首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The natural killer T (NKT) cell ligand alpha-galactosylceramide (alpha-GalCer) exhibits profound antitumor activities in vivo that resemble interleukin (IL)-12-mediated antitumor activities. Because of these similarities between the activities of alpha-GalCer and IL-12, we investigated the involvement of IL-12 in the activation of NKT cells by alpha-GalCer. We first established, using purified subsets of various lymphocyte populations, that alpha-GalCer selectively activates NKT cells for production of interferon (IFN)-gamma. Production of IFN-gamma by NKT cells in response to alpha-GalCer required IL-12 produced by dendritic cells (DCs) and direct contact between NKT cells and DCs through CD40/CD40 ligand interactions. Moreover, alpha-GalCer strongly induced the expression of IL-12 receptor on NKT cells from wild-type but not CD1(-/-) or Valpha14(-/-) mice. This effect of alpha-GalCer required the production of IFN-gamma by NKT cells and production of IL-12 by DCs. Finally, we showed that treatment of mice with suboptimal doses of alpha-GalCer together with suboptimal doses of IL-12 resulted in strongly enhanced natural killing activity and IFN-gamma production. Collectively, these findings indicate an important role for DC-produced IL-12 in the activation of NKT cells by alpha-GalCer and suggest that NKT cells may be able to condition DCs for subsequent immune responses. Our results also suggest a novel approach for immunotherapy of cancer.  相似文献   

2.
Pathways involving the costimulatory molecule OX40 and OX40 ligand (OX40L) enhance tumor rejection. It was presumed that this effect was mediated by changes in DCs and/or T cells. In this issue of the JCI, Zaini et al. report that, in mice, intratumoral injection of DCs genetically modified to express OX40L suppressed the growth of a preexisting melanoma by directly triggering an antitumor NKT cell response (see the related article beginning on page 3330). This work suggests that the intratumoral NKT cell population may be harnessed for cancer immunotherapy and that OX40 costimulation may be used as a unique trigger of the antitumor activity of these cells.  相似文献   

3.
A prerequisite for strong adaptive antiviral immunity is the robust initial activation of the innate immune system, which is frequently mediated by TLR-activated plasmacytoid DCs (pDCs). Natural antitumor immunity is often comparatively weak, potentially due to the lack of TLR-mediated activation signals within the tumor microenvironment. To assess whether pDCs are capable of directly facilitating effective antitumor immune responses, mice bearing established subcutaneous B16 melanoma tumors were administered TLR9-activated pDCs directly into the tumor. We found that TLR9-activated pDCs induced robust, spontaneous CTL cross-priming against multiple B16 tumor antigens, leading to the regression of both treated tumors and untreated tumors at distant contralateral sites. This T cell cross-priming was mediated by conventional DCs (cDCs) and was completely dependent upon the early recruitment and activation of NK cells at the tumor site. NK cell recruitment was mediated by CCR5 via chemokines secreted by pDCs, and optimal IFN-gamma production by NK cells was mediated by OX40L expressed by pDCs. Our data thus demonstrated that activated pDCs are capable of initiating effective and systemic antitumor immunity through the orchestration of an immune cascade involving the sequential activation of NK cells, cDCs, and CD8(+) T cells.  相似文献   

4.
The maturation of dendritic cells (DCs) allows these antigen-presenting cells to initiate immunity. We pursued this concept in situ by studying the adjuvant action of alpha-galactosylceramide (alphaGalCer) in mice. A single i.v. injection of glycolipid induced the full maturation of splenic DCs, beginning within 4 h. Maturation was manifest by marked increases in costimulator and major histocompatibility complex class II expression, interferon (IFN)-gamma production, and stimulation of the mixed leukocyte reaction. These changes were not induced directly by alphaGalCer but required natural killer T (NKT) cells acting independently of the MyD88 adaptor protein. To establish that DC maturation was responsible for the adjuvant role of alphaGalCer, mice were given alphaGalCer together with soluble or cell-associated ovalbumin antigen. Th1 type CD4+ and CD8+ T cell responses developed, and the mice became resistant to challenge with ovalbumin-expressing tumor. DCs from mice given ovalbumin plus adjuvant, but not the non-DCs, stimulated ovalbumin-specific proliferative responses and importantly, induced antigen-specific, IFN-gamma producing, CD4+ and CD8+ T cells upon transfer into naive animals. In the latter instance, immune priming did not require further exposure to ovalbumin, alphaGalCer, NKT, or NK cells. Therefore a single dose of alphaGalCer i.v. rapidly stimulates the full maturation of DCs in situ, and this accounts for the induction of combined Th1 CD4+ and CD8+ T cell immunity to a coadministered protein.  相似文献   

5.
Dendritic cell (DC) maturation is an innate response that leads to adaptive immunity to coadministered proteins. To begin to identify underlying mechanisms in intact lymphoid tissues, we studied alpha-galactosylceramide. This glycolipid activates innate Valpha14(+) natural killer T cell (NKT) lymphocytes, which drive DC maturation and T cell responses to ovalbumin antigen. Hours after giving glycolipid i.v., tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma were released primarily by DCs. These cytokines induced rapid surface remodeling of DCs, including increased CD80/86 costimulatory molecules. Surprisingly, DCs from CD40(-/-) and CD40L(-/-) mice did not elicit CD4(+) and CD8(+) T cell immunity, even though the DCs exhibited presented ovalbumin on major histocompatibility complex class I and II products and expressed high levels of CD80/86. Likewise, an injection of TNF-alpha up-regulated CD80/86 on DCs, but CD40 was required for immunity. CD40 was needed for DC interleukin (IL)-12 production, but IL-12p40(-/-) mice generated normal ovalbumin-specific responses. Therefore, the link between innate and adaptive immunity via splenic DCs and innate NKT cells has several components under distinct controls: antigen presentation in the steady state, increases in costimulatory molecules dependent on inflammatory cytokines, and a distinct CD40/CD40L signal that functions together with antigen presentation ("signal one") and costimulation ("signal two") to generate functioning CD4(+) T helper cell 1 and CD8(+) cytolytic T lymphocytes.  相似文献   

6.
We investigated the mechanism of CD4 T cell accumulation in B cell follicles after immunization. Follicular T cell numbers were correlated with the number of B cells, indicating B cell control of the niche that T cells occupy. Despite this, we found no role for B cells in the follicular migration of T cells. Instead, T cells are induced to migrate into B cell follicles entirely as a result of interaction with dendritic cells (DCs). Migration relies on CD40-dependent maturation of DCs, as it did not occur in CD40-deficient mice but was reconstituted with CD40(+) DCs. Restoration was not achieved by the activation of DCs with bacterial activators (e.g., lipopolysaccharide, CpG), but was by the injection of OX40L-huIgG1 fusion protein. Crucially, the up-regulation of OX40L (on antigen-presenting cells) and CXCR-5 (on T cells) are CD40-dependent events and we show that T cells do not migrate to follicles in immunized OX40-deficient mice.  相似文献   

7.
Sun Y  Peng D  Lecanda J  Schmitz V  Barajas M  Qian C  Prieto J 《Gene therapy》2000,7(17):1467-1476
The interaction between CD40 ligand (CD40L, CD154) and its receptor CD40 on antigen-presenting cells, is essential for the initiation of cell-mediated and humoral immune responses. In this study, we investigated the antitumor effect of in vivo gene transfer of CD40L to tumor cells using an adenoviral vector (AdCMVmCD40L) in a murine CT-26 colon cancer model. We found that injection of AdCMVmCD40L caused tumor regression in a dose-dependent manner. A complete regression of tumor was observed in 81% of mice treated with 10(9) p.f.u. of AdCMVmCD40L. The antitumor effect induced by CD40L was mediated by CD8+ T cells and was associated with the generation of tumor-specific cytolytic T lymphocytes (CTL). Animals that eradicated the tumor were protected against tumor cell rechallenge, and both CD4+ and CD8+ T cells were involved in specific protective immunity. Treatment with AdCMVmCD40L in one tumor nodule also caused complete regression of established tumors at distant sites. The antitumor effect elicited by AdCMVmCD40L was associated with the intratumoral production of IL-12 and IFN-gamma and with an increased intratumoral expression of chemokines such as MIP- 1alpha, MIP-1beta, MIP-2, RANTES, and eotaxin. These data demonstrate that intratumoral injection of AdCMVmCD40L induces a powerful cascade of chemokines and cytokines in the tumor mass and stimulates an efficient antitumor immunity leading to regression of established colon cancer and protection against tumor cell rechallenge.  相似文献   

8.
Dendritic cells (DCs) are being evaluated in immunization protocols to enhance immunity against infectious diseases and cancer. Interaction of T-helper cells expressing CD40 ligand (CD40L) with its cognate CD40 receptor on DCs leads to a mature DC phenotype, characterized by increased capacity of antigen presentation to cytotoxic T cells. The authors examined the ability of third-generation self-inactivating lentiviral vectors expressing CD40L to induce autonomous maturation of ex vivo expanded human monocyte-derived dendritic cells. Transduction with lentiviral vectors achieved a highly efficient gene transfer of CD40L to DCs, which correlated with phenotypic maturation as shown by the expression of immunologic relevant markers (CD83, CD80, MHCI) and secretion of IL-12, whereas DC phenotype was not affected by a control vector expressing only the green fluorescent protein marker. Addition of recombinant IFN-gamma to DCs at the time of CD40L transduction further enhanced IL-12 production, and when co-cultured with allogeneic and autologous CD8+ and CD4+ T cells, a potent activation was observed. Autologous responses against an HLA-A2-restricted influenza peptide (Flu-M1) and a tumor-associated antigenic peptide (gp100 210M) were significantly enhanced when CD40L transduced DCs were used as antigen-presenting cells for in vitro stimulation of CD8+ cytotoxic T lymphocytes. These results demonstrate that endogenous expression of CD40L by lentivirally transduced DCs induced their autonomous maturation to a phenotype comparable to that induced by optimal concentrations of soluble CD40L, providing a novel tool for genetic manipulation of DCs.  相似文献   

9.
Natural killer T (NKT) cells are distinct glycolipid reactive innate lymphocytes that are implicated in the resistance to pathogens and tumors. Earlier attempts to mobilize NKT cells, specifically, in vivo in humans met with limited success. Here, we evaluated intravenous injection of monocyte-derived mature DCs that were loaded with a synthetic NKT cell ligand, alpha-galactosyl-ceramide (alpha-GalCer; KRN-7000) in five patients who had advanced cancer. Injection of alpha-GalCer-pulsed, but not unpulsed, dendritic cells (DCs) led to >100-fold expansion of several subsets of NKT cells in all patients; these could be detected for up to 6 mo after vaccination. NKT activation was associated with an increase in serum levels of interleukin-12 p40 and IFN-gamma inducible protein-10. In addition, there was an increase in memory CD8+ T cells specific for cytomegalovirus in vivo in response to alpha-GalCer-loaded DCs, but not unpulsed DCs. These data demonstrate the feasibility of sustained expansion of NKT cells in vivo in humans, including patients who have advanced cancer, and suggest that NKT activation might help to boost adaptive T cell immunity in vivo.  相似文献   

10.
OX40L is a member of the tumor necrosis factor superfamily that provides a costimulatory signal to CD4+ and CD8+ T cells while inhibiting the effects of suppressive CD4+ CD25+ regulatory T cells. Because of this dual activity, OX40L may provide significant antitumor immunity in tumor-bearing mice. To study its clinical potential, a fusion protein consisting of mOX40L linked to the C-terminus of the Fc fragment of immunoglobulin was genetically engineered. After demonstrating its potency in vitro, several assays were performed to evaluate its antitumor effect in comparison to the OX40 agonist antibody OX86. Dosing studies in Colon 26-bearing and renal cell carcinoma (RENCA)-bearing mice showed that although OX86 produced modest tumor regression, Fc-mOX40L produced complete remission in both tumor models. Survival studies confirmed these results and showed that Fc-mOX40L treatment produced lasting responses throughout the 5-month observation period. Flow cytometric analysis of treated and untreated tumors and tumor-draining lymph nodes identified a qualitative difference in the activity of Fc-mOX40L compared with OX86 treatment as evidenced by differences in lymphoid and macrophage populations. These studies reflect the profound therapeutic potential of Fc-mOX40L, which substantially exceeds the agonist antibody OX86 in ability to produce complete tumor remissions and promote long-term survival in solid tumor models.  相似文献   

11.
OX40 expressed on activated T cells is known to be an important costimulatory molecule on T cell activation in vitro. However, the in vivo functional significance of the interaction between OX40 and its ligand, OX40L, is still unclear. To investigate the role of OX40L during in vivo immune responses, we generated OX40L-deficient mice and a blocking anti-OX40L monoclonal antibody, MGP34. OX40L expression was demonstrated on splenic B cells after CD40 and anti-immunoglobulin (Ig)M stimulation, while only CD40 ligation was capable of inducing OX40L on dendritic cells. OX40L-deficient and MGP34-treated mice engendered apparent suppression of the recall reaction of T cells primed with both protein antigens and alloantigens and a significant reduction in keyhole limpet hemocyanin-specific IgG production. The impaired T cell priming was also accompanied by a concomitant reduction of both T helper type 1 (Th1) and Th2 cytokines. Furthermore, antigen-presenting cells (APCs) derived from the mutant mice revealed an impaired intrinsic APC function, demonstrating the importance of OX40L in both the priming and effector phases of T cell activation. Collectively, these results provide convincing evidence that OX40L, expressed on APCs, plays a critical role in antigen-specific T cell responses in vivo.  相似文献   

12.
We recently showed that dendritic cells (DCs) activated by thymic stromal lymphopoietin (TSLP) prime naive CD4(+) T cells to differentiate into T helper type 2 (Th2) cells that produced high amounts of tumor necrosis factor-alpha (TNF-alpha), but no interleukin (IL)-10. Here we report that TSLP induced human DCs to express OX40 ligand (OX40L) but not IL-12. TSLP-induced OX40L on DCs was required for triggering naive CD4(+) T cells to produce IL-4, -5, and -13. We further revealed the following three novel functional properties of OX40L: (a) OX40L selectively promoted TNF-alpha, but inhibited IL-10 production in developing Th2 cells; (b) OX40L lost the ability to polarize Th2 cells in the presence of IL-12; and (c) OX40L exacerbated IL-12-induced Th1 cell inflammation by promoting TNF-alpha, while inhibiting IL-10. We conclude that OX40L on TSLP-activated DCs triggers Th2 cell polarization in the absence of IL-12, and propose that OX40L can switch IL-10-producing regulatory Th cell responses into TNF-alpha-producing inflammatory Th cell responses.  相似文献   

13.
Regulatory T (T reg) cells are the major obstacle to cancer immunotherapy, and their depletion promptly induces conversion of peripheral precursors into T reg cells. We show that T reg cells can be functionally inactivated by OX40 triggering. In tumors, the vast majority of CD4(+) T cells are Foxp3(+) and OX40(bright). However, intratumor injection of the agonist anti-OX40 monoclonal antibody (mAb) OX86, but not anti-CD25 mAb, induces tumor rejection in 80% of mice, an effect that is abrogated by CD8 depletion. Upon intratumor OX40 triggering, increased numbers of infiltrating dendritic cells (DCs) migrate to draining lymph nodes and generate a new wave of tumor-specific cytotoxic T lymphocytes, as detected by tetramer and CD44 staining of node CD8(+) T lymphocytes. Tumor-bearing Rag1-knockout (KO) mice reconstituted with OX40-deficient T reg cells and wild-type (WT) effector T cells, or the reciprocal combination, showed that both T reg and effector T cells must be triggered via OX40 for the tumor to be rejected. Accordingly, WT but not OX40-KO mice receiving intratumor coinjection of OX86 and ovalbumin protein were able to revert tumor-induced tolerization of adoptively transferred OX40-competent OTII T lymphocytes. In conclusion, OX40-mediated inactivation of T reg cell function unleashes nearby DCs, allowing them to induce an adaptive immune response. In addition, the known OX40-dependent delivery of fitness signals to activated T cells is boosted by concurrent T reg cell inhibition. OX40 triggering thus has multiple effects that converge to mediate tumor rejection.  相似文献   

14.
Dendritic cells (DCs) activated by CD40L-expressing CD4+ T cells act as mediators of "T helper (Th)" signals for CD8+ T lymphocytes, inducing their cytotoxic function and supporting their long-term activity. Here, we show that the optimal activation of DCs, their ability to produce high levels of bioactive interleukin (IL)-12p70 and to induce Th1-type CD4+ T cells, is supported by the complementary DC-activating signals from both CD4+ and CD8+ T cells. Cord blood- or peripheral blood-isolated naive CD8+ T cells do not express CD40L, but, in contrast to naive CD4+ T cells, they are efficient producers of IFN-gamma at the earliest stages of the interaction with DCs. Naive CD8+ T cells cooperate with CD40L-expressing naive CD4+ T cells in the induction of IL-12p70 in DCs, promoting the development of primary Th1-type CD4+ T cell responses. Moreover, the recognition of major histocompatibility complex class I-presented epitopes by antigen-specific CD8+ T cells results in the TNF-alpha- and IFN-gamma-dependent increase in the activation level of DCs and in the induction of type-1 polarized mature DCs capable of producing high levels of IL-12p70 upon a subsequent CD40 ligation. The ability of class I-restricted CD8+ T cells to coactivate and polarize DCs may support the induction of Th1-type responses against class I-presented epitopes of intracellular pathogens and contact allergens, and may have therapeutical implications in cancer and chronic infections.  相似文献   

15.
Infection, sepsis, and multiple organ failure continue to be significant factors leading to morbidity and mortality after severe injury. Studies by our laboratory and others have identified injury-induced defects in both innate and adaptive components of host defense. We previously reported that CD1d-restricted natural killer T (NKT) cells actively suppress effector T-cell immunity after burn injury via production of excess IL-4 and failure to produce IFN-gamma. alpha-Galactosylceramide (alpha-GalCer) is a synthetic NKT cell-specific ligand presented exclusively to invariant NKT cells and is known to improve immunity against tumors and infection by promoting IFN-gamma production. Here, we confirmed the role of Valpha14-Jalpha281 invariant NKT cells in mouse model of burn injury-induced suppression of T-cell immunity and further asked whether alpha-GalCer can improve immunity after injury via similar mechanisms. We observed that systemic treatment with alpha-GalCer prevented the injury-induced suppression of Ag-specific T-cell responsiveness both in vitro and in vivo and restored the ability of splenic lymphocytes to produce both IL-2 and IFN-gamma. Moreover, burn injury was associated with diminished expression of major histocompatibility complex II and CD40 on antigen presenting cells that were both restored by alpha-GalCer treatment to levels seen in sham-treated mice. Collectively, these data suggest that, via manipulation of the NKT cell population, we may be able to maintain T-cell function and improve host defense after burn injury.  相似文献   

16.
Antigen administration via oral and other mucosal routes can suppress systemic immunity to the antigen and has been used to prevent experimental autoimmune disease. This approach may prove ineffective or even harmful if it leads to a concomitant induction of cytotoxic T lymphocytes (CTLs), and indeed, mucosal administration of the model antigen ovalbumin (OVA) has been shown to elicit CTL activation while simultaneously inducing oral tolerance. Here we show that induction by oral OVA of CTLs in wild-type mice, and of diabetes in mice expressing OVA transgenically in pancreatic beta cells, can be prevented by transiently blocking the CD40 ligand (CD40L). However, CD40L blockade did not diminish oral tolerance, as measured by suppression of systemic OVA-primed T cell proliferation, IFN-gamma secretion, and Ab production. Consistent with these findings, mice lacking CD40 expression could be orally tolerized to OVA. Transient CD40L blockade therefore dissociates pathogenic from protective immunity and should enhance the efficacy and safety of oral tolerance for preventing autoimmune disease.  相似文献   

17.
Human monocyte-derived dendritic cells (DC) can ingest apoptotic tumor cells (ATC) and present tumor-associated antigens (TAA) to T cells, leading to the generation of tumor-specific cytotoxic effector cells (Cancer Res 2000;60:3542-9). To further augment antitumor effector cell responses, attempts were made to modify antigen presentation and cross-priming of T cells by DC fed with ATC. Proinflammatory cytokines (PC), CD40 ligand (CD40L) and/or interferon-gamma (IFN-gamma) were found to markedly enhance the immunogenicity of TAA presented by DC. While PC upregulated expression of major histocompatibility complex class I/II and costimulatory molecules on the surface of DC, CD40L +/- IFN-gamma increased interleukin (IL)- 12 and to a lesser extent, IL-15 production by DC. Additionally, lactacystin, a specific proteasome inhibitor, significantly abrogated the effects of IFN-gamma and, in part, also those of CD40L or PC. The ability of DC + ATC to cross-prime TAA-inexperienced ("naive") T cells was significantly enhanced by PC and CD40L or CD40L + IFN-gamma, but not by IFN-gamma alone. These results indicate that future vaccines for patients with cancer incorporating DC fed with ATC could be made more effective by the addition of proinflammatory cytokines or CD40L +/- IFN-gamma to improve the DC function.  相似文献   

18.
Uptake of Leishmania major by dendritic cells (DCs) results in activation and interleukin (IL)-12 release. Infected DCs efficiently stimulate CD4- and CD8- T cells and vaccinate against leishmaniasis. In contrast, complement receptor 3-dependent phagocytosis of L. major by macrophages (MPhi) leads exclusively to MHC class II-restricted antigen presentation to primed, but not naive, T cells, and no IL-12 production. Herein, we demonstrate that uptake of L. major by DCs required parasite-reactive immunoglobulin (Ig)G and involved FcgammaRI and FcgammaRIII. In vivo, DC infiltration of L. major-infected skin lesions coincided with the appearance of antibodies in sera. Skin of infected B cell-deficient mice and Fcgamma-/- mice contained fewer parasite-infected DCs in vivo. Infected B cell-deficient mice as well as Fcgamma-/- mice (all on the C57BL/6 background) showed similarly increased disease susceptibility as assessed by lesion volumes and parasite burdens. The B cell-deficient mice displayed impaired T cell priming and dramatically reduced IFN-gamma production, and these deficits were normalized by infection with IgG-opsonized parasites. These data demonstrate that DC and MPhi use different receptors to recognize and ingest L. major with different outcomes, and indicate that B cell-derived, parasite-reactive IgG and DC FcgammaRI and FcgammaRIII are essential for optimal development of protective immunity.  相似文献   

19.
Given the broad expression of H-2 class Ib molecules on hematopoietic cells, antigen presentation pathways among CD1d expressing cells might tightly regulate CD1d-restricted natural killer T (NKT) cells. Bone marrow-derived dendritic cells (BM-DCs) and not adherent splenocytes become capable of triggering NK1.1(+)/T cell receptor (TCR)(int) hepatic NKT cell activation when (a) immature BM-DCs lack H-2D(b)-/- molecules or (b) BM-DCs undergo a stress signal of activation. In such conditions, BM-DCs promote T helper type 1 predominant CD1d-restricted NKT cell stimulation. H-2 class Ia-mediated inhibition involves more the direct H-2D(b) presentation than the indirect Qa-1(b) pathway. Such inhibition can be overruled by B7/CD28 interactions and marginally by CD40/CD40L or interleukin 12. These data point to a unique regulatory role of DCs in NKT cell innate immune responses and suggest that H-2 class Ia and Ib pathways differentially control NKT cell recognition of DC antigens.  相似文献   

20.
The in vivo therapeutic efficacy of DC-based cancer vaccines is limited by suboptimal DC maturation protocols. Although delivery of TLR adjuvants systemically boosts DC-based cancer vaccine efficacy, it could also increase toxicity. Here, we have engineered a drug-inducible, composite activation receptor for DCs (referred to herein as DC-CAR) comprising the TLR adaptor MyD88, the CD40 cytoplasmic region, and 2 ligand-binding FKBP12 domains. Administration of a lipid-permeant dimerizing ligand (AP1903) induced oligomerization and activation of this fusion protein, which we termed iMyD88/CD40. AP1903 administration to vaccinated mice enabled prolonged and targeted activation of iMyD88/CD40-modified DCs. Compared with conventionally matured DCs, AP1903-activated iMyD88/CD40-DCs had increased activation of proinflammatory MAPKs. AP1903-activated iMyD88/CD40-transduced human or mouse DCs also produced higher levels of Th1 cytokines, showed improved migration in vivo, and enhanced both antigen-specific CD8+ T cell responses and innate NK cell responses. Furthermore, treatment with AP1903 in vaccinated mice led to robust antitumor immunity against preestablished E.G7-OVA lymphomas and aggressive B16.F10 tumors. Thus, the iMyD88/CD40 unified "switch" effectively and safely replaced exogenous adjuvant cocktails, allowing remote and sustained DC activation in vivo. DC "licensing" through iMyD88/CD40 may represent a mechanism by which to exploit the natural synergy between the TLR and CD40 signaling pathways in DCs using a single small molecule drug and could augment the efficacy of antitumor DC-based vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号