首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objectives

To investigate the tubule occlusion and remineralization potential of a novel toothpaste with active tetracalcium phosphate/monetite mixtures under de/remineralization cycling.

Methods

Dentin de/remineralization cycling protocol consisted of demineralization in 1% citric acid at pH 4.6 with following remineralization with toothpastes and soaking in artificial saliva. Effectiveness of toothpastes to promote remineralization was evaluated by measurement of microhardness recovery, analysis of surface roughness, thickness of coating and scanning electron microscopy.

Results

The novel tetracalcium phosphate/monetite dentifrice had comparable remineralization potential as commercial calcium silicate/phosphate (SENSODYNE®) and magnesium aluminum silicate (Colgate®) toothpastes and significantly higher than control saliva (p < 0.02). Surface roughness was significantly lower after treatment with prepared and SENSODYNE® dentifirice (p < 0.05). The coatings on dentin surfaces was significantly thicker after applying toothpastes as compared to negative control (p < 0.001).

Conclusions

The new fluoride toothpaste formulation with bioactive tetracalcium phosphate/monetite calcium phosphate mixture effectively occluded dentin tubules and showed good dentin remineralization potential under de/remineralization cycling. It could replace professional powder preparation based on this mixture. It was demonstrated that prepared dentifrice had comparable properties with commercial fluoride calcium silicate/phosphate or magnesium aluminum silicate dentifrices.  相似文献   

2.
ObjectiveTo investigate the role of dentinal tubules in the fracture properties of human root dentin and whether resin-filled dentinal tubules can enhance fracture resistance.Materials and methodsCrack propagation in human root dentin was investigated in 200 μm thick longitudinal samples and examined by light and scanning electron microscopy. 30 maxillary premolar teeth were prepared for work of fracture (Wf) test at different tubule orientations, one perpendicular and two parallel to dentinal tubules. Another 40 single canal premolars were randomly divided into four groups of 10 each: intact dentin, prepared but unobturated canal, canal obturated with epoxy rein (AH Plus?/gutta percha), or with UDMA resin sealer (Resilon®/RealSeal®). The samples were prepared for Wf test parallel to dentinal tubules. Wf was compared under ANOVA with statistical significance set at p < 0.05.ResultsDentinal tubules influenced the path of cracks through dentin, with micro-cracks initiated in peritubular dentin of individual tubules ahead of the main crack tip. A significant difference (p < 0.001) was found between Wf perpendicular to tubule direction (254.9 J/m2) vs. parallel to tubule direction from inner to outer dentin (479.4 J/m2). Neither canal preparation nor obturation using epoxy- or UDMA-based resins as sealer cements substantially influenced fracture properties of root dentin, despite extensive infiltration of dentinal tubules by both sealer cements.  相似文献   

3.
《Dental materials》2020,36(12):1635-1644
Early detection of dental caries and variations in composition/structure of both enamel and dentin represents an important issue in modern dentistry. Demineralization has been associated to teeth discoloration, development of caries, and formation of cavities.ObjectiveIn this study, we systematically monitored the processes of demineralization/remineralization in dentin samples by means of three different spectroscopic techniques, namely, Raman spectroscopy, X-Ray Photo-electron spectroscopy (XPS), and X-Ray Diffractometry (XRD).MethodsBovine dentin samples were first exposed to acidic solutions and their structure systematically monitored as a function of time and pH. Then, the samples were rinsed in artificial saliva to simulate remineralization.ResultsThe above three spectroscopic techniques provided quantitative structural information spanning from the nanometer to the millimeter scale of sample penetration depth. An irreversible level of demineralization was reached when dentin was exposed to pH 2 beyond a time threshold of 6 h, successive treatments with artificial saliva being unable to restore the mineral fraction. On the other hand, short-term treatments at pH 5 and long-term treatments at pH 6 could partially or completely recover the dentin structure within one week of remineralization treatment.SignificanceTwo specific Raman parameters, namely, the bandwidth of the symmetric phosphate-stretching signal and the mineral-to-matrix intensity ratio, showed strong correlations with XPS and XRD data, and matched laser microscopy observations. Such correlations open the path to apply Raman spectroscopy in monitoring dentin demineralization in vivo and provide quantitative working algorithms for the prevention of oral caries.  相似文献   

4.
《Dental materials》2014,30(12):1369-1377
ObjectiveNon-thermal atmospheric plasma (NTAP) brush has been regarded as a promising technique to enhance dental interfacial bonding. However, the principal enhancement mechanisms have not been well identified. In this study, the effect of non-thermal plasmas on grafting of HEMA, a typical dental monomer, onto dentin collagen thin films was investigated.MethodsHuman dentin was sectioned into 10-μm-thick films. After total demineralization in 0.5 M EDTA solution for 30 min, the dentin collagen films were water-rinsed, air-dried, treated with 35 wt% HEMA aqueous solution. The films were then subject to plasma-exposure under a NTAP brush with different time (1–8 min)/input power (5–15 W). For comparison, the dentin collagen films were also treated with the above HEMA solution containing photo-initiators, then subject to light-curing. After plasma-exposure or light-curing, the HEMA-collagen films were rinsed in deionized water, and then examined by FTIR spectroscopy and TEM.ResultsThe FITR results indicated that plasma-exposure could induce significant HEMA grafting onto dentin collagen thin films. In contrast, light-curing led to no detectable interaction of HEMA with dentin collagen. Quantitative IR spectral analysis (i.e., 1720/3075 or 749/3075, HEMA/collagen ratios) further suggested that the grafting efficacy of HEMA onto the plasma-exposed collagen thin films strongly depended on the treatment time and input power of plasmas. TEM results indicated that plasma treatment did not alter collagen's banding structure.SignificanceThe current study provides deeper insight into the mechanism of dental adhesion enhancement induced by non-thermal plasmas treatment. The NTAP brush could be a promising method to create chemical bond between resin monomers and dentin collagen.  相似文献   

5.
ObjectivesThe aim of this study was to evaluate the efficacy of three different interventions (non-desensitising toothpaste, desensitising toothpaste and professionally applied dentine bonding agent) in reducing dentinal hypersensitivity over a 2-week, 3-month and 6-month-period in a dental practice setting.MethodsThis was a randomised controlled, single-blind; parallel-group trial conducted in general dental practice by a single general dental practitioner. Seventy-five subjects were randomly allocated to three groups; non-desensitising toothpaste (NDT), desensitising toothpaste (DT) and professionally applied desensitising agent (DA). Dentinal hypersensitivity was measured using a Visual Analogue Scale (VAS) to record the response from a standardised short blast of air from a triple syringe. Dentinal hypersensitivity was recorded at baseline, two weeks, three months and six months for all groups.ResultsDentinal hypersensitivity reduced significantly (p < 0.0001) in both groups DT and DA, in addition the reduction in sensitivity was sustained and continued to improve over a 6-month-period. The greatest reduction in dentinal hypersensitivity was recorded in group DA.ConclusionsThe results from this study suggest that application of dentine bonding agents, to teeth diagnosed with dentine hypersensitivity provides the greatest improvement in dentine hypersensitivity at 2 weeks and 6 months. This reduction in dentine hypersensitivity is greater than that achieved by the desensitising toothpaste tested and a non-desensitising toothpaste.  相似文献   

6.
《Dental materials》2023,39(3):260-274
ObjectivesTreating dental hypersensitivity (DH) rapidly and maintaining long-term effectiveness remains challenging. We aimed to address this problem by fabricating a novel rapidly mineralized biphasic calcium phosphate (RMBCP), which could rapidly elicit mineralization to form hydroxyapatite (HA) and perform excellent acid-resistant stability, thus effectively blocking the exposed dental tubules and protecting them from acid attack.MethodsRMBCP was firstly synthesized by precisely adjusting the molar ratio of acetic acid and calcium hydroxide and characterized by X-ray diffraction (XRD), X-ray fluorescence microprobe (XRF), Fourier-transform infrared (FTIR) spectrometer, scanning electron microscope (SEM), and transmission electron microscope (TEM). Subsequently, using a commercialized desensitizing agent, 45S5 bioglass (BG), as the control group, the mineralization performance of RMBCP was investigated in simulated body fluid (SBF), Dulbecco's modified eagle medium (DMEM), and even slightly acidic artificial saliva (pH=6.6). Moreover, the biocompatibility of RMBCP was studied. Finally, the tubule occlusion effect and acid-resistant stability of RMBCP were evaluated in vitro and in vivo.ResultsThe rapid mineralization behavior of RMBCP could easily adhere to the dentin surface and block the dentinal tubules completely in vitro and in vivo within 7days. RMBCP performed high acid-resistant stability to maintain the long-term therapeutic effect of DH treatment.SignificanceDeveloping novel bioactive calcium phosphate materials with the ability to trigger mineralization for HA formation rapidly will be an effective strategy for the long-term treatment of dentin hypersensitivity.  相似文献   

7.
ObjectiveThis study examined the ability of five comonomer blends (R1–R5) of methacrylate-based experimental dental adhesives solvated with 10 mass% ethanol, at reducing the permeability of acid-etched dentin. The resins were light-cured for 20, 40 or 60 s. The acid-etched dentin was saturated with water or 100% ethanol.MethodHuman unerupted third molars were converted into crown segments by removing the occlusal enamel and roots. The resulting crown segments were attached to plastic plates connected to a fluid-filled system for quantifying fluid flow across smear layer-covered dentin, acid-etched dentin and resin-bonded dentin. The degree of conversion of the resins was measured using Fourier transform infrared spectroscopy.ResultApplication of the most hydrophobic comonomer blend (R1) to water-saturated dentin produced the smallest reductions in dentin permeability (31.9, 44.1 and 61.1% after light-curing for 20, 40 or 60 s, respectively). Application of the same blend to ethanol-saturated dentin reduced permeability of 74.1, 78.4 and 81.2%, respectively (p < 0.05). Although more hydrophilic resins produced larger reductions in permeability, the same trend of significantly greater reductions in ethanol-saturated dentin over that of water-saturated dentin remained. This result can be explained by the higher solubility of resins in ethanol vs. water.SignificanceThe largest reductions in permeability produced by resins were equivalent but not superior, to those produced by smear layers. Resin sealing of dentin remains a technique-sensitive step in bonding etch-and-rinse adhesives to dentin.  相似文献   

8.
ObjectiveThe aim of this study was to induce artificial caries in human sound dentin by means of a microcosm model using human saliva as source of bacteria and to apply a novel dual-energy micro-CT technique to quantify biofilm formation and evaluate its demineralization potential.DesignEight sound third molars had the occlusal enamel removed by cutting with a diamond disk and five cylindrical cavities (±2 mm diameter; ±1.5 mm depth) were prepared over the dentin surface in each specimen (n = 40 cavities). After sterilization, each specimen received the bacterial salivary inoculum obtained from individuals without any systemic diseases presenting dentin caries lesions and were incubated in BHI added of with 5% sucrose for 96 h to allow biofilm formation. After that, two consecutive micro-CT scans were acquired from each specimen (40kv and 70kv). Reconstruction of the images was performed using standardized parameters. After alignment, registration, filtering and image calculations, a final stack of images containing the biofilm volume was obtained from each prepared cavity. Dentin demineralization degree was quantified by comparison with sound dentin areas. All data were analyzed using Shapiro-Wilk test and Spearman correlation using α=5%.ResultsDual-energy micro-CT technique disclosed biofilm formation in all cavities. Biofilm volume inside each cavity varied from 0.30 to 1.57 mm3. A positive correlation between cavity volume and volume of formed biofilm was obtained (0.77, p < 0.01). The mineral decrease obtained in dentin was high (± 90%) for all cavities and all demineralized areas showed mineral density values lower than a defined threshold for dentin caries (1.2 g/cm3).ConclusionDual-energy micro-CT technique was successful in the quantification of a microcosm human bacterial biofilm formation and to quantify its demineralization potential in vitro.  相似文献   

9.
PurposeThis study investigated whether the tubular occluding effect of oxalate desensitizer (OX) during adhesive cementation improved bonding of a self-etch and two etch-and-rinse resin cements to dentin after 6 months.MethodsA flat dentin surface was prepared on 120 extracted premolars, which were randomly divided into six groups of 20 teeth each according to the adhesive resin cement system used: ED primer II/Panavia F2.0, Excite DSC (Ex DSC)/Variolink II, and One-Step Plus (OS Plus)/Duolink, with or without OX (BisBlock) application. After cementation of an indirect composite rod, two subgroups (n = 10) were tested after 24 h and 6 months of water storage plus thermocycling, and shear bond strengths were recorded in MPa.ResultsStatistical tests showed that although oxalate had a borderline significant negative effect on initial bonding of ED primer II/Panavia F2.0, it significantly improved bonding durability (p < 0.05). OX severely compromised the initial bond strength of Ex DSC/Variolink II (p < 0.001) but had no effect on the reduction in bonding after aging. OX was compatible with OS Plus/Duolink and did not affect the loss of bonding strength after 6 months (p > 0.05).ConclusionCombining an oxalate desensitizer with three types of resin cements had different effects on bond strength to dentin after aging, depending on the interaction of oxalate with the adhesive system associated to the resin cement.  相似文献   

10.
ObjectiveThe aim of this study was to investigate quantitatively and qualitatively the airborne microbial load in a multi-chair dental clinic, a normal dental practice and a non-dental public area over a time period of four days and at different time points to estimate the risk of infections during dental surgery.MethodsA multi-chair and a single chair treatment room each were examined in comparison to a non-medical public area over a period of four days. The colony forming units m?3 (CFUs) were determined and isolated bacteria were characterised by morphological and biochemical analysis, gas chromatography and by 16S rRNA-gene sequencing. In the analyses enterococci were selectively searched for.ResultsThe CFUs in the multi-chair treatment room were between 20 and 1050 CFU m?3. During treatment the maxima reached were below 800 CFU m?3. The values in the dental practice were between 200 and 600 CFU m?3 and remain slightly but not significantly below the levels of the clinic (p > 0.05). In the common area, the CFUs were between 200 and 800 CFU m?3. The proportion of micrococci was 56.8% in the clinic, 56.07% in the practice and 69.67% in the public area Coagulase-negative staphylococci constituted 35% at the dental clinic, 25% at the bank and 38% at the dental practice. No significant differences amongst the units were detected in the microbial composition of their dental aerosols (p > 0.05).ConclusionAlthough, the bacterial counts in dental room were not significantly higher than the bacterial counts in a public area, the risk from dental clinic might be higher than a public area due to the type of micro-organisms, host susceptibility and the exposure time.  相似文献   

11.

Objective

The dental caries is developed as a result of an alternative course of mineral gain and loss. In order to distinguish between intrinsic Ca (tooth-derived mineral) and extrinsic Ca (solution-derived mineral) uptakes, a 44Ca doped pH-cycling was performed using 44Ca (a stable calcium isotope) remineralization solution.

Methods

The natural abundance of 40Ca and 44Ca is 96.9% and 2.1%, respectively. The remineralization solution was prepared using 44Ca to contain 1.5 mmol/L CaCl2 (44Ca), 0.9 mmol/L KH2PO4, 130 mmol/L KCl, 20 mmol/L HEPES at pH 7.0. The pH-cycling was conducted on bovine root dentin daily by demineralization (pH 5.0) for 2 h, incubation in 0% (control) and 0.2% NaF (900 ppm fluoride) for 2 h and 44Ca doped remineralization for 20 h. After 14 days pH-cycling, the specimens were sectioned longitudinally. On the sectioned surface, isotope imaging of 40Ca and 44Ca labeled mineral distribution was observed by a high mass-resolution stigmatic secondary ion 77 (Camera IMS 1270, Gennevilliers Cedex, France).

Results

Uptake of 44Ca was greater in intensity for the 0.2% fluoride group than the control, especially in the superficial lesions. The control group showed 40Ca (intrinsic) distribution in the subsurface lesions and in the superficial lesions, meanwhile the fluoride group showed 40Ca distribution limited in subsurface lesions. The total Ca (44Ca + 40Ca) image revealed more homogeneously for the control than the fluoride group.

Significance

Since the fluoride-treated surface is more acid-resistant than intrinsic dentin, alternative minerals were dissolved from the intact intrinsic lesion in the demineralization cycle.  相似文献   

12.
ObjectiveTo explore how application sequence of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and fluoride influences remineralization of enamel white spot lesions (WSL) in primary teeth.DesignIn this in-vitro study, artificial WSLs were created in 130 primary teeth. Teeth were divided into 4 groups (n = 27) and a control group (n = 22) and exposed to one of the following remineralization regimens for 10 weeks: Group-1; 500 ppm fluoride dentifrice; Group-2; 10% w/v CPP-ACP; Group-3; fluoride applied first, then CPP-ACP; Group-4; CPP-ACP applied first, then fluoride, and Group-5 was control. All groups were kept in a remineralizing solution. Mineral changes (ΔF) were quantified weekly using quantitative light-induced fluorescence. Statistical analysis was done using Statistical Package for the Social Sciences (SPSS version 20.0).ResultsRemineralization occurred in all groups to different degrees; changes from baseline were significant in groups 1–4 (P  0.05). Group-4 showed the earliest significant remineralization (after 2 weeks) among groups, (P < 0.001). Group-4 showed maximum changes in ΔF among groups; however, only differences with Groups 1 and 5 were significant (P < 0.05 and P < 0.01, respectively). Group-3 showed better remineralization than Groups 1, 2 and 5; however, the difference was only significant with Group-5 (P < 0.001). There were no significant differences between Group 1and 2, however, only Group 2 showed better remineralization than Group 5, (P < 0.01).ConclusionCombined treatment with CPP-ACP followed by fluoride exhibited the best remineralization of white spot lesions in primary teeth in this study. Combined treatment with fluoride followed by CPP-ACP showed a tendency towards better remineralization than fluoride or CPP-ACP alone.  相似文献   

13.
ObjectiveTo evaluate the effect of ferrous sulphate on enamel demineralization and remineralization, using pH-cycling models.DesignFifty blocks were selected by their initial surface hardness and subjected to a pH-cycling demineralization process. Artificially demineralized lesions were produced in 60 blocks; out of these blocks, the surface hardness of 50 blocks and the cross-sectional hardness of 10 blocks were determined. The 50 blocks were then subjected to a remineralization pH-cycling process. Treatments were carried out using ferrous sulphate solutions of different concentrations (0.333, 0.840, 18.0, and 70.0 μg Fe/mL) and a control group (deionized water). The final surface hardness (SH2) was determined, and the integrated subsurface hardness (ΔKHN) was calculated. The enamel blocks were analysed for fluoride, calcium, phosphorus, and iron. The obtained data were distributed heterogeneously and were analysed using the Kruskal–Wallis test (p < 0.05).ResultsIn demineralization pH cycling, the group treated with the 18.0 μg Fe/mL solution had higher secondary surface hardness and lower integrated subsurface hardness (ΔKHN) than the other groups. In remineralization pH cycling, the control group showed the lowest value of ΔKHN. A decline in Ca and P concentration was observed when the Fe concentration increased (p < 0.05). There was no significant difference in the F concentration (p > 0.05) and an increase in Fe concentration (p < 0.05) in the enamel was observed when the Fe concentration increased in both the demineralization and remineralization experiments.ConclusionThe results suggest that iron reduces demineralization but does not allow remineralization to occur.  相似文献   

14.
《Dental materials》2020,36(10):e316-e328
ObjectiveDentin remineralization at the bonded interface would protect it from external risk factors, therefore, would enhance the longevity of restoration and combat secondary caries. Dental biofilm, as one of the critical biological factors in caries formation, should not be neglected in the assessment of caries preventive agents. In this work, the remineralization effectiveness of demineralized human dentin in a multi-species dental biofilm environment via an adhesive containing nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM) was investigated.MethodsDentin demineralization was promoted by subjecting samples to a three-species acidic biofilm containing Streptococcus mutans, Streptococcus sanguinis, Streptococcus gordonii for 24 h. Samples were divided into a control group, a DMAHDM adhesive group, an NACP group, and an NACP + DMAHDM adhesive group. A bonded model containing a control-bonded group, a DMAHDM-bonded group, an NACP-bonded group, and an NACP + DMAHDM-bonded group was also included in this study. All samples were subjected to a remineralization protocol consisting of 4-h exposure per 24-h period in brain heart infusion broth plus 1% sucrose (BHIS) followed by immersion in artificial saliva for the remaining period. The pH of BHIS after 4-h immersion was measured every other day. After 14 days, the biofilm was assessed for colony-forming unit (CFU) count, lactic acid production, live/dead staining, and calcium and phosphate content. The mineral changes in the demineralized dentin samples were analyzed by transverse microradiography.ResultsThe in vitro experiment results showed that the NACP + DMAHDM adhesive effectively achieved acid neutralization, decreased biofilm colony-forming unit (CFU) count, decreased biofilm lactic acid production, and increased biofilm calcium and phosphate content. The NACP + DMAHDM adhesive group had higher remineralization value than the NACP or DMAHDM alone adhesive group.SignificanceThe NACP + DMAHDM adhesive was effective in remineralizing dentin lesion in a biofilm model. It is promising to use NACP + DMAHDM adhesive to protect bonded interface, inhibit secondary caries, and prolong the longevity of restoration.  相似文献   

15.
《Dental materials》2021,37(9):1325-1336
ObjectiveTo fabricate and characterize dental composites with calcium type pre-reacted glass-ionomer (PRG-Ca) fillers.MethodsPRG-Ca fillers were prepared by the reaction of calcium fluoroaluminosilicate glass with polyacrylic acid. Seven dental composites were produced from the same organic matrix (70/30 wt% Bis-GMA/TEGDMA), with partial replacement of barium borosilicate (BaBSi) fillers (60 wt%) by PRG-Ca fillers (wt%): E0 (0) – control, E1 (10), E2 (20), E3 (30), E4 (40), E5 (50) and E6 (60). Enamel remineralization was evaluated in caries-like enamel lesions induced by S. mutans biofilm using micro-CT. The following properties were characterized: degree of conversion (DC%), roughness (Ra), Knoop hardness (KHN), flexural strength (FS), flexural modulus (FM), water sorption (Wsp), water solubility (Wsl), and translucency (TP). Data were analyzed to one-way ANOVA and Tukey’s HSD test (α = 0.05).ResultsAll composites with PRG-Ca induced enamel remineralization. E0 and E1 presented similar and highest DC% than E2 = E3 = E4 = E5 = E6. Ra and KHN were not influenced by PRG-Ca fillers (p < 0.05). The higher the content of PRG-Ca, the lower FS, FM and TP (p < 0.05). Wsp increased linearly with the content of PRG-Ca fillers (p < 0.05). E6 presented the highest Wsl (p < 0.05), while the Wsl of the other composites were not different from each other (p > 0.05).SignificanceIncorporation of 10–40 wt.% of PRG-Ca fillers endowed remineralizing potential to dental composites without jeopardizing the overall behavior of their physicochemical properties. Dental composites with PRG-Ca fillers seems to be a good alternative for reinforcing the enamel against caries development.  相似文献   

16.
ObjectivesInsulin-like growth factor 1 (IGF-1) is a broad-spectrum growth-promoting factor that plays a key role in natural tooth development. Human dental pulp stem cells (hDPSCs) are multipotent and can influence the reparative regeneration of dental pulp and dentin. This study was designed to evaluate the effects of IGF-1 on the proliferation and differentiation of human dental pulp stem cells.MethodsHDPSCs were isolated and purified from human dental pulps. The proliferation and osteo/odontogenic differentiation of hDPSCs treated with 100 ng/ml exogenous IGF-1 were subsequently investigated.ResultsMTT assays revealed that IGF-1 enhanced the proliferation of hDPSCs. ALP activity in IGF-1-treated group was obviously enhanced compared to the control group from days 3 to 9. Alizarin red staining revealed that the IGF-1-treated cells contained a greater number of mineralization nodules and had higher calcium concentrations. Moreover, western blot and qRT-PCR analyses demonstrated that the expression levels of several osteogenic genes (e.g., RUNX2, OSX, and OCN) and an odontoblast-specific marker (DSPP) were significantly up-regulated in IGF-1-treated hDPSCs as compared with untreated cells (P < 0.01). Interestingly, the expression of phospho-ERK and phospho-p38 were also up-regulated, indicating that the MAPK signaling pathway is activated during the differentiation of hDPSCs.ConclusionsIGF-1 can promote the proliferation and osteo/odontogenic differentiation of hDPSCs by activating MAPK pathways.  相似文献   

17.
ObjectiveTo evaluate the influence of tetrahydrofuran (THF) on the resin-to-dentin microtensile bond strength (μTBS) after water storage, for 24 h and 6 months, and to compare its behavior with that of traditional solvents.MethodsSeven versions of monomer/solvent mixtures (primers) were prepared using the following solvent and water combinations: (1) THF, (2) acetone, (3) ethanol, (4) water, (5) THF/water, (6) acetone/water and (7) ethanol/water. An experimental adhesive resin was also synthesized to compare adhesive systems with the different primers. Forty-two bovine incisors, randomly separated into seven groups, had their superficial coronal dentin exposed. After acid-etching and rinsing, the excess water was removed from the surface with absorbent paper. Each experimental primer was applied with agitation (30 s) followed by a mild air stream (10 s). The experimental adhesive resin was applied and light-activated (20 s). Resin composite restorations were constructed incrementally. Restored teeth were stored in distilled water at 37 °C (24 h) and sectioned to obtain sticks with an area of 0.5 mm2. Half the specimens were subjected to the μTBS test immediately after being cut and the other half were tested after 6 months of water storage. Data (MPa) were analyzed by two-way ANOVA (solvent type and storage time as factors) and Tukey–Kramer's test at α = 0.05.ResultsFactors and interaction showed a statistical effect. After 6 months storage, acetone groups and primers containing THF showed similar μTBS to initial means.SignificanceTHF seems to be a promising solvent for use in dental adhesive systems, maintaining bond strength on dentin substrate after storage.  相似文献   

18.
《Dental materials》2020,36(2):229-248
ObjectiveTwo-dimensional (2D) in vitro models have been extensively utilized for cytotoxicity assessment of dental materials, but with certain limitations in terms of direct in vitro-in vivo extrapolation (IVIVE). Three-dimensional (3D) models seem more appropriate, recapitulating the structure of human tissues. This study established a 3D dentin/pulp analogue, as advanced cytotoxicity assessment tool of dental restorative materials (DentCytoTool).MethodsDentCytoTool comprised two compartments: the upper, representing the dentin component, with a layer of odontoblast-like cells expanded on microporous membrane of a cell culture insert and covered by a treated dentin matrix; and the lower, representing a pulp analogue, incorporating HUVEC/SCAP co-cultures into collagen I/fibrin hydrogels. Representative resinous monomers (HEMA: 1–8 mM; TEGDMA: 0.5–5 mM) and bacterial components (LPS: 1 μg/ml) were applied into the construct. Cytotoxicity was assessed by MTT and LDH assays, live/dead staining and real-time PCR for odontogenesis- and angiogenesis-related markers.ResultsDentCytoTool supported cell viability and promoted capillary-like network formation inside the pulp analogue. LPS induced expression of odontogenesis-related markers (RUNX2, ALP, DSPP) without compromising viability of the odontoblast-like cells, while co-treatment with LPS and resin monomers induced cytotoxic effects (live/dead staining, MTT and LDH assays) in cells of both upper and lower compartments and reduced expression angiogenesis-related markers (VEGF, VEGFR2, ANGPT-1, Tie-2, PECAM-1) in a concentration- and time- dependent manner. LPS treatment aggravated TEGDMA-induced and -in certain concentrations (2–4 mM)- HEMA-induced cytotoxicity.SignificanceDentCytoTool represents a promising tissue-engineering-based cytotoxicity assessment tool, providing more insight into the mechanistic aspects of interactions of dental materials to the dentin/pulp complex.  相似文献   

19.

Objective

Eight repetitive nucleotide sequences of aspartate–serine–serine (8DSS) derived from dentin phosphoprotein (DPP) has been proved to be a good remineralization agency. In this study, 8DSS peptide was employed to induce dentinal tubule occlusion.

Methods

Dentin samples were acid-etched, and then the samples were coated with 8DSS solution. The binding capacity of 8DSS to acid-etched dentin was tested by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Subsequently, the 8DSS-treated dentin samples were immersed in artificial saliva for 1, 2 and 4 weeks. After 4 weeks, the remineralized dentin was treated with 6 wt% citric acid (pH 1.5) solution for 1 min. Dentin permeability measurement and scanning electron microscopy (SEM) were carried out after different periods. Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were used to identify the mineral phase of the regenerated minerals.

Results

The results showed that 8DSS had a good binding capacity to the acid-etched dentin, and significantly reduced the dentin permeability by inducing minerals deposited within the dentinal tubules. After 4 weeks, all the dentinal tubules were occluded by large bulk of regenerated minerals, which largely decreased the diameters of the tubules. The regenerated minerals deposited with a deep depth within the dentinal tubules, ensuring an effective occlusion even after an acid challenge. The results of XRD and EDS confirmed that the regenerated minerals were mainly hydroxyapatite (HA).

Significance

8DSS peptide induced strong dentinal tubule occlusion. 8DSS have a great potential to be used in the treatment of dentin hypersensitivity in the future.  相似文献   

20.
《Dental materials》2019,35(10):1370-1377
ObjectiveThe fracture resistance of different ultrathin occlusal computer-aided design/computer-aided manufacturing (CAD/CAM) veneers was investigated under cyclic mechanical loading to restore combined enamel-dentin defects.MethodsEighty-four molars were reduced occlusally until extensive dentin exposure occurred with a remaining enamel ring. Twenty-four molars were ground flat for examination of highly standardized specimens, of which 8 were treated with uniformly flat 0.3 mm IPS Empress CAD and 0.3 and 0.5 mm IPS e.max CAD restorations. Sixty-four molars were anatomically prepared until dentin exposure and were restored using occlusal veneers with fissure/cusp thicknesses of 0.3/0.5 mm from 3 different dental CAD/CAM materials: IPS Empress CAD, IPS e.max CAD and Lava Ultimate CAD/CAM. Teeth were etched with 37% phosphoric acid, and occlusal veneers were bonded using an adhesive luting system (Syntac Primer, Adhesive, Heliobond and Variolink II). Specimens were placed under cyclic mechanical loading in a chewing simulator (1 million cycles at 50 N) and were examined for cracks after each cyclic loading sequence. The anatomical 0.3/0.5 mm IPS e.max CAD specimens experienced an additional 1 million cycles at 100 N. Kaplan–Meier survival curves and log-rank tests were used for data analysis.ResultsAll highly standardized and 0.3/0.5 mm IPS e.max CAD specimens tolerated cyclic loading. One anatomical Lava Ultimate CAD/CAM and 10 IPS Empress CAD specimens showed cracks.SignificanceUltrathin occlusal veneers of lithium disilicate ceramic and nanoceramic composite showed remarkably high fracture strength under cyclic mechanical loading. These veneers might be a tooth substance preserving option for restoring combined dentin–enamel defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号