首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-microelectrode voltage clamp method was used for measuring the voltage-dependent calcium current (ICa) in isolated nonidentified snail neurons. Intracellular injection of cyclic adenosine monophosphate (cAMP, 10nA, 5 min) and extracellular application of dibutyryl-cAMP (dcAMP, I mmol/l, 10-20 min) did not change the normal ICa or reversibly decreased the ICa amplitude by 10-20%. Extracellular application of antibodies against S-100 proteins resulted in a Ca2+-dependent inactivation of the ICa: the ICa amplitude dropped to 15 +/- 12% of its initial level; cAMP and dcAMP restored an amplitude of the inhibited ICa up to 50 +/- 11%. It is shown that the effect of cAMP on ICa of intact neurons depends on the cytoplasmic Ca2+-level.  相似文献   

2.
3.
Previously we have demonstrated that ibudilast, which is used clinically for treating patients with asthma and cerebrovascular diseases, prevents excitotoxicity of oligodendroglial lineage mediated by Ca2+ influx via non-N-methyl-D-aspartate (NMDA) glutamate receptor (GluR) channels. We here present a finding that ibudilast prevents oxygen-glucose deprivation (OGD)-induced oligodendroglial injury. The oligodendrocyte-like cells (OLC), differentiated from the CG-4 cell line established from rat oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells, were exposed to hypoxia in the absence of glucose for 12 h and subsequent reoxygenation for 2 h. Cell damage was evaluated by measuring activity of lactate dehydrogenase (LDH) released into the culture medium. OGD for 12 h induced 30 to 50% LDH release into the medium. OLC damage induced by deprivation of oxygen and glucose was prevented by ibudilast at concentrations of > or = 50 microM. The protection given by ibudilast against OGD-induced injury was enhanced by prostacyclin (PGI2). OGD-induced OLC injury was prevented by 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX), an inhibitor of non-NMDA GluR or deprivation of Ca2+ from culture medium. While ibudilast increased intracellular cAMP at concentrations of > or = 10 microM, at least 100 microM concentrations were needed to increase intracellular cGMP. Therefore, we concluded that ibudilast prevented OGD-induced oligodendroglial injury possibly by increasing intracellular cAMP which modulates Ca2+ influx via non-NMDA GluR channels.  相似文献   

4.
The effects of pituitary adenylate cyclase activating polypeptides (PACAPs: PACAP27, PACAP38) on glutamate-induced neurotoxicity were examined using cultured retinal neurons obtained from 3- to 5-day old Wistar rats. Cell viability was evaluated by double staining with fluorescein diacetate and propidium iodide. Effects of PACAPs on the increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in retinal neurons was investigated using the Ca(2+) image analyzing system with fura-2. The cAMP contents and the mitogen-activated protein (MAP) kinase activity in retinal cultures were measured by radioimmunoassay. Concomitant application of PACAPs (10 nM-1 microM) with glutamate (1 mM) for 10 min inhibited the delayed death of retinal neurons, which was observed 24 h after glutamate (1 mM) treatment in a dose-dependent manner. Protection by PACAPs (100 nM) against glutamate-induced neurotoxicity was antagonized by PACAP6-38 (1 microM), a PACAP antagonist, and H-89 (1 microM), a protein kinase A (PKA) inhibitor. However, PACAPs did not affect the glutamate-induced increase in [Ca(2+)](i), but PACAPs (1-100 nM) increased the cAMP levels in a dose-dependent manner. In addition, activation of MAP kinase by PACAP38 (1 microM) was inhibited by simultaneous application with H-89 (1 microM). These findings suggest that PACAPs attenuate glutamate-induced delayed neurotoxicity in cultured retinal neurons by activating MAP kinase through the activation of cAMP-stimulated PKA.  相似文献   

5.
Multiple Ca(2+) entry routes have been implicated in excitotoxic Ca(2+) loading in neurons and reverse-operation of sodium-calcium exchangers (NCX) has been shown to contribute under conditions where intracellular Na(+) levels are enhanced. We have investigated effects of KB-R7943, an inhibitor of reverse-operation NCX activity, on Ca(2+) elevations in single CA1 neurons in acute hippocampal slices. KB-R7943 had no significant effect on input resistance, action potential waveform, or action potential frequency adaptation, but reduced L-type Ca(2+) entry in somata. Nimodipine was therefore included in subsequent experiments to prevent complication from effects of L-type influx on evaluation of NCX activity. NMDA produced transient primary Ca(2+) increases, followed by propagating secondary Ca(2+) increases that initiated in apical dendrites. KB-R7943 had no significant effect on primary or secondary Ca(2+) increases generated by NMDA. The Na(+)/K(+) ATPase inhibitor ouabain (30 microM) produced degenerative Ca(2+) overload that was initiated in basal dendrites. KB-R7943 significantly reduced initial Ca(2+) increases and delayed the propagation of degenerative Ca(2+) loads triggered by ouabain, raising the possibility that excessive intracellular Na(+) loading can trigger reverse-operation NCX activity. A combination of NMDA and ouabain produced more rapid Ca(2+) overload, that was contributed to by NCX activity. These results suggest that degenerative Ca(2+) signaling can be triggered by NMDA in dendrites, before intracellular Na(+) levels become sufficient to reverse NCX activity. However, since Na(+)/K(+) ATPase inhibition does appear to produce significant reverse-operation NCX activity, this additional Ca(2+) influx pathway may operate in ATP-deprived CA1 neurons and play a role in ischemic neurodegeneration.  相似文献   

6.
A Baba  S Etoh  H Iwata 《Brain research》1991,557(1-2):103-108
The role of intracellular Zn2+ in the translocation of protein kinase C from cytosol to membrane fractions was examined by the [3H]phorbol 12,13-dibutyrate (PDBu) binding method in guinea pig cerebral synaptoneurosomes. N-methyl-D-aspartate (NMDA, 100 microM) and calcium ionophore A23187 (0.3-30 microM) decreased the binding activity in the cytosol with a concomitant increase in the membrane fractions. Pretreatment of synaptoneurosomes with a heavy metal chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN), inhibited the NMDA- and A23187-induced changes of the distribution of [3H]PDBu binding sites in cytosol and membrane fractions. The inhibitory effect of TPEN was negated by a preincubation of TPEN with equimolar Zn2+ but not by that with Ca2+. The addition of 500 microM Zn2+ to the lysate of synaptoneurosomes induced an increase of [3H]PDBu binding activity in the membrane fraction with a concomitant decrease in the cytosol fraction, as did 100 microM Ca2+. Low concentrations of Zn2+ (10 microM), which alone had no effect on the distribution of the binding, significantly enhanced the effect of 10 microM Ca2+ in the lysate. Under those conditions TPEN inhibited the Zn(2+)-potentiated Ca(2+)-dependent changes in the binding. These results suggest that intracellular Zn2+ is essential for the agonist-induced translocation of protein kinase C in guinea pig synaptoneurosomes.  相似文献   

7.
The effect of N-methyl-D-aspartate (NMDA) on the glycine (Gly) response was examined in neurons acutely dissociated from the rat sacral dorsal commissural nucleus (SDCN) using the nystatin-perforated patch-recording configuration under voltage-clamp conditions. The application of 100 microM NMDA to SDCN neurons reversibly potentiated Gly-activated Cl- currents (IGly) without affecting the Gly binding affinity and the reversal potential of IGly. A selective NMDA receptor antagonist, APV (100 microM), blocked the NMDA-induced potentiation of IGly, whereas 50 microM CNQX, a non-NMDA receptor antagonist, did not. The potentiation effect was reduced when NMDA was applied in a Ca2+-free extracellular solution or in the presence of BAPTA AM, and was independent of the activation of voltage-dependent Ca2+ channels. Pretreatment with KN-62, a selective Ca2+-calmodulin-dependent protein kinase II (CaMKII) inhibitor, abolished the NMDA action. Inhibition of calcineurin (CaN) further enhanced the NMDA-induced potentiation of IGly. In addition, the GABAA receptor-mediated currents were suppressed by NMDA receptor activation in the SDCN neurons. The present results show that Ca2+ entry through NMDA receptors modulates the Gly receptor function via coactivation of CaMKII and CaN in the rat SDCN neurons. This interaction may represent one of the important regulatory mechanisms of spinal nociception. The results also suggest that GABAA and Gly receptors may be subject to different intracellular modulatory pathways.  相似文献   

8.
M Okada  A Urae  K Iwasaki  K Mine  M Fujiwara 《Brain research》1992,583(1-2):227-236
The effects of non-competitive NMDA antagonists, MK-801 and dextrorphan in relation to the rise in intracellular Ca2+ concentrations ([Ca2+]i) after stimulation with 15 mM K+ in whole brain synaptosomes from young (3 months old) and aged (24 months old) Fisher344 rats were examined. A fluorescent chelating agent, Rhod-2, was employed to monitor any alterations of K(+)-evoked [Ca2+]i. In young rats, the rise in [Ca2+]i following depolarization was affected by neither dextrorphan (1, 10, 100 microM) nor MK-801 (0.1, 1, 10 microM), while in aged rats, 1 microM dextrorphan and 0.1 microM MK-801 brought about a significant increase in [Ca2+]i following depolarization. In low Mg2+ medium, 10 microM MK-801 and 100 microM dextrorphan significantly inhibited the rise in [Ca2+]i after stimulation with 15 mM K+ in young rats, while neither dextrorphan nor MK-801 could affect the rise in [Ca2+]i significantly in aged rats. When 100 microM NMDA was applied in a medium containing 1.2 mM Mg2+, the rise in [Ca2+]i following depolarization was slightly inhibited by 1 microM MK-801 in young rats, but it was not inhibited significantly by dextrorphan. In aged rats, both 100 microM dextrorphan and 10 microM MK-801 strongly inhibited the rise in [Ca2+]i following depolarization in the presence of 100 microM NMDA. Instead of NMDA, when 100 microM alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), a non-NMDA receptor agonist, was applied, dextrorphan did not inhibit the rise in [Ca2+]i. In low Mg2+ medium, 100 microM NMDA potentiated the inhibitory effect of 10 microM dextrorphan in young rats, while 100 microM dextrorphan or MK-801 did not show any further inhibition by adding 100 microM NMDA. The addition of 100 microM AMPA did not affect the effect of dextrorphan in a low Mg2+ medium in young rats. These results suggest that NMDA antagonist-mediated [Ca2+]i homeostatic system may alter through aging. In addition, the findings that NMDA potentiated the inhibitory effect of NMDA antagonist, which being further potentiated by aging or lowered extrasynaptosomal Mg2+, indicate the possibility that the Mg2+ block to NMDA receptors might be attenuated through aging.  相似文献   

9.
Experiments were conducted on isolated unidentified snail neurons using the method of voltage clamp by two-microelectrodes. The intracellular level of cAMP was increased either by intracellular injection of the cAMP or by extracellular application of dcAMP or isobutylmethylxanthine. The inhibitory effect of cAMP on the ICa was investigated as well as on the IBa. Intracellular injection of cGMP into the same neurons through multibarrel microelectrodes enhanced the ICa, while application of the phorbol ester had no effect on the ICa. Intracellular injection of EGTA enhanced the ICa, but the inhibitory effect of cAMP on the ICa was not changed in the presence of EGTA. Tolbutamide and H-8 (to the less degree) reduced the ICa. In 6 from 12 experiments the inhibitory effects of tolbutamide and dcAMP on ICa were not additive. The results suggest that the inhibitory effect of cAMP on the ICa is not due to the activation of cAMP- or cGMP-dependent protein kinase or protein kinase C. The cAMP effect does not depend on the cytoplasmic Ca2(+)-level. The possibility of the direct cAMP interaction with the Ca2(+)-channel is discussed.  相似文献   

10.
Serotonin (5-HT) has previously been shown to evoke an increase in the duration of the Ca2+-dependent spike of molluscan neurons by decreasing the S current (Klein et al., 1982), a K+ current controlled by cAMP. However, in a group of identified ventral neurons of the snail Helix aspersa in which 5-HT (1-10 microM) also prolonged the duration of the Ca2+-dependent action potential, no 5-HT-induced depression of S current or of any other outward current was observed. Instead, 5-HT was found to evoke the prolongation of the somatic spike by inducing an increase in Ca2+ membrane conductance. This 5-HT-induced increase of Ca2+-current was mimicked neither by the intracellular injection of cAMP nor by the extracellular application of forskolin (20 microM). In contrast, it was mimicked by the intracellular injection of cGMP and by the extracellular application of 100 nM zaprinast, a cGMP-phosphodiesterase inhibitor. The extracellular application of phorbol ester TPA (100 nM), an activator of protein kinase C, was also found to increase the Ca2+ current in the identified snail ventral neurons, but this enhancing effect had a different time course from that induced by 5-HT. These results indicate that there is a second mechanism for prolonging the Ca2+ spike of molluscan neurons, consisting of an increase in Ca2+ current, in which cGMP may play a role as second messenger.  相似文献   

11.
Presynaptic NMDA autoreceptors regulating glutamate release have rarely been investigated. High-micromolar N-methyl-D-aspartate (NMDA) was reported to elicit glutamate release from hippocampal synaptosomes in a Ca(2+)-independent manner by reversal of excitatory amino acid transporters. The aim of this work was to characterize excitatory amino acid release evoked by low-micromolar NMDA from glutamatergic axon terminals. Purified rat hippocampal synaptosomes were prelabelled with [(3)H]D-aspartate ([(3)H]D-ASP) and exposed in superfusion to varying concentrations of NMDA in the presence of 1 microM glycine. The release of [(3)H]D-ASP and also that of endogenous glutamate provoked by 10 microM NMDA were external Ca(2+) dependent and sensitive to the NMDA channel blocker MK-801 but insensitive to the glutamate transporter inhibitor DL-TBOA, which, on the contrary, prevented the Ca(2+)-independent release evoked by 100 microM NMDA. The NMDA (10 microM) response was blocked by 1 nM Zn(2+) and 1 microM ifenprodil, compatible with the involvement of a NR1/NR2A/NR2B assembly, although the presence of two separate receptor populations, i.e., NR1/NR2A and NR1/NR2B, cannot be excluded. This response was strongly antagonized by submicromolar (0.01-1 microM) concentrations of kynurenic acid and was mimicked by quinolinic acid (1-100 microM) plus 1 microM glycine. Finally, the HIV-1 protein gp120 potently mimicked the NMDA co-agonists glycine and D-serine, being significantly effective at 30 pM. In conclusion, glutamatergic nerve terminals possess NMDA autoreceptors mediating different types of release when activated by different agonist concentrations: low-micromolar glutamate would potentiate glutamate exocytosis, whereas higher glutamate concentrations would also provoke carrier-mediated release.  相似文献   

12.
Bonansco C  Buño W 《Hippocampus》2003,13(1):150-163
This article reports the cellular mechanisms underlying a form of intracellular "theta-like" (theta-like) rhythm evoked in vitro by microiontophoresis of N-methyl-D-aspartate (NMDA) at the apical dendrites of CA1 pyramidal neurons. Rhythmic membrane potential (Vm) oscillations and action potential (AP) bursts (approximately 6 Hz; approximately 20 mV; approximately 2-5 APs) were evoked in all cells. The response lasted approximately 2 s, and the initial oscillations were usually small (< 20 mV) and below AP threshold. Rhythmic bursts were never evoked by imposed depolarization in the absence of NMDA. Block of Na+ conductance with tetrodotoxin (TTX) (1.5 microM), of non-NMDA receptors with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (20 microM) and of synaptic inhibition by bicuculline (50 microM) and picrotoxin (50 microM) did not prevent NMDA oscillation. Inhibition of the voltage dependence of the NMDA conductance in Mg2+-free Ringer's solution blocked oscillations. Preventing Ca2+ influx with Ca2+-free and Co2+ (2-mM) solutions and block of the slow Ca2+-dependent afterhyperpolarization (sAHP) by carbamilcholine (5 microM), isoproterenol (10 microM), and intracellular BAPTA blocked NMDA oscillations. Inhibition of L-type Ca2+ conductance with nifedipine (30 microM) reduced oscillation amplitude. Block of tetraethylammonium (TEA) (10 mM) and 4AP (10 mM)-sensitive K+ conductance increased the duration and amplitude, but not the frequency, of oscillations. In conclusion, theta-like bursts relied on the voltage dependence of the NMDA conductance and on high-threshold Ca2+ spikes to initiate and boost the depolarizing phase of oscillations. The repolarization is initiated by TEA-sensitive K+ conductance and is controlled by the sAHP. These results suggest a role of interactions between NMDA conductance and intrinsic membrane properties in generating the CA1 theta-rhythm.  相似文献   

13.
The role of intracellular Ca(2+) stores in the control of brain activity was investigated in microdialysis experiments by monitoring changes in the extracellular concentration of amino acids (AA) in the hippocampus of the rat after intracerebroventricular (icv) administration of the intracellular Ca(2+) release blocker, dantrolene in vivo, as well as in D-aspartate release and transmembrane Ca(2+) flux measurements in dantrolene-treated (50 microM) hippocampal homogenates containing resealed plasmalemma fragments and nerve endings in vitro. Microdialysis data demonstrate that icv injection of 0.6 mM dantrolene significantly decreases ( approximately 20%) the background (Glu) in the hippocampus. Both the (Glu; approximately 300%) and the inhibitory effect of dantrolene thereupon ( approximately 50%) was significantly increased when 0.5 mM of the Glu uptake inhibitor, L-trans-pyrrolidine-2,4-dicarboxylic acid, was dialysed into the hippocampus. NMDA and (S)-AMPA induced [(3)H]-D-aspartate release in hippocampal homogenates. Preincubation of these homogenates with 50 microM dantrolene was found to reduce the response to NMDA, but not to (S)-AMPA, in a NMDA-dependent manner. Increased rates of transmembrane influx and efflux of Ca(2+) in hippocampal homogenates with half-times of 4 ms and 200 ms, respectively, can be observed by the addition of 100 microM NMDA as recorded using a stopped-flow UV/fluorescence spectrometer in combination with the Ca(2+) indicator dye, bisfura-2. Both the Ca(2+) influx and efflux rates of the NMDA response were reduced (25-fold and >5-fold, respectively) in homogenates preloaded with 50 microM dantrolene. These results suggest a role for NMDA-inducible intracellular Ca(2+) stores in the control of normal brain activity in vivo.  相似文献   

14.
Dopamine (1 microM) inhibits the Ca component of action potential and corresponding electroexcitable Ca current (ICa) in isolated snail neurons. Adrenaline and serotonin also reduce ICa. The inhibition is not related to changes in intracellular Ca2+ or cAMP concentrations: internal application of 10 mM ethyleneglycoltetraacetic acid or 10 microM cAMP in the mixture with 1 mM Mg-ATP and 2 mM theophylline does not influence the action of neurotransmitters on ICa.  相似文献   

15.
Fast excitatory transmission in the nervous system is mostly mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors whose subunit composition governs physiological characteristics such as ligand affinity and ion conductance properties. Here, we report that AMPA receptors at inner hair cell (IHC) synapses lack the GluR2 subunit and are transiently Ca2+-permeable before hearing onset as evidenced using agonist-induced Co2+ accumulation, Western blots and GluR2 confocal microscopy in the rat cochlea. AMPA (100 microM) induced Co2+ accumulation in primary auditory neurons until postnatal day (PND) 10. This accumulation was concentration-dependent, strengthened by cyclothiazide (50 microM) and blocked by GYKI 52466 (80 microM) and Joro spider toxin (1 microM). It was unaffected by D-AP5 (50 microM), and it could not be elicited by 56 mM K+ or 1 mM NMDA + 10 microM glycine. Western blots showed that GluR1 immunoreactivity, present in homogenates of immature cochleas, had disappeared by PND12. GluR2 immunoreactivity was not detected until PND10 and GluR3 and GluR4 immunoreactivities were detected at all the ages examined. Confocal microscopy confirmed that the GluR2 immunofluorescence was not located postsynaptically to IHCs before PND10. In conclusion, AMPA receptors on maturing primary auditory neurons differ from those on adult neurons. They are probably composed of GluR1, GluR3 and GluR4 subunits and have a high Ca2+ permeability. The postsynaptic expression of GluR2 subunits may be continuously regulated by the presynaptic activity allowing for variations in the Ca2+ permeability and physiological properties of the receptor.  相似文献   

16.
Cerebellar Purkinje neurons contain a remarkable array of cellular components potentially concerned with regulation of the free cytoplasmic Ca2+ concentration, [Ca2+]i. These include high concentrations of Ca(2+)-binding proteins, inositol 1,4,5-triphosphate receptors (IP3R), and ryanodine receptors (RyR). The latter two molecules are thought to be associated with intracellular Ca2+ stores. We have examined the properties of such stores in cultured rat cerebellar neurons taken from 16 d rat embryos. In this system, about half of the neurons could be identified as Purkinje-like cells, as indicated by staining for the Ca(2+)-binding protein calbindin D-28k, as well as for IP3R and RyR. In double immunofluorescent staining, the IP3R and RyR immunoreactivity primarily colocalized with the staining for calbindin. The cells responded to glutamate, kainate, and quisqualate with large increases in the somatic [Ca2+]i but failed to respond directly to NMDA (10-50 microM). Furthermore, the neurons expressed active membrane conductances, repetitive action potential firing, and spontaneous firing patterns similar to those reported for cerebellar Purkinje neurons in vivo. Action potential firing produced changes in somatic [Ca2+]i that were quite small or absent in most cells. However, blocking spike repolarization with tetraethylammonium (5 mM) produced substantial transient elevations in somatic [Ca2+]i, suggesting the expression of some Ca2+ channels in the somatic membrane. Caffeine (10 mM) released Ca2+ from intracellular stores in about one-half of the cultured neurons. This effect could be repeated if the stores were first reloaded by a depolarization-induced elevation in [Ca2+]i. The effects of caffeine were reduced by prolonged application of ryanodine (10 microM). We were also able to demonstrate that the caffeine-sensitive Ca2+ stores could regulate electrophysiological events in some cells, altering patterns of spontaneous activity. Furthermore, in the presence of caffeine, [Ca2+]i signals induced by an evoked spike train were larger and accompanied by long-lasting after hyperpolarizations. We conclude that in addition to providing a releasable pool of Ca2+, the caffeine-sensitive stores also influence cellular events by their contribution to Ca2+ buffering.  相似文献   

17.
A mechanism for neuroprotection of interleukin-6 (IL-6) via reduction of intracellular Ca2+ overload induced by N-methyl-D-aspartate (NMDA) was explored. Cerebellar granule neurons (CGNs) from postnatal 8-day infant rats were chronically exposed to IL-6 for 8 days. Confocal laser scanning microscope was used to measure dynamic changes of intracellular Ca2+ fluorescence intensity. NMDA triggered an acute and sustaining enhancement of intracellular Ca2+ fluorescence intensity in the cultured CGNs, whereas NMDA stimulation of the neurons that had been exposed to IL-6 reduced the intracellular Ca2+ fluorescence intensity relative to that of non-IL-6-pretreated neurons. Ethylene glycol bis(aminoethylether) tetraacetate (EGTA), a chelator of extracellular Ca2+, decreased the intracellular Ca2+ overload triggered by NMDA. The component of intracellular Ca2+ overload after EGTA treatment was prevented by IL-6 chronic exposure. Cotreatment with dantrolene sodium (DAN) and 2-aminoethoxydiphenylborate (2-APB), blockers of ryanodine receptor (RyR) and inositol 1,4,5-trisphosphate receptor (IP3R), respectively, also decreased the intracellular Ca2+ overload triggered by NMDA. However, the component of intracellular Ca2+ overload after DAN and 2-APB treatment was only slightly but not significantly diminished by IL-6. These results suggest that IL-6 has a neuroprotective effect against NMDA-induced intracellular Ca2+ overload, and that the effect is implemented primarily via a suppression of Ca2+ release from the intracellular Ca2+ store.  相似文献   

18.
Hippocampal interneurons are generally more resistant than pyramidal cells to excitotoxic insults. Because NMDA receptors play a crucial role in neurodegeneration, we have compared the response to exogenous NMDA in CA1 pyramidal cells and interneurons of the stratum oriens using combined whole-cell patch-clamp recording and ratiometric Ca2+ imaging. In voltage-clamp, current-clamp or in nominally Mg2+-free medium, NMDA (10 microM; 3-5 min exposure in the presence of tetrodotoxin) induced a markedly larger inward current and Ca2+ rise in pyramidal cells than in interneurons. Pyramidal cells also showed a more pronounced voltage dependence in their response to NMDA. We hypothesized that this enhanced response to NMDA receptor activation in pyramidal cells could underlie their increased vulnerability to excitotoxicity. Using loss of dye as an indicator of degenerative membrane disruption, interneurons tolerated continuous exposure to a high concentration of NMDA (30 microM) for longer periods than pyramidal cells. This acute neurodegeneration in pyramidal cells was independent of intracellular Ca2+, because high intracellular BAPTA (20 mM) did not prolong survival time. Thus, a plausible explanation for the enhanced sensitivity of pyramidal neurons to excitotoxic insults associated with cerebral ischemia is their greater response to NMDA receptor activation, which may reflect differences in NMDA receptor expression and/or subunit composition.  相似文献   

19.
Studies with in-vitro-cultured neurons treated with amyloid-beta (A beta) peptides demonstrated neuronal loss by apoptosis that is due, at least in part, to the perturbation of intracellular Ca(2+) homeostasis. In addition, it was shown that an endoplasmic reticulum (ER)-specific apoptotic pathway mediated by caspase-12, which is activated upon the perturbation of ER Ca(2+) homeostasis, may contribute to A beta toxicity. To elucidate the involvement of deregulation of ER Ca(2+) homeostasis in neuronal death induced by A beta peptides, we have performed a comparative study using the synthetic peptides A beta(25-35) or A beta(1-40) and thapsigargin, a selective inhibitor of Ca(2+) uptake into the ER. Incubation of cortical neurons with thapsigargin (2.5 microM) increased the intracellular Ca(2+) levels and activated caspase-3, leading to a significant increase in the number of apoptotic cells. Similarly, upon incubation of cortical cultures with the A beta peptides (A beta(25-35), 25 microM; A beta(1-40), 0.5 microM), we observed a significant increase in [Ca(2+)](i), in caspase-3-like activity, and in number of neurons exhibiting apoptotic morphology. The role of ER Ca(2+) release through ryanodine receptors (RyR) or inositol 1,4,5-trisphosphate receptors (IP(3)R) in A beta neurotoxicity has been also investigated. Dantrolene and xestospongin C, inhibitors of ER Ca(2+) release through RyR or IP(3)R, were able to prevent the increase in [Ca(2+)](i) and the activation of caspase-3 and to protect partially against apoptosis induced by treatment with A beta(25-35) or A beta(1-40). In conclusion, our results demonstrate that the release of Ca(2+) from the ER, mediated by both RyR and IP(3)R, is involved in A beta toxicity and can contribute, together with the activation of other intracellular neurotoxic mechanisms, to A beta-induced neuronal death. This study suggests that A beta accumulation may have a key role in the pathogenesis of AD as a result of deregulation of ER Ca(2+) homeostasis.  相似文献   

20.
We have studied the action of glutamate on striatal tyrosine hydroxylase activity and determined which type of glutamate receptors are involved. Glutamate stimulated (EC50 = 4 +/- 2 microM) the activity of tyrosine hydroxylase in slices of rat neostriatum. The selective N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate (10 microM) blocked the stimulation; however, both the non-NMDA receptor antagonist glutamate diethyl ester (10 microM) and the general excitatory amino acid antagonist kynurenate (10 microM) had no effect. NMDA was even more potent than glutamate in stimulating tyrosine hydroxylase activity. Quisqualate (100 microM) only slightly stimulated the enzyme, and kainate had practically no effect. Omission of Mg2+ from the incubation medium potentiated the glutamate stimulation. Neither tetrodotoxin nor atropine prevented the stimulation. These results suggest that glutamate stimulates striatal tyrosine hydroxylase activity via NMDA receptors. The lack of effect of tetrodotoxin and atropine suggests that glutamate acts on NMDA receptors located on the dopaminergic nigrostriatal terminal. The stimulation may involve the entry of Ca2+ into the terminal through the NMDA receptor ionophore, since a Ca(2+)-free medium or cadmium totally blocked the stimulation of the enzyme by glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号