whether FAEE can attenuate osteoclastogenesis and relieve ovariectomy-induced osteoporosis via attenuating mitogen-activated protein kinase (MAPK).Materials and methodsWe stimulated RAW 264.7 cells with receptor activator of NF-κB ligand (RANKL) followed by FAEE. The roles of FAEE in osteoclast production and osteogenic resorption of mature osteoclasts were evaluated by tartrate resistant acid phosphatase (TRAP) staining, expression of osteoclast-specific genes, proteins and MAPK. Ovariectomized (OVX) female Sprague-Dawley rats were administered FAEE (20 mg/kg/day) for 12 weeks to explore its potential in vivo, and then histology was undertaken in combination with cytokines analyses.ResultsFAEE suppressed RANKL-induced osteoclast formation (96 ± 0.88 vs. 15 ± 1.68) by suppressing the expression of osteoclast-specific genes, proteins and MAPK signalling pathway related proteins (p-ERK/ERK, p-JNK/JNK and p-P38/P38) in vitro. In addition, OVX rats exposed to FAEE maintained their normal calcium (Ca) (2.72 ± 0.02 vs. 2.63 ± 0.03, p < 0.05) balance, increased oestradiol levels (498.3 ± 9.43 vs. 398.7 ± 22.06, p < 0.05), simultaneously reduced levels of bone mineral density (BMD) (0.159 ± 0.0016 vs. 0.153 ± 0.0025, p < 0.05) and bone mineral content (BMC) (0.8 ± 0.0158 vs. 0.68 ± 0.0291, p < 0.01).Discussion and conclusionsThese findings suggested that FAEE could be used to ameliorate osteoporosis by the MAPK signalling pathway, suggesting that FAEE could be a potential therapeutic candidate for osteoporosis.  相似文献   

11.
ContextValerian extract capsule (VEC) is an effective Chinese patent medicine used for gastrointestinal (GI) diseases.ObjectiveTo investigate the detailed pharmacological activity for VEC clinical effects in GI diseases.Materials and methodsSprague-Dawley rats were divided into six groups: control, model, and drug-treated (VEC-L, VEC-M, VEC-H, and teprenone). Rats were orally administered VEC (124, 248, 496 mg/kg) and teprenone (21.43 mg/kg) for 3 consecutive days. After 1 h, the five groups (except the control group) were orally given ethanol (10 mL/kg) for 1 h or indomethacin (80 mg/kg) for 7 h. The spasmolytic activity of VEC (0.01–1 mg/mL) on ACh/BaCl2-induced New Zealand rabbit smooth muscle contraction was performed. The C57BL/6 mice carbon propelling test evaluated the effects of VEC (248–992 mg/kg) on intestinal motility in normal and neostigmine/adrenaline-induced mice.ResultsCompared with the model group, VEC treatment reduced the gastric lesion index and mucosal damage. Further experiments showed that the pathological ameliorative effect of VEC was accompanied by augmentation of the enzymatic antioxidant system and cytoprotective marker (COX-1, p < 0.01; PGI2 p < 0.05;), along with the alleviation of the levels of MPO (ethanol: 15.56 ± 0.82 vs. 12.15 ± 2.60, p < 0.01; indomethacin: 9.65 ± 3.06 vs. 6.36 ± 2.43, p < 0.05), MDA (ethanol: 1.66 ± 0.44 vs. 0.81 ± 0.58, p < 0.01; indomethacin: 1.71 ± 0.87 vs. 1.09 ± 0.43, p < 0.05), and inflammatory mediators. VEC decreased the high tone induced by ACh/BaCl2 and promoted intestinal transit in normal and neostigmine/adrenaline-induced mice.Discussion and conclusionsVEC showed a potential gastroprotective effect, suggesting that VEC is a promising phytomedicine for the treatment of GI diseases.  相似文献   

12.
ContextBryophyllum pinnatum (Lam.) Oken (Crassulaceae) is used traditionally to treat many ailments.ObjectivesThis study characterizes the constituents of B. pinnatum flavonoid-rich fraction (BPFRF) and investigates their antioxidant and anticholinesterase activity using in vitro and in silico approaches.Materials and methodsMethanol extract of B. pinnatum leaves was partitioned to yield the ethyl acetate fraction. BPFRF was isolated from the ethyl acetate fraction and purified. The constituent flavonoids were structurally characterized using UPLC-PDA-MS2. Antioxidant activity (DPPH), Fe2+-induced lipid peroxidation (LP) and anticholinesterase activity (Ellman’s method) of the BPFRF and standards (ascorbic acid and rivastigmine) across a concentration range of 3.125–100 μg/mL were evaluated in vitro for 4 months. Molecular docking was performed to give insight into the binding potentials of BPFRF constituents against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE).ResultsUPLC-PDA-MS2 analysis of BPFRF identified carlinoside, quercetin (most dominant), luteolin, isorhamnetin, luteolin-7-glucoside. Carlinoside was first reported in this plant. BPFRF significantly inhibited DPPH radical (IC50 = 7.382 ± 0.79 µg/mL) and LP (IC50 = 7.182 ± 0.60 µg/mL) better than quercetin and ascorbic acid. Also, BPFRF exhibited potent inhibition against AChE and BuChE with IC50 values of 22.283 ± 0.27 µg/mL and 33.437 ± 1.46 µg/mL, respectively compared to quercetin and rivastigmine. Docking studies revealed that luteolin-7-glucoside, carlinoside and quercetin interact effectively with crucial amino acid residues of AChE and BuChE through hydrogen bonds.Discussion and conclusionsBPFRF possesses an excellent natural source of cholinesterase inhibitor and antioxidant. The material could be further explored for the potential treatment of oxidative damage and cholinergic dysfunction in Alzheimer’s disease.  相似文献   

13.

Aim

This study evaluated the influence of CYP2C19 polymorphisms on the pharmacokinetics of nelfinavir and its metabolite M8 in patients with pancreatic cancer.

Methods

Nelfinavir was administered orally to patients for over 10 days. The plasma concentrations of nelfinavir and M8 were measured by HPLC. The genotypes of CYP2C19*1, CYP2C19*2 and CYP2C19*3 were determined by the polymerase chain reaction-restriction fragment length polymorphism method.

Results

Pharmacokinetic profiles of nelfinavir and M8 were characterized by wide interindividual variability. The mean Cmax of nelfinavir in CYP2C19*1/*1 patients was 3.89 ± 0.40 (n = 3) and 5.12 ± 0.41 (n = 30) µg ml–1, while that of CYP2C19*1/*2 patients was 3.60 (n = 1) and 6.14 ± 0.31 (n = 5) µg ml–1 at the doses of 625 and 1250 mg nelfinavir twice daily, respectively. For the M8 metabolite, the mean Cmax of CYP2C19*1/*1 patients was 1.06 ± 0.06 (n = 3) and 1.58 ± 0.27 (n = 30) µg ml–1, while those of CYP2C19*1/*2 patients were 1.01 (n = 1) and 1.23 ± 0.15 (n = 5) µg ml–1 at the doses of 625 and 1250 mg nelfinavir twice daily, respectively. The area under the plasma concentration–time curve (AUC(0,12 h)) values of nelfinavir for CYP2C19*1/*1 patients were 28.90 ± 1.27 and 38.90 ± 4.99 µg ml–1·h and for CYP2C19*1/*2 patients, AUC(0,12 h) was 28.20 (n = 1) and 40.22 ± 3.17 (n = 5) µg ml–1·h at the doses of 625 and 1250 mg nelfinavir twice daily, respectively. The Cmax of nelfinavir was significantly higher (P <0.05) in CYP2C19*1/*2 patients but there was no statistical difference in AUC(0,12 h).

Conclusion

CYP2C19*1/*2 genotype modestly affected the pharmacokinetic profiles of nelfinavir and M8 in patients with locally advanced pancreatic cancer.  相似文献   

14.
ContextRotundic acid (RA), a plant-derived pentacyclic triterpene acid, has been reported to possess extensive pharmacological activities. The poor bioavailability limits its further development and potential clinic application.ObjectiveTo clarify the potential mechanism for poor oral bioavailability.Materials and methodsThe single-dose pharmacokinetics of orally administered RA (10 mg/kg) in Sprague–Dawley rats without or with verapamil (25 or 50 mg/kg) were investigated. Additionally, MDCKII-MDR1 and Caco-2 cell monolayers, five recombinant human cytochrome P450 (rhCYP) enzymes (1A2, 2C8, 2C9, 2D6 and 3A4), and rat liver microsomes were also conducted to investigate its potential mechanism.ResultsVerapamil could significantly affect the plasma concentration of RA. Co-administered verapamil at 25 and 50 mg/kg, the AUC0–∞ increased from 432 ± 64.2 to 539 ± 53.6 and 836 ± 116 ng × h/mL, respectively, and the oral clearance decreased from 23.6 ± 3.50 to 18.7 ± 1.85 and 12.2 ± 1.85 L/h/kg, respectively. The MDCKII-MDR1 cell assay showed that RA might be a P-gp substrate. The rhCYPs experiments indicated that RA was mainly metabolized by CYP3A4. Additionally, verapamil could increase the absorption of RA by inhibiting the activity of P-gp, and slow down the intrinsic clearance of RA from 48.5 ± 3.18 to 12.0 ± 1.06 µL/min/mg protein.Discussion and conclusionsThese findings indicated that verapamil could significantly affect the pharmacokinetic profiles of RA in rats. It was demonstrated that P-gp and CYP3A were involved in the transport and metabolism of RA, which might contribute to the low oral bioavailability of RA.  相似文献   

15.
ContextCordyceps militaris and Isaria tenuipes (Cordycipitaceae) are high-value fungi that are used for health-promoting food supplements. Since laboratory cultivation has begun for these fungi, increased output has been achieved.ObjectiveThis study compared the chemical profiles, antioxidant, anti-tyrosinase, and skin extracellular matrix degradation inhibition between mycelium and fruiting body of C. militaris and I. tenuipes.Materials and methodsThe antioxidative potential of 10% v/v aqueous infused extract from each fungus was separately investigated using 2,2-azinobis(3-ethylbenzo-thiazoline-6-sulphonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant ability, and ferric thiocyanate methods. The inhibition against MMP-1, elastase, and hyaluronidase were determined to reveal their anti-wrinkle potential. Anti-tyrosinase activities were determined.ResultsC. militaris and I. tenuipes extracts were found to contain a wide range of bioactive compounds, including phenolics, flavonoids, and adenosine. A correlation was discovered between the chemical compositions and their biological activities. The extract from I. tenuipes fruiting body (IF) was highlighted as an extraordinary elastase inhibitor (IC50 = 0.006 ± 0.004 mg/mL), hyaluronidase inhibitor (IC50: 30.3 ± 3.2 mg/mL), and antioxidant via radical scavenging (ABTS IC50: 0.22 ± 0.02 mg/mL; DPPH IC50: 0.05 ± 0.02 mg/mL), thereby reducing ability (EC1: 95.3 ± 4.8 mM FeSO4/g extract) and lipid peroxidation prevention (IC50: 0.40 ± 0.11 mg/mL). IF had a three-times higher EC1 value than ascorbic acid and significantly higher elastase inhibition than epigallocatechin gallate.Discussion and conclusionsIF is proposed as a powerful natural extract with antioxidant and anti-wrinkle properties; therefore, it is suggested for further use in pharmaceutical, cosmeceutical, and nutraceutical industries.  相似文献   

16.
ContextDacomitinib and poziotinib, irreversible ErbB family blockers, are often used for treatment of non-small cell lung cancer (NSCLC) in the clinic.ObjectiveThis study investigates the effect of dacomitinib on the pharmacokinetics of poziotinib in rats.Materials and methodsTwelve Sprague–Dawley rats were randomly divided into two groups: the test group (20 mg/kg dacomitinib for 14 consecutive days) and the control group (equal amounts of vehicle). Each group was given an oral dose of 10 mg/kg poziotinib 30 min after administration of dacomitinib or vehicle at the end of the 14 day administration. The concentration of poziotinib in plasma was quantified by UPLC-MS/MS. Both in vitro effects of dacomitinib on poziotinib and the mechanism of the observed inhibition were studied in rat liver microsomes and human liver microsomes.ResultsWhen orally administered, dacomitinib increased the AUC, Tmax and decreased CL of poziotinib (p < 0.05). The IC50 values of M1 in RLM, HLM and CYP3A4 were 11.36, 30.49 and 19.57 µM, respectively. The IC50 values of M2 in RLM, HLM and CYP2D6 were 43.69, 0.34 and 0.11 µM, respectively, and dacomitinib inhibited poziotinib by a mixed way in CYP3A4 and CYP2D6. The results of the in vivo experiments were consistent with those of the in vitro experiments.ConclusionsThis research demonstrates that a drug–drug interaction between poziotinib and dacomitinib possibly exists when readministered with poziotinib; thus, clinicians should pay attention to the resulting changes in pharmacokinetic parameters and accordingly, adjust the dose of poziotinib in clinical settings.  相似文献   

17.
ContextSalidroside, a compound extracted from Rhodiola rosea L. (Crassulaceae), possesses many beneficial pathological effects.ObjectiveTo explore the effect of salidroside on ventilator-induced lung endothelial dysfunction in vivo and in vitro.Materials and methodsIn vivo, male ICR mice were divided into sham, ventilation, salidroside, and ventilation plus salidroside groups. The mice were ventilated for 4 h, salidroside (50 mg/kg) was administrated intraperitoneally before ventilation, dexamethasone (Dex) (5 mg/kg) was used as a positive control. In vitro, mouse lung vascular endothelial cells (MLVECs) were treated with salidroside, MMP-9 siRNA, and BAY11-7082 (10 μM), and then exposed to cyclic stretch for 4 h. Afterward, lung tissues and MLVECs were collected for further analysis.ResultsSalidroside pre-treatment significantly reversed the expression of vascular endothelial cadherin (VE-cadherin) and zonula occluden-1 (ZO-1) proteins in cyclic stretch-treated MLVECs (0.46 ± 0.09 vs. 0.80 ± 0.14, 0.49 ± 0.05 vs. 0.88 ± 0.08) and ventilated lung tissues (0.56 ± 0.06 vs. 0.83 ± 0.46, 0.49 ± 0.08 vs. 0.80 ± 0.12). The results further indicated that salidroside inhibited the expression of matrix metalloproteinase-9 (MMP-9), whereas knockdown of its expression restored the expression levels of VE-cadherin (0.37 ± 0.08 vs. 0.85 ± 0.74) and ZO-1 (0.48 ± 0.08 vs. 0.81 ± 0.11) in stretched MLVECs. Meanwhile, salidroside inhibited the NF-κB signalling pathway and alleviated lung injury.ConclusionsSalidroside protected against stretch-induced endothelial barrier function, improving lung injury after ventilation. Thus, salidroside may be a promising therapeutic agent for patients with MV-induced lung injury.  相似文献   

18.
ContextEsculin, an active coumarin compound, has been demonstrated to exert anti-inflammatory effects. However, its potential role in non-alcoholic steatohepatitis (NASH) remains unclear.ObjectiveThis study explored the hepatoprotective effect and the molecular mechanism of esculin in methionine choline-deficient (MCD) diet-induced NASH.Materials and methodsFifty C57BL/6J mice were divided into five groups: control, model, low dosage esculin (oral, 20 mg/kg), high dosage esculin (oral, 40 mg/kg), and silybin (oral, 105 mg/kg). All animals were fed a MCD diet, except those in the control group (control diet), for 6 weeks.ResultsEsculin (20 and 40 mg/kg) inhibited MCD diet-induced hepatic lipid content (triglyceride: 16.95 ± 0.67 and 14.85 ± 0.78 vs. 21.21 ± 1.13 mg/g; total cholesterol: 5.10 ± 0.34 and 4.08 ± 0.47 vs. 7.31 ± 0.58 mg/g), fibrosis, and inflammation (ALT: 379.61 ± 40.30 and 312.72 ± 21.45 vs. 559.51 ± 37.01 U/L; AST: 428.22 ± 34.29 and 328.23 ± 23.21 vs. 579.36 ± 31.93 U/L). In vitro, esculin reduced tumour necrosis factor-α, interleukin-6, fibronectin, and collagen 4A1 levels, but had no effect on lipid levels in HepG2 cells induced by free fatty acid. Esculin increased Sirt1 expression levels and decreased NF-κB acetylation levels in vivo and in vitro. Interfering with Sirt1 expression attenuated the beneficial effect of esculin on inflammatory and fibrotic factor production in HepG2 cells.ConclusionsThese findings demonstrate that esculin ameliorates MCD diet-induced NASH by regulating the Sirt1/ac-NF-κB signalling pathway. Esculin could thus be employed as a therapy for NASH.  相似文献   

19.
ContextDanggui Niantong Granules (DGNTG) are a valid and reliable traditional herbal formula, commonly used in clinical practice to treat rheumatoid arthritis (RA). However, the mechanism of its effect on RA remains unclear.ObjectiveAn investigation of the therapeutic effects of DGNTG on RA.Materials and methodsTwenty-four male Sprague-Dawley (SD) rats were divided into four groups: control, model, DGNTG (2.16 g/kg, gavage), methotrexate (MTX) (1.35 mg/kg, gavage) for 28 days. The morphology of synovial and ankle tissues was observed by haematoxylin-eosin staining. The responses of mitochondrial apoptosis were assessed by qPCR, Western blotting and immunohistochemical staining. Rat faeces were analysed by 16S rRNA sequencing.ResultsOur results showed that DGNTG treatment reduced AI scores (7.83 ± 0.37 vs. 4.67 ± 0.47, p < 0.01) and paw volumes (7.63 ± 0.17 vs. 6.13 ± 0.11, p < 0.01) compared with the model group. DGNTG also increased the expression of Bax (0.34 ± 0.03 vs. 0.73 ± 0.03, p < 0.01), cytochrome c (CYTC) (0.24 ± 0.02 vs. 0.64 ± 0.01, p < 0.01) and cleaved caspase-9 (0.24 ± 0.04 vs. 0.83 ± 0.08, p < 0.01), and decreased bcl-2 (1.70 ± 0.11 vs. 0.60 ± 0.09, p < 0.01) expression. DGNTG treatment regulated the structure of gut microbiota.Discussion and conclusionsDGNTG ameliorated RA by promoting mitochondrial apoptosis, which may be associated with regulating gut microbiota structure. DGNTG can be used as a supplement and alternative drug for the treatment of RA; its ability to prevent RA deserves further study.  相似文献   

20.
ContextArtocarpus lakoocha Roxb. (Moraceae) is reported to possess antioxidant, anti-inflammatory, and anti-skin ageing agents.ObjectiveThis study evaluates the pharmacological effects of A. lakoocha leaves methanol extract on enzymes involved in the cholesterol synthesis pathway in high-fat diet-induced hyperlipidemic rats.Materials and methodsTwenty-four male Wistar rats, weighing approximately 180–220 g, were divided into four groups: control, diseased (hyperlipidemic), A. lakoocha leaves extract treated, and simvastatin treated. The rats were fed with high-fat diet for 2 months to induce hyperlipidaemia, afterward, experimental groups received A. lakoocha leaves methanol extract (250 mg/kg) and simvastatin (10 mg/kg) orally until the 89th day of the experiment, while the diseased group continued to receive high-fat diet along with normal saline.ResultsIt was found that A. lakoocha extract significantly lowered the serum total cholesterol, triglycerides, and low-density lipoprotein (LDL) levels, while effectively increasing serum high-density lipoprotein (HDL) levels as compared to the diseased group (p ≤ 0.05). The mRNA expression levels of squalene synthase and HMG-CoA reductase were found to be effectively down-regulated after the treatment with A. lakoocha leaves extract (17.45 ± 2.48 vs. 31.91 ± 5.292 and 5.85 ± 3.164 vs. 37.37 ± 6.492) and simvastatin (7.148 ± 0.76 vs. 31.91 ± 5.292, and 3.098 ± 2.09 vs. 37.37 ± 6.492) as compared to the diseased group.Discussion and ConclusionsThe results suggested that A. lakoocha leaves extract have observable beneficial effects on inhibition of enzymes involved in cholesterol synthesis pathway and improve lipid profile analogous to simvastatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号