首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activation of the complement system is one way in which the human body reacts to foreign materials that come in contact with blood. Poly(ethylene oxide) (PEO) has been used quite frequently to modify biomaterial surfaces to prevent protein adsorption and cell adhesion. Despite extensive use of PEO, however, PEO-induced complement activation has not been examined before. We examined the complement activation by PEO chains grafted to glass surfaces. PEO was grafted to trichlorovinylsilane-treated glass (TCVS-glass) by gamma-irradiation using PEO homopolymer, Pluronic F108 (PF108), and PEO-polybutadiene-PEO triblock copolymer (COP5000). Complement activation was assessed by measuring the plasma C3a level. Of the three polymers grafted (PEO, PF108, and COP5000), only PF108 showed significant increases in complement activation over controls. Complement C3a production on PF108-grafted glass was linearly dependent on surface concentration of grafted PF108. The C3a concentration increased from 46 ng/mL to 316 ng/mL as the surface PF108 concentration increased from 0-0.25 microg/cm(2). Kinetics of C3a generation by PF108-grafted surfaces show that 60% of the steady state C3a concentration was generated during the first hour of plasma exposure. When the same PF108-grafted glass surface was repeatedly exposed to fresh plasma, the amount of C3a generated decreased by 70% after the first exposure. This supports the "single-hit" mechanism in complement activation. PEO homopolymer did not activate complement in bulk solution, and, thus, it appears that C3a complement activation by PF108-grafted surfaces is due to the presence of poly(propylene oxide) units. Grafting of PEO using PEO-containing block copolymers requires examination of complement activating properties of the non-PEO segment.  相似文献   

2.
INTRODUCTION Biomaterials play an importantrole in human disease- treatmentand healing〔1,2〕.Due to the good mechanical property,PET is used to the coating of artificial heartvalve,the film of mending hearts and artificial vessel etc〔3〕.But the imperfection isthe low capability of surface hydrophile leading to the high static and low water ad-sorption〔4〕.In the application,traditional artificial cardiovascular materials( e.g.PET) have blood coagulation,alexin- activation and other…  相似文献   

3.
Poly(ethylene oxide) (PEO) has been frequently used to modify biomaterial surfaces for improved biocompatibility. We have used PEO-polybutadiene-PEO triblock copolymer to graft PEO to biomaterials by gamma-irradiation for a total radiation dose of 1 Mrad. The molecular weight of PEO in the block copolymer was 5000. In vitro study showed that fibrinogen adsorption to Silastic, polyethylene, and glass was reduced by 70 to approximately 95% by PEO grafting. On the other hand, the reduction of fibrinogen adsorption was only 30% on expanded polytetrafluoroethylene (e-PTFE). In vitro platelet adhesion study showed that almost no platelets could adhere to PEO-coated Silastic, polyethylene, and glass, while numerous platelet aggregates were found on the ePTFE. The platelet adhesion in vitro corresponded to the fibrinogen adsorption. When the PEO-grafted surfaces were tested ex vivo using a series shunt in a canine model, the effect of the grafted PEO was not noticeable. Platelet deposition on ePTFE was reduced by PEO grafting from 8170 +/- 1030 to 5100 +/- 460 platelets 10(-3) microm2, but numerous thrombi were still present on the PEO-grafted surface. The numbers of platelets cumulated on Silastic, polyethylene, and glass were 100 +/- 80, 169 +/- 35, and 24 +/- 22 platelets 10(-3) microm2, respectively. This is about 35% reduction in platelet deposition by PEO grafting. While the numbers of deposited platelets were small, the decreases were not as large as those expected from the in vitro study. This may be due to a number of reasons which have to be clarified in future studies, but it appears that in vitro platelet adhesion and fibrinogen adsorption studies may not be a valuable predictor for the in vivo or ex vivo behavior of the PEO-grafted surfaces.  相似文献   

4.
Polystyrene (PS) latex particles of different sizes were adsorption coated with the polymeric surfactant Pluronic F108 (PEO129-PPO56-PEO129). The commercial surfactant was found to have a bimodal molecular weight distribution. However, the maximum surface concentrations resulting from adsorption of either the purified high molecular weight component or the composite were identical. An increase in the copolymer surface concentration on 252-nm particles was found to decrease their fibrinogen uptake exponentially. At maximum copolymer surface concentration, the fibrinogen uptake was two orders of magnitude lower than that of bare particles (down from 3.3 mg/m2 to 0.03 mg/m2). This surface protection was equally effective whether the adsorption involved the bimodal polymer surfactant or the purified high molecular weight fraction. The PEO tail mobility was investigated with electron paramagnetic resonance (EPR), and found to increase with an increase in polymer surface concentration. The comparatively slow motion of the PEO chains at low surface concentration indicated that not only the PPO block, but also the PEO blocks interacted hydrophobically with the PS surface. When the copolymer surface concentration was increased, the PEO tails were gradually being released, acquiring higher mobility as the surface became covered by the more strongly binding PPO blocks. Results obtained with F108 coated particles of different sizes showed that particle size had a significant effect on the fibrinogen uptake, with larger particles showing larger fibrinogen uptakes.  相似文献   

5.
Poly(ethylene oxide) (PEO)-grafted polyurethane (PU)/polystyrene (PS) interpenetrating polymer networks (IPNs) were synthesized. The effects of the mobile pendant PEO chains with their microphase separated structure on blood-compatibility were investigated. The morphology of both the fracture surface as well as the top surface indicate that the size of the dispersed domains of the PS-rich phase decreased as the grafting with the PEO was increased. The swelling ratio also decreased as the grafting with the PEO was increased. However, the dynamic contact angle and the interfacial energy between IPN surface and water decreased, due to the structural reorganization of the pendant PEO chains. PU/PS IPNs have an excellent mechanical property as compared with PU homopolymers. The adsorption of bovine plasma fibrinogen (BPF) onto the PU/PS IPNs and PU homopolymers was effectively suppressed by the PEO-grafting. In the platelet adhesion test, the amount of platelets adsorbed, activated, and/or coagulated upon the PEO-grafted PU/PS IPNs were reduced when compared to the ungrafted PU homopolymers.  相似文献   

6.
Poly(ethylene oxide) (PEO)-grafted polyurethane (PU)/polystyrene (PS) interpenetrating polymer networks (IPNs) were synthesized. The effects of the mobile pendant PEO chains with their microphase separated structure on blood-compatibility were investigated. The morphology of both the fracture surface as well as the top surface indicate that the size of the dispersed domains of the PS-rich phase decreased as the grafting with the PEO was increased. The swelling ratio also decreased as the grafting with the PEO was increased. However, the dynamic contact angle and the interfacial energy between IPN surface and water decreased, due to the structural reorganization of the pendant PEO chains. PU/PS IPNs have an excellent mechanical property as compared with PU homopolymers. The adsorption of bovine plasma fibrinogen (BPF) onto the PU/PS IPNs and PU homopolymers was effectively suppressed by the PEO-grafting. In the platelet adhesion test, the amount of platelets adsorbed, activated, and/or coagulated upon the PEO-grafted PU/PS IPNs were reduced when compared to the ungrafted PU homopolymers.  相似文献   

7.
The potential for base poly(ethylene glycol) graft poly(acrylic acid) PEG-g-PA copolymers and surface-modified PEG-g-PA materials to inhibit random protein fouling and bacterial adhesion are investigated. PEG-g-PA co-polymers were synthesized that inhibited non-specific protein and cellular adhesion. PEG-g-PA co-polymers were then covalently modified with either cell adhesion peptides (YRGDS, YEILDV) or fragments of antibodies to monocyte/macrophage integrin receptors (Anti-VLA4, Anti-beta1, Anti-beta2, and Anti-CD64) known to enhance macrophage adhesion and, perhaps, modulate their activation. Materials produced in this work were characterized using: hydrophobicity by contact angle; angle-resolved X-ray Photoelectron Spectroscopy to confirm the presence of PEG in the bulk material and the surface; degree of hydration; differential scanning calorimetry; and thermal gravimetric analysis. To evaluate the non-fouling efficacy of the various modified surfaces, three proteins, human serum albumin, human fibronectin (Fraction I) and human immunoglobulin were 125I labeled. Samples of base PEG-g-PA and PEG-g-PA, modified with various peptides, were exposed to solutions containing either 2 or 200 microg/ml of one of the labeled proteins at 37 degrees C for 24 h. PEG-g-PA substrata modified with directly bound peptides exhibited protein adsorption that varied depending upon the surface bounded peptide. PEG-g-PA modified with peptides linked by linear PEG tethers reduced protein adsorption at 24 h by approximately 45% in comparison to PEG-g-PA. Peptides linked by way of StarPEO and StarlikePEO tethers further decreased protein adsorption in comparison to PEG-g-PA. The ability of peptide:PEOtethers to inhibit protein adsorption appeared to be a function of type and surface coverage of the PEO tether and not influenced by the amount or molecular structure the tethered peptide. Peptides directly coupled to the PEG-g-PA increased the amount of protein fouling relative to controls and there appeared to be some dependency of the amount of protein adsorption on which peptide was tethered. Two 14C-labeled pathogens, Staphylococcus epidermidis and Pseudomonas aeruginosa, were used to quantify the degree of bacterial adhesion using two types of laminar flow cell chambers; one that provided invasive sampling of the target substrata and one that provided non-invasive microscopic surveillance of adhering bacterial cells. Attachment of both species to PEG-g-PA and peptide-modified PEG-g-PA was reduced compared to the basic poly(acrylic acid). Presence of peptides on the surface, whether directly bound or bound by the PEO tether did not influence adhesion of P. aeruginosa relative to controls. S. epidermidis adhesion rates increased slightly for those materials where peptides were directly bound to the surface but were reduced relative to base PEG-g-PA when peptides were bound by PEO tethers. All PEG-g-PA surfaces modified with fragments of monoclonal antibodies dramatically enhanced bacterial initial adhesion rates and maximum extent of attachment.  相似文献   

8.
Polystyrene (PS) latex particles of different sizes were adsorption coated with the polymeric surfactant Pluronic F108 (PEO129-PPO56-PEO129). The commercial surfactant was found to have a bimodal molecular weight distribution. However, the maximum surface concentrations resulting from adsorption of either the purified high molecular weight component or the composite were identical. An increase in the copolymer surface concentration on 252-nm particles was found to decrease their fibrinogen uptake exponentially. At maximum copolymer surface concentration, the fibrinogen uptake was two orders of magnitude lower than that of bare particles (down from 3.3 mg/m2 to 0.03 mg/m2). This surface protection was equally effective whether the adsorption involved the bimodal polymer surfactant or the purified high molecular weight fraction. The PEO tail mobility was investigated with electron paramagnetic resonance (EPR), and found to increase with an increase in polymer surface concentration. The comparatively slow motion of the PEO chains at low surface concentration indicated that not only the PPO block, but also the PEO blocks interacted hydrophobically with the PS surface. When the copolymer surface concentration was increased, the PEO tails were gradually being released, acquiring higher mobility as the surface became covered by the more strongly binding PPO blocks. Results obtained with F108 coated particles of different sizes showed that particle size had a significant effect on the fibrinogen uptake, with larger particles showing larger fibrinogen uptakes.  相似文献   

9.
Hybrid materials combining polyethylene terephthalate and different types of cells (endothelial and osteoblastic cells) have been developed thanks to the covalent grafting of different densities of RGD containing peptides onto the polymer surface. Biomimetic modifications were performed by means of a three-step reaction procedure: creation of COOH functions, coupling agent grafting and the immobilization of the RGDC peptides. High resolution μ-imager was used to evaluate RGD densities (varying between 0.6 and 2.4 pmol/mm2) and has exhibited the stability of the surface grafted peptides when treated in harsh conditions. The efficiency of this route for biomimetic modification of a PET surface was demonstrated by measuring the adhesion of MC3T3 and HSVEC cells and by focal adhesion observation. Results obtained prove that a minimal RGDC density of 1 pmol/mm2 is required to improve MC3T3 and HSVEC cells responses. Indeed, cells seeded onto a RGDC-modified PET with a density higher than 1 pmol/mm2 were able to establish focal adhesion as visualized by fluorescence microscope compared to cells immobilized onto unmodified PET and RGDC-modified PET with densities lower than 1 pmol/mm2. Moreover, the number of focal contacts was enhanced by the increase of RGDC peptide densities grafted onto the material surface. With this study we proved that the density of peptides immobilized on the surface is a very important parameter influencing osteoblast or endothelial cell adhesion and focal contact formation.  相似文献   

10.
Mimicking endogenous bone-binding proteins, RGD peptides have been synthesized with polyacidic amino acid domains in order to ionically tether the peptides to bone-like synthetic biomaterials, including hydroxyapatite (HA). However, a direct comparison of unmodified RGD with polyacidic-conjugated RGD has not been performed, and thus a benefit for the acidic domain has not been established. We evaluated the peptide/HA bond of RGD peptides with and without an attached polyglutamate sequence (E(7)), as well as examined mesenchymal stem cell (MSC) adhesion and morphology as they were affected by the conjugated peptide. We found that significantly more E(7)RGD was bound to HA than RGD at all coating concentrations tested, and moreover, more E(7)RGD was retained on the HA surface even after extended washing in serum-free media. Consistent with in vitro results, higher levels of E(7)RGD than RGD remained on HA that had been implanted in vivo for 24 h, indicating that the polyacidic domain improved peptide-binding efficiency. At several peptide concentrations, E(7)RGD increased cell adhesion compared to RGD surfaces, establishing a biological benefit for the E(7) modification. In addition, HA pre-coated sequentially with low-density E(7)RGD (1-10 microg/ml) and serum (FBS) stimulated cell adhesion and spreading, compared to either coating alone, suggesting that an ionic linkage allows for the potential adsorption of serum proteins to unoccupied sites, which may be important for bone formation in vivo. Collectively, these results suggest that tethering peptides to HA via a polyglutamate domain is an effective method for improving the peptide/HA bond, as well as for enhancing MSC adhesion.  相似文献   

11.
The initial step of thrombus formation on blood-contacting biomaterials is known to be adsorption of blood proteins followed by platelet adhesion. Poly(ethylene oxide) (PEO) has been frequently used to modify biomaterial surfaces to minimize or prevent protein adsorption and cell adhesion. PEO was grafted onto a number of biomaterials in our laboratory. Nitinol stents and glass tubes were grafted with PEO by priming the metal surface with trichlorovinylsilane (TCVS) followed by adsorption of Pluronic and γ-irradiation. Nitinol stents were also coated with Carbothane® for PEO grafting. Chemically inert polymeric biomaterials, such as Carbothane, polyethylene, silicone rubber, and expanded polytetrafluoroethylene (e-PTFE), were first adsorbed with PEO-polybutadiene-PEO (PEO-PB-PEO) triblock copolymers and then exposed to γ-irradiation for covalent grafting. For PEO grafting to Dacron® (polyethylene terephthalate), the surface was sequentially treated with PEO-PB-PEO and Pluronics® followed by γ-irradiation. In vitro studies showed substantial reduction in fibrinogen adsorption and platelet adhesion to the PEO-grafted surfaces compared with control surfaces. Fibrinogen adsorption was reduced by 70-95% by PEO grafting on all surfaces, except for e-PTFE. The platelet adhesion corresponded to the fibrinogen adsorption. When the PEO-grafted surfaces were tested ex vivo/in vivo, however, the expected beneficial effect of PEO grafting was inconsistent. The beneficial effect of the PEO grafting was most pronounced on the PEO-grafted nitinol stents. Thrombus formation was reduced by more than 85% by PEO grafting on metallic stents. Only moderate improvement (i.e. 35% decrease in platelet deposition) was observed with PEO-grafted tubes of polyethylene, silicone rubber, and glass. For PEO-grafted heart valves made of Dacron, however, no effect of PEO grafting was observed at all. It appears that the extent of thrombus formation on PEO-grafted biomaterials was directly related to the extent of tissue damage during implantation surgery. Platelets can be activated and form aggregates in the bulk blood, and the formed platelet aggregates may be able to deposit on the PEO monolayer overcoming its repulsive property. Our studies indicate that the testing of in vitro platelet adhesion should include adhesion of large platelet aggregates, in addition to adhesion of individual platelets. Furthermore, the surface modification methods should be improved over the current monolayer grafting concept so that the repulsive force by the grafted PEO layers is large enough to prevent adhesion of platelet aggregates formed in the bulk blood before arriving at the biomaterial surface.  相似文献   

12.
In this paper we report a method for biomaterial surface modification that utilizes the self-assembly of block copolymers of poly(styrene-block-ethylene oxide) (PS–PEO) to generate micro-phase separated surfaces with varying density PEO domains. These PS–PEO self-assembled surfaces showed a significant reduction in protein adsorption compared to control polystyrene surfaces. The adhesion of NIH-3T3 fibroblast cells was shown to be significantly affected by the surface coverage of PEO nano-domains formed by copolymer self-assembly. These nano-domains, when presented at high number density (almost 1000 domains per square micron), were shown to completely prevent cellular attachment, even though small amounts of protein were able to bind to the surface.  相似文献   

13.
Kim JH  Kim SC 《Biomaterials》2002,23(9):2015-2025
Polyurethane (PU) homopolymers and PU/polystyrene (PS) interpenetrating polymer networks (IPNs) were successfully synthesized changing the length of the pendant poly(ethylene oxide) (PEO) chains and the grafting density of PEO chains. All the PU/PS IPNs had the microphase-separated structures in which the PS-rich phase domains were dispersed in the matrix of the PU-rich phase. The domain size decreased a little, as the degree of grafting with PEO chains was increased. The water swelling ratio increased, and the interfacial energy decreased, as the length of the pendant PEO chains, and the grafting density of PEO chains of the PEO-grafted PU/PS IPNs were increased, since the mobile hydrophilic pendant PEO chains effectively induced and absorbed the water, when they were contacted with water. The hydrophilic and highly concentrated pendant PEO chains could easily prohibit the adhesion of the fibrinogens and the platelets on the surface, and the blood compatibility of IPNs was enhanced by increasing of grafting with PEO chains. The adsorption of the fibrinogens and the platelets was suppressed, as the length of pendant PEO chains, and the grafting density were increased.  相似文献   

14.
The initial step of thrombus formation on blood-contacting biomaterials is known to be adsorption of blood proteins followed by platelet adhesion. Poly(ethylene oxide) (PEO) has been frequently used to modify biomaterial surfaces to minimize or prevent protein adsorption and cell adhesion. PEO was grafted onto a number of biomaterials in our laboratory. Nitinol stents and glass tubes were grafted with PEO by priming the metal surface with trichlorovinylsilane (TCVS) followed by adsorption of Pluronic and y-irradiation. Nitinol stents were also coated with Carbothane for PEO grafting. Chemically inert polymeric biomaterials, such as Carbothane, polyethylene, silicone rubber, and expanded polytetrafluoroethylene (e-PTFE), were first adsorbed with PEO-polybutadiene-PEO (PEO-PB-PEO) triblock copolymers and then exposed to gamma-irradiation for covalent grafting. For PEO grafting to Dacron (polyethylene terephthalate), the surface was sequentially treated with PEO-PB-PEO and Pluronics followed by gamma-irradiation. In vitro studies showed substantial reduction in fibrinogen adsorption and platelet adhesion to the PEO-grafted surfaces compared with control surfaces. Fibrinogen adsorption was reduced by 70-95% by PEO grafting on all surfaces, except for e-PTFE. The platelet adhesion corresponded to the fibrinogen adsorption. When the PEO-grafted surfaces were tested ex vivo/in vivo, however, the expected beneficial effect of PEO grafting was inconsistent. The beneficial effect of the PEO grafting was most pronounced on the PEO-grafted nitinol stents. Thrombus formation was reduced by more than 85% by PEO grafting on metallic stents. Only moderate improvement (i.e. 35% decrease in platelet deposition) was observed with PEO-grafted tubes of polyethylene, silicone rubber, and glass. For PEO-grafted heart valves made of Dacron, however, no effect of PEO grafting was observed at all. It appears that the extent of thrombus formation on PEO-grafted biomaterials was directly related to the extent of tissue damage during implantation surgery. Platelets can be activated and form aggregates in the bulk blood, and the formed platelet aggregates may be able to deposit on the PEO monolayer overcoming its repulsive property. Our studies indicate that the testing of in vitro platelet adhesion should include adhesion of large platelet aggregates, in addition to adhesion of individual platelets. Furthermore, the surface modification methods should be improved over the current monolayer grafting concept so that the repulsive force by the grafted PEO layers is large enough to prevent adhesion of platelet aggregates formed in the bulk blood before arriving at the biomaterial surface.  相似文献   

15.
Soft tissue adhesion on titanium represents a challenge for implantable materials. In order to improve adhesion at the cell/material interface we used a new approach based on the molecular recognition of titanium by specific peptides. Silk fibroin protein was chemically grafted with titanium binding peptide (TiBP) to increase adsorption of these chimeric proteins to the metal surface. A quartz crystal microbalance was used to quantify the specific adsorption of TiBP-functionalized silk and an increase in protein deposition by more than 35% was demonstrated due to the presence of the binding peptide. A silk protein grafted with TiBP and fibronectin-derived arginine–glycine–aspartic acid (RGD) peptide was then prepared. The adherence of fibroblasts on the titanium surface modified with the multifunctional silk coating demonstrated an increase in the number of adhering cells by 60%. The improved adhesion was demonstrated by scanning electron microscopy and immunocytochemical staining of focal contact points. Chick embryo organotypic culture also revealed strong adhesion of endothelial cells expanding on the multifunctional silk peptide coating. These results demonstrated that silk functionalized with TiBP and RGD represents a promising approach to modify cell–biomaterial interfaces, opening new perspectives for implantable medical devices, especially when reendothelialization is required.  相似文献   

16.
Epithelialization of a corneal implant is a desirable property. In this study we compared surface modification of poly (2-hydroxyethyl methacrylate) (pHEMA) with the cell adhesion peptides RGDS and YIGSR. Various parameters in the tresyl chloride activation and modification reactions were considered in order to maximize surface coverage with the peptide including tresyl chloride reaction solvent. tresyl chloride reaction time, tresyl chloride concentration, peptide concentration, and peptide reaction pH. Surface chemistry and corneal epithelial cell adhesion to the modified surfaces were examined. X-ray photoelectron spectroscopy data suggested that while peptide modification had occurred, surface coverage with the peptide was incomplete. Acetone was found to result in a higher fraction of nitrogen and surface bound carboxyl groups compared to dioxane and ether. Furthermore, corneal epithelial cell adhesion to the surfaces for which acetone was used for the activation reaction was significantly greater. Statistical analysis of the various samples suggests that lower peptide concentrations and higher tresyl chloride reaction times result in better cell adhesion. Furthermore, modification with YIGSR resulted in higher surface concentrations and better cell adhesion than modification with RGDS. Little or no cell adhesion was noted on the unmodified pHEMA controls. Protein adsorption results suggest that the differences in cell adhesion cannot be attributed to differences in serum protein adsorption from the culture medium. We conclude that YIGSR modified surfaces have significant potential for further development in corneal applications.  相似文献   

17.
RGD肽表面修饰聚苯乙烯及其细胞相容性研究   总被引:1,自引:0,他引:1  
目的以聚苯乙烯二维平面为模板研究了蛋白表面修饰技术,构建具有生物活性的生物材料表面。方法采用物理包被法依靠疏水作用在PS表面架构明胶、胶原和RGD(精氨酸-甘氨酸-天冬氨酸)多肽的生物活性层。通过光电子能谱(XPS)分析修饰表面的元素含量变化,N元素含量显著提高,说明蛋白分子在表面存在。Bradford方法定量分析明胶、胶原和RGD多肽的表面吸附量。结果XPS证实了表面N原子的引入,存在酰胺键,确定蛋白分子存在于PS表面。结论动态接触角下降显著,证明修饰表面的亲水性得到提高。并在明胶、胶原和RGD多肽修饰表面接种人表皮细胞,对比考察其对细胞行为的影响,提高了细胞的黏附和增殖能力。  相似文献   

18.
Sterically stabilized polyethylene oxide-polystyrene copolymer microspheres, (PS-PEO) and charge stabilized polystyrene (PS) microspheres of similar size (1 micron) were prepared in order to compare their uptake by cultured rat Kupffer cells isolated by centrifugal elutriation. The uptake of the sterically stabilized particles was found to be much less than that for the charge stabilized control. The uptake of microspheres stabilized with covalently grafted PEO was lower or equivalent to that of control microspheres stabilized by the adsorption of the non-ionic PEO-polypropylene oxide (PPO-PEO) surfactant Poloxamer 238 or Methoxy-PEO. Phagocytic uptake by Kupffer cells at low and body temperature (8 degrees C and 37 degrees C) demonstrated that PS-PEO particles showed both low adherence and low metabolic uptake. The adsorption of PEO, as Poloxamer 238, to particles with covalently attached or grafted PEO resulted in a synergistic reduction in uptake that was greater than the individual effects of grafting and adsorption alone (P less than or equal to 0.001). It is suggested that this combination produces a more effective steric barrier on the particle surface with the Poloxamer adsorbing to the surface between the grafted PEO chains. The relevance to drug targeting/carrier systems is discussed.  相似文献   

19.
Tong YW  Shoichet MS 《Biomaterials》2001,22(10):1029-1034
Embryonic hippocampal neurons cultured on surface modified fluoropolymers showed enhanced interaction and neurite extension. Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) film surfaces were aminated by reaction with a UV-activated mercury ammonia system yielding FEP-[N/O]. Laminin-derived cell-adhesive peptides (YIGSR and IKVAV) were coupled to FEP surface functional groups using tresyl chloride activation. Embryonic (E18) hippocampal neurons were cultured in serum-free medium for up to 1 week on FEP film surfaces that were modified with either one or both of GYIGSR and SIKVAV or GGGGGGYIGSR and compared to control surfaces of FEP-[N/O] and poly(L-lysine)/laminin-coated tissue culture polystyrene. Neuron-surface interactions were analyzed over time in terms of neurite outgrowth (number and length of neurites), cell adhesion and viability. Neurite outgrowth and adhesion were significantly better on peptide-modified surfaces than on either FEP or FEP-[N/O]. Cells on the mixed peptide (GYIGSR/SIKVAV) and the spacer group peptide (GGGGGGYIGSR) surfaces demonstrated similar behavior to those on the positive PLL/laminin control. The specificity of the cell-peptide interaction was demonstrated with a competitive assay where dissociated neurons were incubated in media containing peptides prior to plating. Cell adhesion and neurite outgrowth diminished on all surfaces when hippocampal neurons were pre-incubated with dissolved peptides prior to plating.  相似文献   

20.
Protein adsorption to poly(ethylene oxide) surfaces.   总被引:5,自引:0,他引:5  
Surfaces containing poly(ethylene oxide) (PEO) are interesting biomaterials because they exhibit low degrees of protein adsorption and cell adhesion. In this study different molecular weight PEO molecules were covalently attached to poly(ethylene terephthalate) (PET) films using cyanuric chloride chemistry. Prior to the PEO immobilization, amino groups were introduced onto the PET films by exposing them to an allylamine plasma glow discharge. The amino groups on the PET film were next activated with cyanuric chloride and then reacted with bis-amino PEO. The samples were characterized by scanning electron microscopy, water contact angle measurements, gravimetric analysis, and electron spectroscopy for chemical analysis (ESCA). The adsorption of 125I-labeled baboon fibrinogen and bovine serum albumin was studied from buffer solutions. Gravimetric analysis indicated that the films grafted with the low-molecular-weight PEO contained many more PEO molecules than the surfaces grafted with higher-molecular-weight PEO. The high-molecular-weight PEO surfaces, however, exhibited greater wettability (lower water contact angles) and less protein adsorption than the low-molecular-weight PEO surfaces. Adsorption of albumin and fibrinogen to the PEO surfaces decreased with increasing PEO molecular weight up to 3500. A further increase in molecular weight resulted in only slight decreases in protein adsorption. Protein adsorption studies as a function of buffer ionic strength suggest that there may be an ionic interaction between the protein and the allylamine surface. The trends in protein adsorption together with the water contact angle results and the gravimetric analysis suggest that a kind of "cooperative" water structuring around the larger PEO molecules may create an "excluded volume" of the hydrated polymer coils. This may be an important factor contributing to the observed low protein adsorption behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号