首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
NO-responsive, cGMP-producing structures are abundantly present in the cervical spinal cord. NO-mediated cGMP synthesis has been implicated in nociceptive signaling and it has been demonstrated that cGMP has a role establishing synaptic connections in the spinal cord during development. As cGMP levels are controlled by the activity of soluble guanylyl cyclase (synthesis) and the phosphodiesterase (PDE) activity (breakdown), we studied the influence of PDE activity on NO-stimulated cGMP levels in the rat cervical spinal cord.

cGMP-immunoreactivity (cGMP-IR) was localized in sections prepared from slices incubated in vitro. A number of reported PDE isoform-selective PDE inhibitors was studied in combination with diethylamineNONOate (DEANO) as a NO-donor including isobutyl-methylxanthine (IBMX) as a non-selective PDE inhibitor. We studied 8-methoxy-IBMX as a selective PDE1 inhibitor, erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and BAY 60-7550 as selective PDE2 inhibitors, sildenafil as a selective PDE5 inhibitor, dipyridamole as a mixed type PDE5 and PDE10 inhibitor, rolipram as a PDE4 inhibitor, and SCH 81566 as a selective PDE9 inhibitor. cGMP-IR structures (nerve fibers, axons, and terminals) were characterized using the following neurochemical markers: vesicular transporter molecules for acetylcholine, GABA, and glutamate (type 1 and type 2), parvalbumin, glutamate transporter molecule EAAT3, synaptophysin, substance P, calcitonin gene-related peptide, and isolectin B4. Most intense cGMP-IR was observed in the dorsal lamina. Ventral motor neurons were devoid of cGMP-IR. cGMP-IR was observed in GABAergic, and glutamatergic terminals in all gray matter laminae. cGMP-IR was abundantly colocalized with anti-vesicular glutamate transporter 2 (vGLUT2), however not with the anti-vesicular glutamate transporter 1 (vGLUT1), suggesting a functional difference between structures expressing vGLUT1 or vGLUT2. cGMP-IR did not colocalize with substance P- or calcitonin-gene related peptide-IR structures, however did partially colocalize with isolectin B4 in the dorsal horn. cGMP-IR in cholinergic structures was observed in dorsal root fibers entering the spinal cord, occasionally in laminae 1–3, in laminae 8 and 9 in isolated boutons and in the C-type terminals, and in small cells and varicosities in lamina 10. This latter observation suggests that the proprioceptive interneurons arising in lamina 10 are also NO-responsive.

No region-specific nor a constant co-expression of cGMP-IR with various neuronal markers was observed after incubation of the slices with one of the selected PDE inhibitors. Expression of the mRNA of PDE2, 5, and 9 was observed in all lamina. The ventral motor neurons and the ependymal cells lining the central canal expressed all three PDE isoforms.

Incubation of the slices in the presence of IBMX, DEANO in combination with BAY 41-2272, a NO-independent activator of soluble guanylyl cyclase, provided evidence for endogenous NO synthesis in the slice preparations and enhanced cGMP-IR in all lamina. Under these conditions cGMP-IR colocalized with substance P in a subpopulation of substance P-IR fibers.

It is concluded that NO functions as a retrograde neurotransmitter in the spinal cord but that also postsynaptic structures are NO-responsive by producing cGMP. cGMP-IR in a subpopulation of isolectin B4 positive fibers and boutons is indicative for a role of NO-cGMP signaling in nociceptive processing. cGMP levels in the spinal cord are controlled by the concerted action of a number of PDE isoforms, which can be present in the same cell.  相似文献   


2.
The effect of inhibition of 3′,5′-phosphodiesterase (PDE) activity on the cGMP accumulation was studied in control and nitric oxide (NO) stimulated hippocampal slices incubated in vitro using immunohistochemical visualisation of cGMP. Isobutylmethylxanthine (IBMX) was used as a non-selective PDE inhibitor and zaprinast was used as a selective inhibitor of CGMP-specific PDE activity. In the absence of PDE inhibitors cGMP-immunoreactivity (cGMP-IR) was found in blood vessel walls only. After incubation with the NO-donor sodium nitroprusside (SNP) cGMP-IR was found in a few isolated varicose fibres which were distributed throughout the slice. Incubation in the presence of either 1 mM IBMX or 10 μM zaprinast resulted in cGMP-IR in small numbers of varicose fibres distributed throughout the hippocampal slice. SNP in combination with IBMX resulted in cGMP-IR in a multitude of varicose fibres throughout the slice; occasionally cell somata were observed. After incubation with SNP and zaprinast cGMP-IR was found in varicose fibres, although with a more restricted distribution and less numerous than in the presence of IBMX. In the latter combination, varicose fibres were observed predominantly in the CA2/CA3 region and in the stratum lacunosum moleculare of the hippocampus, and cell somata were occasionally observed throughout the hippocampus. The differential distribution of cGMP-IR in the presence of different PDE inhibitors is consistent with the notion that there are regional differences in the localization of cGMP hydrolyzing enzymes in the hippocampus.  相似文献   

3.
The lectin soybean agglutinin (SBA) from Glycine max binds to small-sized dorsal root ganglion cells and their central terminals in the superficial dorsal horn of the spinal cord. Here we investigated the ability of SBA and SBA conjugated to horseradish peroxidase(SBA-HRP) to trace thin calibre afferents into the spinal cord from a peripheral nerve. Following injection into the sciatic nerve, labelled cells in the dorsal root ganglion were predominantly small-sized but some medium-sized cells were also labelled. Colocalisation studies of transported SBA with various neuronal markers showed that all neurons that transported SBA-HRP showed SBA binding, indicating high uptake specificity for the conjugate. 15% were immunoreactive for RT97 indicating that some axons were myelinated, and 54% also expressed binding sites for isolectin B4 from Griffonia simplicifolia, a selective marker for a subpopulation of unmyelinated afferents. With regard to neurotransmitter content, 43% of the SBA cells contained calcitonin gene-related peptide, 33% contained substance P and 2.5% somatostatin. In addition, 3% contained carbonic anhydrase. Centrally, injection of SBA in the sciatic nerve resulted in labelled terminals in somatotopically appropriate regions of laminae I–II of the dorsal horn, and in the gracile nucleus. A few neurons in the dorsal horn were labelled indicating that some transneuronal transport of SBA had occurred. The results show that SBA can be used as a transganglionic tracer to label fine calibre primary afferents that project to laminae I–II of the spinal cord and the gracile nucleus. It appears to label more afferents than isolectin B4, including also a subpopulation of myelinated afferents.  相似文献   

4.
Rxt1, a member of the Na+/Cl- orphan transporter family, exhibits numerous features suggesting a role as plasma membrane transporter. Despite numerous attempts, its substrate has not yet been identified, although immunocytochemical studies have shown that Rxt1 distribution generally matches that of glutamate or GABA. In order to further characterize Rxt1, its detailed immunocytochemical distribution in the rat spinal cord and dorsal root ganglia was studied at both light microscope and ultrastructural levels. The widespread distribution of Rxt1 in spinal cord and ganglia cannot be correlated with any known classical or peptidergic transmitter. Rxt1 is expressed in a subpopulation of glutamatergic primary afferent fibers, in large and medium-sized ganglion cells, while small glutamate cells exhibit generally no Rxt1-like immunoreactivity. In the spinal cord, Rxt1-immunoreactive cell body distribution is quite ubiquitous since Rxt1 is expressed in all laminae in various neuronal types like interneurons, some projection neurons and motoneurons. Some of these neurons are cholinergic. At the electron microscope level, the peroxidase labeling was never localized to the plasma membrane, but rather associated with different organelles including the outer membrane of small synaptic vesicles and large granular vesicles. This localization resembles that of vesicular transporters detected with the same method and suggests that Rxt1, in contrast to other Na+/Cl- transporters, is expressed on vesicles. This was confirmed using a pre-embedding silver-intensified colloidal gold method. Indeed, most gold particles appeared to be localized into the axoplasm on synaptic vesicle accumulations; only few gold particles were observed close to the plasma membrane. These results suggest that Rxt1, despite its molecular characteristics predicting a plasma membrane localization, might be a vesicular transporter.  相似文献   

5.
6.
Immunohistochemistry was used to localize brain natriuretic peptide in the porcine spinal cord and to compare it with that of atrial natriuretic peptide, substance P, calcitonin gene-related peptide and [Met]enkephalin. Brain natriuretic peptide-immunoreactive varicose fibers were observed in lamina I and the inner portion of lamina II of the dorsal horn. Semiquantitative analysis showed that the highest density of brain natriuretic peptide-immunoreactive varicosities was in the lumbosacral and coccygeal segments. The distributional pattern of brain natriuretic peptide-immunoreactive nerve fibers in the spinal cord was unique and quite distinct from that of the other neuropeptides studied. These neuroanatomical findings suggest that brain natriuretic peptide may play a role in the regulation of nociceptive processing in the spinal cord, either alone or with bioactive substances.  相似文献   

7.
8.
Sun T  Xiao HS  Zhou PB  Lu YJ  Bao L  Zhang X 《Neuroscience》2006,141(3):1233-1245
Synaptoporin and synaptophysin are integral membrane components of synaptic vesicles. The distribution of synaptoporin and its relationship with synaptophysin in sensory afferent fibers remain unclear. In the present study, we showed that in the rat dorsal root ganglia synaptoporin was expressed in subsets of small neurons that contain either calcitonin gene-related peptide or isolectin B4, and was distributed in their afferent terminals in laminae I-II of the spinal cord. Synaptophysin was expressed in 57% of synaptoporin-containing small dorsal root ganglion neurons and in large dorsal root ganglion neurons. In the spinal dorsal horn, synaptophysin-immunolabeling was weak in the afferent fibers in lamina I, outer lamina II and the dorsal part of inner lamina II, but strong in the afferent fibers in laminae III-IV. However, a subpopulation of isolectin B4-positive small dorsal root ganglion neurons expressed both synaptoporin and synaptophysin, and their afferent fibers were mainly distributed in the ventral part of inner lamina II. After peripheral nerve injury, synaptoporin expression was up-regulated in small dorsal root ganglion neurons, and synaptoporin level was increased in their afferent terminals. Thus, synaptoporin and synaptophysin have topographically distinct distributions in afferent fibers. Synaptoporin is a major synaptic vesicle protein in Adelta- and C-fibers in both physiological and neuropathic pain states.  相似文献   

9.
BACKGROUND: The type 4 phosphodiesterase (PDE) isoenzyme is the main isoenzyme of PDE involved in the control of adult mononuclear cell proliferation. OBJECTIVE: To establish whether PDE isoenzymes are present in umbilical cord blood mononuclear cells by the use of selective PDE inhibitors, and to identify which PDE isoenzymes are involved in controlling the proliferation of cord blood mononuclear cells. METHODS: Cord blood was obtained from normal deliveries and mononuclear cells isolated as described previously [1] with some modifications. Mononuclear cells were then stimulated to proliferate with phytohaemagglutinin (PHA) (2 microg/mL) in the presence of selective PDE inhibitors. Proliferation was measured by [3H]-thymidine incorporation. RESULTS: The type 4 PDE inhibitors (CDP840, rolipram and RO 20-1724), and the mixed PDE3/4 inhibitor, zardaverine, produced a concentration-related inhibition of PHA-stimulated cord blood mononuclear cell proliferation (P < 0.05, ANOVA). The non-selective PDE inhibitor, theophylline, also produced a concentration-related inhibition of proliferation (P < 0.05, ANOVA). In contrast, the PDE1 inhibitor, vinpocetine, the PDE3 inhibitor, siguazodan, and the PDE5 inhibitor, zaprinast, were unable to inhibit cord blood mononuclear cell proliferation. CONCLUSION: PDE4 is present in umbilical cord mononuclear cells and is involved in the control of cord blood mononuclear cell proliferation.  相似文献   

10.
Modulation of the human polymorphonuclear leukocyte (PMN) respiratory burst by selective cyclic 3',5' adenosine monophosphate (cAMP) phosphodiesterase (PDE) inhibitors was studied with respect to PDE isozyme characteristics. Zaprinast, an inhibitor of a cyclic guanosine monophosphate (cGMP)-specific PDE (PDE I), at concentrations up to 100 mumol/L, had no significant effect on the respiratory burst. Milrinone and imazodan, inhibitors of cAMP-metabolizing, cGMP-sensitive PDE (PDE III), reduced the respiratory burst to 60% of control magnitude but only had significant effects when they were introduced at high (100 mumol/L) concentrations. In contrast, rolipram and RO 20-1724, inhibitors of a cAMP-metabolizing, cGMP-insensitive PDE (PDE IV), had significant effects at low concentrations (0.1 mumol/L) and caused marked reduction of the respiratory burst at higher concentrations (25% of control at 10 mumol/L). The selective PDE IV inhibitors significantly potentiated PMN inhibition by isoproterenol. Diethylaminoethyl (DEAE)-Sepharose chromatography demonstrated a predominant PDE isozyme with high affinity and selectivity for cAMP that was insensitive to cGMP and was completely inhibited by rolipram, a PDE IV inhibitor. These results are consistent with the conclusion that the PMN respiratory burst is inhibited by an elevation of cAMP induced by PDE IV inhibition.  相似文献   

11.
Urotensin-II (UII), a 12 amino acid peptide, was discovered in the teleost fish neurosecretory cells located in the caudal portion of the spinal cord and which project to a neurohemal gland called the urophysis. The distribution of UII and of its prepro-UII mRNA is not limited to fish and was found for example in the rat spinal cord. In view of the potential interest of obtaining transgenic mice, we have therefore characterized the distribution of mouse pro-UII mRNA and UII immunoreactivity, by in situ hybridization and immunohistochemistry, respectively, in the mouse spinal cord. A population of UII-like immunoreactive cell bodies was located in the ventral horn of the different segments. These cells displayed all the features of motoneurons, as confirmed by a double immunohistochemical labelling showing the co-occurrence of UII and vesicular acetylcholine transporter, and by electron microscope immunocytochemistry. Retrograde labelling of motoneurons innervating the bulbocavernosus penile muscle showed that some of them contained UII. In situ hybridization histochemistry revealed that pro-UII mRNA was located in some ventral horn neuronal perikarya. The pro-UII mRNA-containing cell bodies possessed the same motoneuron characteristics, confirming the results of the immunohistochemical studies and showing that the gene of mouse UII is expressed in a subpopulation of motoneurons in the spinal cord. Our results support the assumption that UII peptide characterized as endocrine in fish is also expressed within mammalian motoneurons.  相似文献   

12.
Phosphodiesterases (PDEs) are involved in the regulation of intracellular levels of the second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). These enzymes hydrolyse the cyclic nucleotides to the corresponding nucleoside 5'-monophosphates. Nine PDE subtypes have been identified; these differ in their substrate specificity and mode of activation. The type 4 PDE (PDE(4)) hydrolyses cAMP, is activated by elevated levels of cAMP, and is inhibited by rolipram. Inhibition of enzyme activity has been shown to modulate the activity of cells of the immune system. The production of tumour necrosis factor (TNF)(alpha) by activated monocytes and macrophages is inhibited, and cytokine secretion and proliferation of type 1 T helper cells are suppressed. Both immune cell activation and their concomitant induction of cytokine secretion are implicated in multiple sclerosis (MS), which is the major demyelinating disease of the central nervous system. Studies with the selective PDE(4) inhibitor rolipram in experimental autoimmune encephalomyelitis (an animal model of MS) in mice, rats and nonhuman primates have demonstrated the efficacy of the compound in this disease model, suggesting that PDE(4) inhibitors could ameliorate the clinical course of MS. Unfortunately, clinical trials with PDE(4) inhibitors revealed the major adverse effects of these drugs, namely nausea and vomiting. However, novel PDE(4) inhibitors, which target only a subpopulation of PDE(4) enzymes, may provoke fewer adverse effects. The efficacy of a PDE(4) inhibitor in MS still needs to be demonstrated in a well designed clinical trial.  相似文献   

13.
This study describes the immunocytochemical distribution of five neuropeptides (calcitonin gene-related peptide [CGRP], enkephalin, galanin, somatostatin, and substance P), three neuronal markers (neurofilament triplet proteins, neuron-specific enolase [NSE], and protein gene product 9.5), and two synaptic-vesicle-associated proteins (synapsin I and synaptophysin) in the spinal cord and dorsal root ganglia of adult and newborn dogs. CGRP and substance P were the only peptides detectable at birth in the spinal cord; they were present within a small number of immunoreactive fibers concentrated in laminae I–II. CGRP immunoreactivity was also observed in motoneurons and in dorsal root ganglion cells. In adult animals, all peptides under study were localized to varicose fibers forming rich plexuses within laminae I–III and, to a lesser extent, lamina X and the intermediolateral cell columns. Some dorsal root ganglion neurons were CGRP- and/or substance P-immunoreactive. The other antigens were present in the spinal cord and dorsal root ganglia of both adult and newborn animals, with the exception of NSE, which, at birth, was not detectable in spinal cord neurons. Moreover, synapsin I/synaptophysin immunoreactivity, at birth, was restricted to laminae I–II, while in adult dogs, immunostaining was observed in terminal-like elements throughout the spinal neuropil. These results suggest that in the dog spinal cord and dorsal root ganglia, peptide-containing pathways complete their development during postnatal life, together with the full expression of NSE and synapsin I/synaptophysin immunoreactivities. In adulthood, peptide distribution is similar to that described in other mammals, although a relative absence of immunoreactive cell bodies was observed in the spinal cord.  相似文献   

14.
In the present study, the origin of calcitonin gene-related peptide (CGRP) to the dorsal horn in the rat lumbar spinal cord is investigated. CGRP immunoreactivity is examined following multiple unilateral and bilateral dorsal rhizotomies and isolated cord preparations (spinal cords are isolated by transecting the cord in two places and cutting all dorsal roots between the transections). Seven to 11 days after surgery, unilateral multiple dorsal rhizotomies result in a drastic decrease in CGRP-stained terminals on the operated side; following bilateral dorsal rhizotomies and isolated cord preparations, one or two CGRP varicosities remain in the dorsal horn in each section. The numbers of CGRP-immunostained varicosities observed in the latter two preparations are not significantly different, suggesting that few if any axons descending from the brain contribute to the CGRP terminal population in the spinal cord dorsal horn. Based on these data, we hypothesize that dorsal root ganglion cells are the only source of CGRP to the rat lumbar dorsal horn.  相似文献   

15.
The expression of two vesicular glutamate transporters (VGLUTs), VGLUT1 and VGLUT2, was studied with immunohistochemistry in lumbar dorsal root ganglia (DRGs), the lumbar spinal cord and the skin of the adult mouse. About 12% and 65% of the total number of DRG neuron profiles (NPs) expressed VGLUT1 and VGLUT2, respectively. VGLUT1-immunoreactive (IR) NPs were usually medium- to large-sized, in contrast to a majority of small- or medium-sized VGLUT2-IR NPs. Most VGLUT1-IR NPs did not coexpress calcitonin gene-related peptide (CGRP) or bound isolectin B4 (IB4). In contrast, approximately 31% and approximately 42% of the VGLUT2-IR DRG NPs were also CGRP-IR or bound IB4, respectively. Conversely, virtually all CGRP-IR and IB4-binding NPs coexpressed VGLUT2. Moderate colocalization between VGLUT1 and VGLUT2 was also observed. Sciatic nerve transection induced a decrease in the overall number of VGLUT1- and VGLUT2-IR NPs (both ipsi- and contralaterally) and, in addition, a parallel, unilateral increase of VGLUT2-like immunoreactivity (LI) in a subpopulation of mostly small NPs. In the dorsal horn of the spinal cord, strong VGLUT1-LI was detected, particularly in deep dorsal horn layers and in the ventral horns. VGLUT2-LI was abundant throughout the gray spinal matter, 'radiating' into/from the white matter. A unilateral dorsal rhizotomy reduced VGLUT1-LI, while apparently leaving unaffected the VGLUT2-LI. Transport through axons for both VGLUTs was confirmed by their accumulation after compression of the sciatic nerve or dorsal roots. In the hind paw skin, abundant VGLUT2-IR nerve fibers were observed, sometimes associated with Merkel cells. Lower numbers of VGLUT1-IR fibers were also detected in the skin. Some VGLUT1-IR and VGLUT2-IR fibers were associated with hair follicles. Based on these data and those by Morris et al. [Morris JL, Konig P, Shimizu T, Jobling P, Gibbins IL (2005) Most peptide-containing sensory neurons lack proteins for exocytotic release and vesicular transport of glutamate. J Comp Neurol 483:1-16], we speculate that virtually all DRG neurons in adult mouse express VGLUTs and use glutamate as transmitter.  相似文献   

16.
骶髓后连合核接受盆内脏伤害性信息传入的形态学证明   总被引:2,自引:5,他引:2  
为阐明投射至骶髓后连合核的盆内脏初级传入中是否含有传递伤害性信息成分,本研究综合运用特异性标记初级传入C纤维的BSI-B4-HRP跨节追踪技术,神经干局部涂抹C纤维毒素CaPsaicin并结合SP免疫组化方法,研究了猫投射至骶髓后连合核的盆神经初级传入纤维中是否含有传递伤害性刺激的成分;同时观察了秋水仙素处理的骶2后根节内BSI-B4标记的初级传入神经元与SP免疫阳性神经元的关系。结果如下:(1)向盆神经注入BSI-B4-HRP,骶1~3后根节内出现平均直径34μm的标记细胞,后连合核内出现密集的标记终末,电镜下证明通过Lissauer氏束进入脊髓内的标记纤维均为无髓纤维;(2)对盆神经进行局部Capsaicin处理,引起后连合核内的SP免疫阳性纤维和终末明显减少;(3)骶2后根节内BSI-B4-FITC标记细胞有17%同时呈SP免疫阳性;(4)骶2后根节内BSI-B4-HRP标记的盆内脏初级传人神经元的39%同时呈SP免疫阳性。本研究结果在形态学上证实了骶髓后连合核接受盆腔内脏伤害性信息的传入,它可能是中继和整合盆内脏伤害性信息的低级中枢。  相似文献   

17.
18.
The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN binding to allosteric GAF domains, changes in expression levels, interaction with regulatory or anchoring proteins, and reversible translocation among subcellular compartments. Selective PDE inhibitors are currently in clinical use for treatment of erectile dysfunction, pulmonary hypertension, intermittent claudication, and chronic pulmonary obstructive disease; many new inhibitors are being developed for treatment of these and other maladies. Recently reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors. In addition, major advances have been made in understanding the physiological impact and the biochemical basis for selective localization and/or recruitment of specific PDE isoenzymes to particular subcellular compartments. The many recent advances in understanding PDE structures, functions, and physiological actions are discussed in this review.  相似文献   

19.
This study assessed the role of the Na+/H+ exchanger (NHE) in the formalin-induced nociception as well as the expression of the NHE isoform 1 (NHE1) in the rat spinal cord by using immunohistochemistry. Rats received a 50 μl injection of diluted formalin (0.5%). Nociceptive behavior was quantified as the number of flinches of the injected paw. Intrathecal administration of the partially selective NHE1 inhibitors DMA, EIPA (0.3-30 μM/rat) and the selective NHE1 inhibitor zoniporide (0.03-3 μM/rat) significantly increased formalin-induced flinching behavior in a dose-dependent manner during both phases of the test. Immunohistochemical analysis of the rat lumbar spinal cord showed that NHE1 was mainly expressed in the lamina I of the dorsal horn of the spinal cord. Double immunofluorescence staining showed co-localization of NHE1 with the peptide-rich sensory nerve fiber markers, substance P and calcitonin gene-related peptide, but not with markers of neuronal cell bodies (NeuN), microglia (OX-42) or astroglia (GFAP). Collectively, these pharmacological and anatomical results suggest that spinal NHE1 plays a role in formalin-induced nociception acting as a protective protein extruding H+.  相似文献   

20.
鸡胚脊髓背,腹角植块对脊神经节神经突起生长的影响   总被引:2,自引:0,他引:2  
利用作者改良的悬滴培养方法,将Hamburger35期鸡胚脊髓背、腹角植块分别与脊神经节联合培养,以单独脊神经节培养物作为参照.分别于培养24小时、60小时观察测量各个脊神经节神经突起的平均长度,比较两个观测时间各组脊神经节神经突起平均长度的变化以及同一观测时间内植块联合培养组间脊神经节神经突起平均长度的差异.结果发现:从培养24小时到60小时,各组脊神经节神经突起均明显增长;同一观测时间内,与脊髓背角植块联合培养的脊神经节神经突起平均长度显著大于与腹角植块联合培养者.该结果表明,鸡胚脊髓背、腹角植块对脊神经节神经突起生长的作用存在明显差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号