首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The goal of the present work was to investigate the influence of the viscosity classification of an acrylic bone cement on its in vitro fatigue performance, as determined in fully-reversed tension-compression (+/-15 MPa) fatigue tests. The test matrix comprised six commercially available bone cements [Orthoset1, (OS1), Orthoset(R)3 (OS3), CemexRX (CRX), Cemex XL (CXL), Palacos R (PR) and Osteopal (OP)], two methods of mixing the cement constituents (hand-mixing and vacuum-mixing), two methods of fabricating the test specimens (direct molding and molding followed by machining), two specimen cross-sectional shapes (rectangular or "flat" and circular or "round"), and four test frequencies (1, 2, 5, and 10 Hz). In total, 185 specimens, distributed among 20 sets, were tested. The test results (number of fatigue stress cycles, N_f) were processed using the linearized transformation of the three-parameter Weibull distribution, whence estimates of the Weibull mean, N_[WM], were obtained. Statistical analysis of the ln N_f results (Mann-Whitney test; alpha<0.05) and a comparison of the N_[WM] estimates for specimen sets in which the formulations have essentially the same composition but different viscosity classification (namely, OS1 versus OS3, CRX versus CXL, and PR versus OP) showed that, in the majority of the comparisons carried out, the viscosity classification of a bone cement does not exert a significant influence on its in vitro fatigue performance.  相似文献   

2.
The goal of the present work was to establish the relative influence of one exogenous variable versus one endogenous variable on the fully-reversed tension-compression fatigue performance of bone cement. The method used to mix the cement constituents was the exogenous variable, while the viscosity of the mixed cement dough was the endogenous variable. Two commercial cement formulations (Palacos R and Osteopal) and two cement mixing methods (hand mixing and vacuum mixing) were used. It was found that for a given mixing method, cement viscosity exerts a marginal influence on fatigue performance. On the other hand, for a given cement formulation, vacuum mixing led to a statistically significant improvement in fatigue performance. The present results demonstrate the superior influence of mixing method over cement viscosity.  相似文献   

3.
The weight-average molecular weight (MW(w)) of a cement and the method used to mix its powder and liquid monomer constituents have been identified in the literature as key variables that affect mechanical properties of the fully polymerized cement that are relevant to its performance as a grouting agent in cemented arthroplasties. The goal of the present work was to identify which of these two variables exerts the greater effect in the case of fully reversed tension-compression fatigue performance. A judicious choice of cement brands, Surgical Simplex P and Osteopal, and the use of hand versus vacuum mixing, permitted this identification to be achieved. Three key observations were made in this work. First, for a given cement, the fatigue performance of vacuum-mixed specimens is far superior to that of hand-mixed ones, which may be a consequence of the substantially lower percentage areal porosity of the former specimens. Second, regardless of the mixing method, the fatigue performance of Osteopal outstrips that of Simplex P, a result that is attributed to the much higher MW(w) of the former cement. Third, hand-mixed Osteopal outperforms vacuum-mixed Simplex P (especially at low alternating stress levels), indicating that MW(w) of a bone cement is more influential than mixing method on its fatigue performance.  相似文献   

4.
We have compared the capacity of clinically relevant wear debris from seven different cement types to activate macrophages to produce TNF-alpha, IL-1beta, IL-6 and bone resorbing activity in vitro. The bone cements were: CMW 1 original (PMMA only); CMW 1RO (1 microm BaSO4; 9.2%); CMW copolymer bone cement 1 (10 microm BaSO4; 10%); CMW copolymer bone cement 2 (1 microm BaSO4; 10%); Palacos R (10 microm ZrO2; 15.6%); CMW Calcium phosphate cement 20% (10 microm tri-calcium phosphate; 20%) and CMW calcium phosphate cement 30% (10 microm tri-calcium phosphate; 30%). Cement debris was produced aseptically using a simple configuration wear test. The majority of particles were in the size range 0.1-0.5 microm for each cement type. The cement particles were co-cultured with the U937 macrophage cell line at ratios of 10 and 100 microm3 particle volumes to macrophage cell numbers for 24 h. At the 10:1 ratio the particles had no effect on the cells. At the 100:1 ratio, the major cytokine produced was TNF-alpha and there were no statistical differences between the different types of cement debris. The bone resorption activity of the co-culture supernatants was significantly greater than the control (U937 cells without particles) for particles of CMW 1RO, CMW copolymer bone cement 1, CMW copolymer bone cement 2 and Palacos R (P < 0.05, ANOVA). However there were no statistical differences between the levels of bone resoprtion evoked by these four cement types. The CMW1 original and CMW calcium phosphate containing cements failed to induce the macrophages to elaborate bone resorption activity at the 100:1 ratio. These data suggest that the addition of radio-opaque additives to bone cement may increase the capacity of the debris to induce osteolysis.  相似文献   

5.
In this in vitro study, the formation of a Staphylococcus aureus biofilm on six gentamicin-loaded bone cements (CMW1, CMW3, CMW Endurance, CMW2000, Palacos, and Palamed) was determined in a modified Robbins device over a 3 days time span and related with previously (Van de Belt et al., Biomaterials 21 (2000) 1981) measured kinetics of antibiotic release by these cement brands. The influence of gentamicin release on biofilm formation was quantified by expressing the number of colony-forming units on gentamicin-loaded cement relative to the number of viable organisms on unloaded cement of the same brand. Biofilms formed on all gentamicin-loaded cements, despite the release of antibiotics, followed a consistent pattern in time with a maximum number of colony-forming units per unit cement area found between 24 and 30 h after inoculation. None of the gentamicin-loaded cements showed a reduction in biofilm formation relative to unloaded cements within 6 h after inoculation, whereas only gentamicin-loaded CMW1 and Palacos reduced biofilm formation 24 h after inoculation. Alternatively, CMW Endurance, CMW2000, and Palamed did not exhibit any initial reductions in biofilm formation, but effects started after 72, 48, and 72 h, respectively. Biofilm reduction by gentamicin-loaded CMW3 lasted the longest from 24 to 72 h. Interestingly, each cement seemed to have a different "window-of-effectiveness" with regard to reduction in biofilm formation that did not relate with the gentamicin-release kinetics. Summarising, this study demonstrates that although gentamicin loading of bone cements yields reductions in biofilm formation, S. aureus is able to grow on gentamicin-loaded bone cements.  相似文献   

6.
The composition and viscosity of an acrylic bone cement have both been identified in the literature as being parameters that affect the mechanical properties of the material and, by extension, the in vivo longevity of cemented arthroplasties. The objective of the present study was to determine the relative influence of these parameters on a key cement mechanical property; namely, its fracture toughness. Two sets of cements were selected purposefully to allow the study objective to be achieved. Thus, one set comprised two cements with very similar compositions but very different viscosities (Cemex RX, a medium-viscosity brand, and Cemex Isoplastic, a high-viscosity brand) while the other set comprised two cements with similar viscosities but with many differences in composition (Cemex Isoplastic and CMW 1). Values of the fracture toughness (as determined using chevron-notched short rod specimens) [K(ISR)] obtained for Cemex RX and Cemex Isoplastic were 1.83 +/- 0.12 and 1.85 +/- 0.12 MPa square root(m), respectively, with the difference not being statistically significant. The K(ISR) values obtained for Cemex Isoplastic and CMW 1 were 1.85 +/- 0.12 and 1.64 +/- 0.18 MPa square root(m), respectively, with the difference being statistically significant. Thus, the influence of cement composition on its K(ISR) is more marked relative to the influence of cement viscosity. Explanations of this finding are offered, together with comments on the implications of the results for the in vivo longevity of cemented arthroplasties.  相似文献   

7.
The haemolytic activity and the effect on the plasmatic phase of coagulation of seven bone cements were evaluated (Sulfix-60 from Sulzer Orthopedic Inc., a bone cement at low viscosity from Zimmer, a bone cement dough-type from Zimmer, Palacos R from Merck, CMW1, CMW2 and CMW3 from DePuy International Ltd.). Haemolytic activity was tested by adding the cement extracts in phosphate buffered saline to a suspension of erythrocytes. After 4 h incubation at 37 degrees C, the haemoglobin concentration was determined on the supernatants by colorimetric method. The effect on the plasmatic phase of coagulation was tested by adding the cement extracts in saline to human plasma. After 30 min incubation at room temperature activated partial thromboplastin time (APTT) was determined. All extracts induced non-significant variations of haemoglobin concentration and APTT. It was concluded that the tested cement extracts do not induce haemolysis and do not activate the intrinsic pathway of coagulation, at least in the tests that were performed.  相似文献   

8.
Tensile characteristics of ten commercial acrylic bone cements   总被引:1,自引:0,他引:1  
The mechanical properties of acrylic bone cement, used in orthopedic surgery, are very influential in determining successful long-term stability of a prosthesis. A large number of commercial formulations are available, differing in chemical composition and physical properties of both powder and monomer constituents. In this study, the static and dynamic tensile characteristics of a number of the most commonly used bone cements (Palacos R, Simplex P, CMW 1 & 3, Sulfix-60, Zimmer Dough), along with some newer formulations (Endurance, Duracem 3, Osteobondtrade mark and Boneloc), have been investigated under the same testing regimes. Testing was performed in air at room temperature. Significant differences in both static and fatigue properties were found between the various bone cements. Tensile tests revealed that Palacos R, Sulfix-60, and Simplex P had the highest values of ultimate tensile strength, closely followed by CMW 3, while Zimmer Dough cement had the lowest strength. Fatigue testing was performed under stress control, using sinusoidal loading in tension-tension, with an upper stress level of 22MPa. The two outstanding cements when tested in these cyclic conditions were Simplex P and Palacos R, with the highest values of Weibull median cycles to failure. Boneloc bone cement demonstrated the lowest cycles to failure. While the testing regimes were not designed to replicate exact conditions experienced by the bone cement mantle in vivo, there was a correlation between these results and clinical outcome.  相似文献   

9.
This study compared the effects of different sizes of three clinically relevant endotoxin free bone cement particles on primary human macrophage TNF-alpha production in vitro. The bone cements used were CMW original, CMW1RO and Palacos R. The cement wear debris was generated aseptically and then sequentially filtered to produce the size ranges 0.1-1 microm, 0.1-10 microm, 1-10 microm and >10 microm. The debris was cultured with human peripheral blood mononuclear cells at particle volume (microm(3)) per cell ratios of 100:1, 10:1 and 1:1. TNF-alpha production was determined by ELISA and cell viability by MTT conversion. CMW1RO particles induced increased TNF-alpha production by PBMNCs when tested in the size range 0.1-1 microm, and also to a lesser degree in the sizes 0.1-10 microm and 1-10 microm at the particle volume (microm(3)) to cell number ratios of 100:1 and 10:1.The increase in TNF-alpha production induced by Palacos R debris was only observed with the particle size ranges less than 10 microm at the ratio of 100:1. This study demonstrated that bone cement particles are capable of inducing raised TNF-alpha production in vitro. This is dependent upon cement particle size, volume and cement particle type, with cement particles containing radio-opaque additives being the most active.  相似文献   

10.
The objective of this study was to investigate the release mechanism and kinetics of the antimicrobial peptide, Dhvar-5, both alone and in combination with gentamicin, from a standard commercial polymethyl methacrylate (PMMA) bone cement. Different amounts of Dhvar-5 were mixed with the bone cement powders of Osteopal and the gentamicin-containing Osteopal G bone cement and their release kinetics from the polymerized cement were investigated. Additionally, the internal structure of the bone cements were analysed by scanning electron microscopy (SEM) of the fracture surfaces. Secondly, porosity was investigated with the mercury intrusion method and related to the observed release profiles. In order to obtain an insight into the mechanical characteristics of the bone cement mixtures, the compressive strength of Osteopal and Osteopal G with Dhvar-5 was also investigated. The total Dhvar-5 release reached 96% in the 100 mg Dhvar-5/g Osteopal cement, whereas total gentamicin release from Osteopal G reached only 18%. Total gentamicin release increased significantly to 67% with the addition of 50mg Dhvar-5/g, but the Dhvar-5 release was not influenced. SEM showed an increase of dissolved gentamicin crystals with the addition of Dhvar-5. The mercury intrusion results suggested an increase of small pores (< 0.1 microm) with the addition of Dhvar-5. Compressive strength of Osteopal was reduced by the addition of Dhvar-5 and gentamicin, but still remained above the limit prescribed by the ISO standard for clinical bone cements. We therefore conclude that the antimicrobial peptide, Dhvar-5, was released in high amounts from PMMA bone cement. When used together with gentamicin sulphate, Dhvar-5 made the gentamicin crystals accessible for the release medium presumably through increased micro-porosity (< 0.1 microm) resulting in a fourfold increase of gentamicin release.  相似文献   

11.
Lewis G  Janna S 《Biomaterials》2003,24(23):4315-4321
Constant-amplitude uniaxial tension-compression fatigue tests were conducted on specimens fabricated from 12 sets of acrylic bone cements, covering cement formulations with three different viscosities (so-called "high-", "medium-" and "low-viscosity" varieties), two different methods of mixing the cement constituents (so-called "hand-" and "vacuum-mixed" methods) and two test specimen shapes (rectangular-cross-sectioned or "flat" and circular-cross-sectioned or "round"). The test results-namely, the number of fatigue stress cycles, N(f)-were analyzed using the linearized transformation of the three-parameter Weibull relationship, allowing the values of the Weibull mean, N(WM), to be determined for each set. Values ranged from 14,300 to 1,284,331 for the round specimen sets and from 2898 to 72,960 for the flat specimen sets. Statistical analysis of the ln N(f) data, together with an examination of the N(WM) values, showed that, for any combination of cement formulation and mixing method, round specimens had significantly longer fatigue lives compared to flat ones. These results are explained in terms of two factors. The first is the smaller surface area of the waisted zone in the round specimens compared to that in the flat specimens (nominal value of 157mm(2) versus nominal value of 185mm(2)), leading to the possibility of fewer crack initiation sites on the round specimens compared to the flat ones. Secondly, it is postulated that the crystallinity of the round specimens was higher than that of the flat ones, a consequence of the significantly lower measured residual liquid monomer contents of the former compared to the latter (3.40+/-1.28wt%/wt compared to 3.81+/-1.48wt%/wt). The significance of the present finding is that it indicates that, for a set of bone cement formulation and experimental conditions, discriminating fatigue test results are more likely to be obtained if flat, rather than round, test specimens are used.  相似文献   

12.
Acrylic bone cements prepared with activators of reduced toxicity have been formulated with the aim of improving the biocompatibility of the final material. The activators used were N,N-dimethylaminobenzyl alcohol (DMOH) and 4,4'-dimethylamino benzydrol (BZN). The toxicity, cytotoxicity, and antiseptic action of these activators were first studied. DMOH and BZN presented LD50 values 3-4 times higher than DMT, were less cytotoxic against polymorphonuclear leucocytes, and possessed an antimicrobial character, with a high activity against the most representative microorganisms involved in postoperative infections. The properties of the acrylic bone cements formulated with DMOH and BZN were evaluated to determine the influence of these activators on the curing process and the physicochemical characteristics of the cements. A decrease of the peak temperature was observed for the curing with DMOH or BZN with respect to that of one commercially available formulation (CMW 3). However, residual monomer content and mechanical properties in tension and compression were comparable to those of CMW 3. The biocompatibility of acrylic bone cements containing DMOH or BZN was studied and compared with CMW 3. To that end, intramuscular and intraosseous implantation procedures were carried out and the results were obtained from the histological analysis of the surrounding tissues at different periods of time. Implantation of rods of cement into the dorsal muscle of rats showed the presence of a membrane of connective tissue, which increased in collagen fibers with time of implantation, for all formulations. The intraosseous implantation of the cements in the dough state in the femur of rabbits, revealed a higher and early osseous neoformation, with the presence of osteoid material surrounding the rest of the cured material, for the cement prepared with the activator BZN in comparison with that obtained following the implantation of the cement cured with DMOH or DMT (CMW 3).  相似文献   

13.
Modified polymethylmethacrylate (PMMA) bone cements formulations were prepared by including different proportions of gentamicin and release modulators such as lactose or hydroxypropylmethylcellulose (HPMC). Surface aspect, gentamicin release and porosity of these modified formulations were studied by means of scanning electron microscopy (SEM), a specially designed system for the dissolution studies of the bone cements, and mercury intrusion porosimetry. Lactose modified cements presented an irregular surface with numerous hollows and voids due to the lactose dissolution. HPMC cements presented a characteristic laminated and flaky surface. The drug release of lactose formulations was up to four-fold greater (13%) than the commercial bone cement CMW1 Gentamicin one (3%). The amount of gentamicin eluted at the first withdrawn sample ranged from 30% to 60% of total gentamicin released over the assay. Gentamicin release from lactose formulations increased as lactose percentage was increased which agree with the porosity results. Nevertheless, the use of release modulator HPMC increased porosity, but did not produce an increase in the gentamicin release. HPMC dissolution creates a surrounding sticky and viscous medium similar to a gel that makes the gentamicin release from the cement matrix difficult.  相似文献   

14.
Biological and mechanical properties of PMMA-based bioactive bone cements   总被引:6,自引:0,他引:6  
We reported previously that a bioactive PMMA-based cement was obtained by using a dry method of silanation of apatite-wollastonite glass ceramic (AW-GC) particles, and using high molecular weight PMMA particles. But handling and mechanical properties of the cement were poor (Mousa et al., J Biomed Mater Res 1999;47:336-44). In the present study, we investigated the effect of the characteristics of PMMA powder on the cement. Different cements containing different PMMA powders (CMW1, Surgical Simplex, Palacos-R and other two types of PMMA powders with Mw 270,000 and 1,200,000) and AW-GC filler in 70 wt% ratio except Palacos-R (abbreviated as B-CMW1 and B-Surg Simp, B-Palacos 50 [50 wt% AW-GC filler] and B-Palacos 70 [70 wt% AW-GC filler], B-270 and B-1200) were made. Dough and setting times of B-CMW1, B-Surg Simp B-270 and B-1200 were similar to the commercial CMW1 cement which did not contain bioactive powder (C-CMW1), but B-palacos which contained large PMMA beads with high Mw had delayed setting time. B-270 had the highest bending strength among the tested cements. After 4 and 8 weeks of implantation in the medullary canals of rat tibiae, the bone-cement interface was examined using SEM. The affinity index of B-1200 was significantly higher than the other types of cements. B-270 showed good combination of handling properties, high mechanical properties and showed higher bioactivity with minimal soft tissue interposition between bone and cement compared with commercial PMMA bone cement. This may increase the strength of the bone-cement interface and increase the longevity of cemented arthroplasties.  相似文献   

15.
This study examined the effects of in vitro challenge with four polymerized acrylic bone cements (Sulfix-60, CMW 1, CMW 2, and CMW 3) on the expression of interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and transforming growth factor-beta1 (TGF-beta1) mRNAs in the osteoblast-like cell line MG63. The extracts of the cements in minimal essential medium (MEM) were tested following 1-h and 7-day curing. A semi-quantitative analysis of the cytokine-specific mRNAs was carried out by agarose gel densitometry and expression was compared with the GAPDH housekeeping gene. The ratio between cytokine gene expression and GAPDH expression was calculated. The mRNA specific for the bone-resorbing cytokines IL-1beta and IL-6 was low in basal conditions. IL-1beta mRNA increased only after incubation with the extract of CMW 1 following 1-h curing. The mRNA specific for the bone-resorbing cytokine IL-6 also increased after contact with CMW 1 at both curing times. Sulfix-60 and CMW 3 following 7-day curing, but not after 1 h, induced higher levels of IL-6 mRNA than the control. CMW 2 after 1-h curing constantly determined the expression of IL-6 mRNA, but at low levels. The mRNA specific for TGF-beta1 was also expressed by the MG63 osteoblast-like cells in basal conditions. The levels increased after contact with Sulfix-60 after 7-day curing and with CMW 1 after 1-h curing. CMW 2 after 7-day curing decreased TGF-beta1 mRNA. In conclusion, the highest expression of the cytokines IL-1beta, IL-6, and TGF-beta1 mRNA was determined by CMW 1. If the results are confirmed in vivo, the increased expression of the osteolytic cytokines induced by the bone cement might result in loosening of the prosthesis, even with all the restrictions of an in vitro study on continuous cell lines.  相似文献   

16.
In all acrylic bone cement formulations in clinical use today, radiopacity is provided by micron-sized particles (typical mean diameter of between about 1 and 2 microm) of either BaSO(4) or ZrO(2). However, a number of research reports have highlighted the fact that these particles have deleterious effects on various properties of the cured cement. Thus, there is interest in alternative radiopacifiers. The present study focuses on one such alternative. Specifically, a cement that contains covalently bound iodine in the powder (herein designated the I-cement) was compared with a commercially available cement of comparable composition (C-ment3), in which radiopacity is provided by BaSO(4) particles (this cement is herein designated the B-cement), on the basis of the strength (sigma(b)), modulus (E(b)), and work-to-fracture (U(b)), under four-point bending, plane-strain fracture toughness (K(IC)), Weibull mean fatigue life, N(WM) (fatigue conditions: +/-15 MPa; 2 Hz), activation energy (Q), and frequency factor (ln Z) for the cement polymerization process (both determined by using differential scanning calorimetry at heating rates of 5, 10, 15, and 20 K min(-1)), and the diffusion coefficient for the absorption of phosphate-buffered saline at 37 degrees C (D). For the B-cement, the values of sigma(b), E(b), U(b), K(IC), N(WM), Q, ln Z, and D were 53 +/- 3 MPa, 3000 +/- 120 MPa, 108 +/- 15 kJ m(-3), 1.67 +/- 0.02 MPa check mark m, 7197 cycles, 243 +/- 17 kJ mol(-1), 87 +/- 6, and (3.15 +/- 0.94) x 10(-12) m(2) s(-1), respectively. For the I-cement, the corresponding values were 58 +/- 5 MPa, 2790 +/- 140 MPa, 118 +/- 45 kJ m(-3), 1.73 +/- 0.11 MPa check mark m, 5520 cycles, 267 +/- 19 kJ mol(-1), 95 +/- 9, and (3.83 +/- 0.25) x 10(-12) m(2) s(-1). For each of the properties of the fully cured cement, except for the rate constant of the polymerization reaction, at 37 degrees C (k'), as estimated from the Q and ln Z results, there is no statistically significant difference between the two cements. k' for the I-cement was about a third that for the B-cement, suggesting that the former cement has a higher thermal stability. The influence of various characteristics of the starting powder (mean particle size, particle size distribution, and morphology) on the properties of the cured cements appears to be complex. When all the present results are considered, there is a clear indication that the I-cement is a viable candidate cement for use in cemented arthroplasties in place of the B-cement.  相似文献   

17.
Based on the hypothesis that bone cements cause changes in the production of transforming growth factor-beta 1 (TGF-beta1) by bone cells, the effects of four acrylic bone cements (Sulfix-60, CMW 1, CMW 2 and CMW 3) were examined using the osteoblast-like cell line MG63. The extracts in MEM of the cements were tested, following 1 h- and 7 day-curing. MG63 cells seldom expressed mRNA specific for TGF-beta1 in basal conditions. The cultures expressed mRNA constantly after incubation with the extract of CMW 1 cured for 1 h. TGF-beta1 specific mRNA was seldom expressed after incubation with the other cement extracts. The release of TGF-beta1 into the conditioned medium was increased significantly by CMW 1 extract at 1 h-curing, but was not changed significantly by CMW 1 extract at 7 day-curing and by the extracts of the other cements, at both curing times. The stimulating effect of CMW 1 on the secretion of TGF-beta1, even with all the restrictions of an in vitro study of continuous cell lines, if confirmed in vivo, might favor the development of the synovial-like membrane around the implant, and therefore impair the chance of success of the prosthesis.  相似文献   

18.
We performed total hip arthroplasty (THA) using a special acrylic self-curing bone cement (Bonemite), which contains tri-n-butylborane as the initiator. Its maximum temperature at curing is lower than that of a conventional bone cement (CMW). Fifty-eight THAs using Bonemite and 35 THAs using CMW were followed up for more than 8 years (12.5 years on average). At the 10-year follow-up, the survival rates, using revision surgery or aseptic loosening impending revision as the endpoint for failure, were 92.2% for the patients in the Bonemite group and 91.0% for those in the CMW group. No statistical differences were observed between the patients in these two groups with regard to survival rate (p = 0.39). Bonemite showed no clear superiority compared with CMW, although the results suggest that Bonemite is safe and reliable for clinical use and stable in situ for long time.  相似文献   

19.
This study examined the effects of in vitro challenge with four polymerized acrylic bone cements (Sulfix-60®, CMW 1®, CMW 2®, and CMW 3®) on the expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and transforming growth factor-β1 (TGF-β1) mRNAs in the osteoblastlike cell line MG63. The extracts of the cements in minimal essential medium (MEM) were tested following 1-h and 7-day curing. A semi-quantitative analysis of the cytokine-specific mRNAs was carried out by agarose gel densitometry and expression was compared with the GAPDH house-keeping gene. The ratio between cytokine gene expression and GAPDH expression was calculated. The mRNA specific for the bone-resorbing cytokines IL-1β and IL-6 was low in basal conditions. IL-1β mRNA increased only after incubation with the extract of CMW 1® following 1-h curing. The mRNA specific for the bone-resorbing cytokine IL-6 also increased after contact with CMW 1® at both curing times. Sulfix-60® and CMW 3® following 7-day curing, but not after 1 h, induced higher levels of IL-6 mRNA than the control. CMW 2® after 1-h curing constantly determined the expression of IL-6 mRNA, but at low levels. The mRNA specific for TGF-β1 was also expressed by the MG63 osteoblast-like cells in basal conditions. The levels increased after contact with Sulfix-60® after 7-day curing and with CMW 1® after 1-h curing. CMW 2® after 7-day curing decreased TGF-β1 mRNA. In conclusion, the highest expression of the cytokines IL-1β, IL-6, and TGF-β1 mRNA was determined by CMW 1®. If the results are confirmed in vivo, the increased expression of the osteolytic cytokines induced by the bone cement might result in loosening of the prosthesis, even with all the restrictions of an in vitro study on continuous cell lines.  相似文献   

20.
Seven acrylic bone cements were evaluated: Cemex Rx (Tecres S.p.a., Italy), Cemex Isoplastic (Tecres S.p.a., Italy), Zimmer Low Viscosity Cement (L.V.C., Zimmer, IN, USA), Zimmer bone cement - dough type (Zimmer, IN, USA), CMW (DePuy International Ltd., UK), Cerim LT (Cremascoli S.r.l., Italy), and Palacos (Merck, Wehreim, Germany). The cements after polymerization were put in contact in vitro with platelet-rich plasma. Plasma in contact only with siliconated glass was used as the negative control. After contact, platelet number, beta-thromboglobulin (beta-TG), and transforming growth factor-beta1 (TGF-beta1) were determined. The Wilcoxon signed rank test showed Palacos R and L.V.C. induced a significant decrease of platelet number compared with the negative control. All cements determined a significant increase in beta-TG. CMW 3, Palacos, L.V.C., and Zimmer dough type determined a significant increase in TGF-beta1 compared with the negative control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号