首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Implantoplasty is a mechanical decontamination technique that consists of polishing the supra-osseous component of the dental implant with peri-implantitis. This technique releases metal particles in the form of metal swarf and dust into the peri-implant environment. In the present in vitro study, the following physicochemical characterization tests were carried out: specific surface area, granulometry, contact angle, crystalline structure, morphology, and ion release. Besides, cytotoxicity was in turn evaluated by determining the fibroblastic and osteoblastic cell viability. As a result, the metal debris obtained by implantoplasty presented an equivalent diameter value of 159 µm (range 6–1850 µm) and a specific surface area of 0.3 m2/g on average. The particle had a plate-like shape of different sizes. The release of vanadium ions in Hank’s solution at 37 °C showed no signs of stabilization and was greater than that of titanium and aluminum ions, which means that the alloy suffers from a degradation. The particles exhibited cytotoxic effects upon human osteoblastic and fibroblastic cells in the whole extract. In conclusion, metal debris released by implantoplasty showed different sizes, surface structures and shapes. Vanadium ion levels were higher than that those of the other metal ions, and cell viability assays showed that these particles produce a significant loss of cytocompatibility on osteoblasts and fibroblasts, which means that the main cells of the peri-implant tissues might be injured.  相似文献   

2.
In the field of implant dentistry there are several mechanisms by which metal particles can be released into the peri-implant tissues, such as implant insertion, corrosion, wear, or surface decontamination techniques. The aim of this study was to evaluate the corrosion behavior of Ti6Al4V particles released during implantoplasty of dental implants treated due to periimplantitis. A standardized protocol was used to obtain metal particles produced during polishing the surface of Ti6Al4V dental implants. Physicochemical and biological characterization of the particles were described in Part I, while the mechanical properties and corrosion behavior have been studied in this study. Mechanical properties were determined by means of nanoindentation and X-ray diffraction. Corrosion resistance was evaluated by electrochemical testing in an artificial saliva medium. Corrosion parameters such as critical current density (icr), corrosion potential (ECORR), and passive current density (iCORR) have been determined. The samples for electrochemical behavior were discs of Ti6Al4V as-received and discs with the same mechanical properties and internal stresses than the particles from implantoplasty. The discs were cold-worked at 12.5% in order to achieve the same properties (hardness, strength, plastic strain, and residual stresses). The implantoplasty particles showed a higher hardness, strength, elastic modulus, and lower strain to fracture and a compressive residual stress. Resistance to corrosion of the implantoplasty particles decreased, and surface pitting was observed. This fact is due to the increase of the residual stress on the surfaces which favor the electrochemical reactions. The values of corrosion potential can be achieved in normal conditions and produce corroded debris which could be cytotoxic and cause tattooing in the soft tissues.  相似文献   

3.
The procedure generally used to remove bacterial biofilm adhering to the surface of titanium on dental implants is implantoplasty. This treatment is based on the machining of the titanium surface to remove bacterial plaque. In this study, we used 60 grade 4 titanium implants and performed the implantoplasty protocol. Using X-ray diffraction, we determined the stresses accumulated in each of the as-received, machined and debris implants. The resistance to corrosion in open circuit and potentiodynamically in physiological medium has been determined, and the corrosion potentials and intensities have been determined. Tests have been carried out to determine ion release by ICP-MS at different immersion times. The results show that the corrosion resistance and the release of titanium ions into the medium are related to the accumulated energy or the degree of deformation. The titanium debris exhibit compressive residual stresses of −202 MPa, the implant treated with implantoplasty −120 MPa, and as-received −77 MPa, with their corrosion behavior resulting in corrosion rates of 0.501, 0.77, and 0.444 mm/year, respectively. Debris is the material with the worst corrosion resistance and the one that releases the most titanium ions to the physiological medium (15.3 ppb after 21 days vs. 7 ppb for as-received samples). Pitting has been observed on the surface of the debris released into the physiological environment. This behavior should be taken into account by clinicians for the good long-term behavior of implants with implantoplasty.  相似文献   

4.
The corrosive titanium products in peri-implant tissues are a potential risk factor for peri-implantitis. There is very limited information available on the effect of the corrosion and wear products on the dental implant corrosion. Therefore, we determined the influence of Ti-ions and Ti-particles on Ti corrosion. Eighteen commercially pure-Ti-grade-2 discs were polished to mirror-shine. Samples were divided into six groups (n = 3) as a function of electrolytes; (A) Artificial saliva (AS), (B) AS with Ti-ions (the electrolyte from group A, after corrosion), (C) AS with Ti-particles 10 ppm (D) AS with Ti-particles 20 ppm, (E) AS with Ti-ions 10 ppm, and (F) AS with Ti-ions 20 ppm. Using Tafel’s method, corrosion potential (Ecorr) and current density (Icorr) were estimated from potentiodynamic curves. Electrochemical Impedance Spectroscopy (EIS) data were used to construct Nyquist and Bode plots, and an equivalent electrical circuit was used to assess the corrosion kinetics. The corroded surfaces were examined through a 3D-white-light microscope and scanning electronic microscopy. The data demonstrated that the concentration of Ti-ions and corrosion rate (Icorr) are strongly correlated (r = 0.997, p = 0.046). This study indicated that high Ti-ion concentration potentially aggravates corrosion. Under such a severe corrosion environment, there is a potential risk of increased implant associated adverse tissue reactions.  相似文献   

5.
Corrosion of titanium dental implants has been associated with implant failure and is considered one of the triggering factors for peri-implantitis. This corrosion is concerning, because a large amount of metal ions and debris are generated in this process, the accumulation of which may lead to adverse tissue reactions in vivo. The goal of this study is to investigate the mechanisms for implant degradation by evaluating the surface of five titanium dental implants retrieved due to peri-implantitis. The results demonstrated that all the implants were subjected to very acidic environments, which, in combination with normal implant loading, led to cases of severe implant discoloration, pitting attack, cracking and fretting-crevice corrosion. The results suggest that acidic environments induced by bacterial biofilms and/or inflammatory processes may trigger oxidation of the surface of titanium dental implants. The corrosive process can lead to permanent breakdown of the oxide film, which, besides releasing metal ions and debris in vivo, may also hinder re-integration of the implant surface with surrounding bone.  相似文献   

6.
The aim of the present study is to compare two different implant surface chemistries of failing dental implants. Sixteen patients (mean age: 52 ± 8.27 with eight females and eight males) and 34 implants were included in the study. Group-I implants consisted of a blasted/etched surface with a final process surface, while Group-II implants consisted of the sandblasted acid etching (SLA) method. The chemical surface analysis was performed by the energy dispersive X-ray spectroscopy (EDX) method from coronal, middle, and apical parts of each implant. Titanium (Ti) element values were found to be 20.22 ± 15.7 at.% in Group I and 33.96 ± 13.62 at.% in Group-II in the middle of the dental implants. Aluminum (Al) element values were found to be 0.01 ± 0.002 in Group-I and 0.17 ± 0.28 at.% in Group II in the middle of the dental implants, and statistically significant differences were found between the groups for the Al and Ti elements in the middle of the dental implants (p < 0.05). There was a statistically significant difference for the Ti, Al, O, Ca, Fe, P, and Mg elements in the coronal, middle, and apical parts of the implants in the intragroup evaluation (p < 0.05). It is reported that different parts of the implants affected by peri-implant inflammation show different surface chemistries, from coronal to apical, but there is no difference in the implants with different surfaces.  相似文献   

7.
Peri-implantitis (PI) is a relatively frequent pathology that compromises the overall survival of the dental implant. Adjunctive approaches for the conventional mechanical debridement are being suggested to optimize the treatment of PI. The goal of the study was the assessment of the disinfection potential of the Q-Switch Nd: YAG laser on contaminated titanium implant surfaces. A total of 72 sterile titanium discs were used and divided into three groups: 24 contaminated titanium discs treated with the laser (study Group L), 24 contaminated titanium discs with no treatment (control 1—Group C), and 24 sterile titanium discs with no treatment (control 2—Group S). Multi-species biofilm was used: Porphyromonas gingivalis, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Streptococcus mutans, Streptococcus sobrinus, and Prevotella intermedia. Commensal bacteria were included also: Actinomyces naeslundii, Actinomyces viscosus, Streptococcus cristatus, Streptococcus gordonii, Streptococcus mitis, Streptococcus oralis, Streptococcus sanguinis, Streptococcus parasanguinis, and Veillonella parvula. Parameters delivered per pulse on the targeted surfaces of the titanium discs were an energy density of 0.597 J/cm2 each pulse, a pulse power of 270 mW, a laser beam spot of 2.4 mm in diameter, and a rate of repetition of 10 Hertz (Hz) for a pulse duration of 6 nanoseconds (ns). The mode was no contact, and a distance of 500 micrometers was used with a total time of irradiation equal to 2 s (s). The collection of microbiological samples was made for all groups; colony-forming units (CFU) were identified by two different practitioners, and the average of their examinations was considered for each sample. The average of the TBC (CFU/mL) was calculated for each group. Values were 0.000 CFU/mL, 4767 CFU/mL, and 0.000 CFU/mL for Group L, Group C, and Group S, respectively. Therefore, the suggested treatment protocol was able to provoke a total disinfection of the contaminated titanium surfaces. A statistical difference was only found between Group L vs. Group C and between Group S vs. Group C. The difference was not significant between Group S and Group L. In conclusion, the present study confirmed that the Q-Switch Nd: YAG laser under our specific conditions can provide a total disinfection of the contaminated titanium surfaces.  相似文献   

8.
In recent years, implantology has made significant progress, as it has now become a safe and predictable practice. The development of new geometries, primary and secondary, of new surfaces and alloys, has made this possible. The purpose of this review is to analyze the different alloys present on the market, such as that in zirconia, and evaluate their clinical differences with those most commonly used, such as those in grade IV titanium. The review, conducted on major scientific databases such as Scopus, PubMed, Web of Science and MDPI yielded a startling number of 305 results. After the application of the filters and the evaluation of the results in the review, only 10 Randomized Clinical Trials (RCTs) were included. Multiple outcomes were considered, such as Marginal Bone Level (MBL), Bleeding on Probing (BoP), Survival Rate, Success Rate and parameters related to aesthetic and prosthetic factors. There are currently no statistically significant differences between the use of zirconia implants and titanium implants, neither for fixed prosthetic restorations nor for overdenture restorations. Only the cases reported complain about the rigidity and, therefore, the possibility of fracture of the zirconium. Certainly the continuous improvement in these materials will ensure that they could be used safely while maintaining their high aesthetic performance.  相似文献   

9.
Background and Objectives: The aim of the current study was to establish an osseo-disintegration model initiated with a single microorganism in mini-pigs. Materials and Methods: A total of 36 titanium dental implants (3.5 mm in diameter, 9.5 mm in length) was inserted into frontal bone (n: 12) and the basis of the corpus mandible (n: 24). Eighteen implants were contaminated via inoculation of Enterococcus faecalis. Six weeks after implant insertion, bone-to-implant contact (BIC) ratio, interthread bone density (ITBD), and peri-implant bone density (PIBD) were examined. In addition to that, new bone formation was assessed via fluorescence microscopy, histomorphometry, and light microscopical examinations. Results: Compared to the sterile implants, the contaminated implants showed significantly reduced BIC (p < 0.001), ITBD (p < 0.001), and PBD (p < 0.001) values. Around the sterile implants, the green and red fluorophores were overlapping and surrounding the implant without gaps, indicating healthy bone growth on the implant surface, whereas contaminated implants were surrounded by connective tissue. Conclusions: The current experimental model could be a feasible option to realize a significant alteration of dental-implant osseointegration and examine novel surface decontamination techniques without impairing local and systemic inflammatory complications.  相似文献   

10.
Many studies are being carried out on the particles released during the implantoplasty process in the machining of dental implants to remove bacterial biofilms. However, there are no studies on the release of particles produced by the insertion of bone-level dental implants due to the high compressive frictional loads between the rough titanium implant and the bone tissue. This paper aims to characterize the released particles and determine the release of titanium ions into the physiological environment and their cytocompatibility. For this purpose, 90 dental implants with a neck diameter of 4 mm and a torque of 22 Ncm were placed in 7 fresh cow ribs. The placement was carried out according to the established protocols. The implants had a roughness Ra of 1.92 μm. The arrangement of the particles in the bone tissue was studied by micro-CT, and no particle clusters were observed. The different granulometries of 5, 15, and 30 μm were obtained; the specific surface area was determined by laser diffraction; the topography was determined by scanning electron microcopy; and the particles were chemically analysed by X-ray energy microanalysis. The residual stresses of the particles were obtained by X-ray diffraction using the Bragg-Bentano configuration. The release of titanium ions to the physiological medium was performed using ICP-MS at 1, 3, 7, 14, and 21 days. The cytocompatibility of the particles with HFF-1 fibroblast and SAOS-2 osteoblast cultures was characterized. The results showed that the lowest specific surface area (0.2109 m2/g) corresponds to the particles larger than 30 μm being higher than 0.4969 and 0.4802 m2/g of those that are 5 and 15 μm, respectively, observing in all cases that the particles have irregular morphologies without contamination of the drills used in the surgery. The highest residual stresses were found for the small particles, −395 MPa for the 5 μm particles, and −369 for the 15 μm particles, and the lowest residual stresses were found for the 30 μm particles with values of −267 MPa. In all cases, the residual stresses were compressive. The lowest ion release was for the 30 μm samples, as they have the lowest specific surface area. Cytocompatibility studies showed that the particles are cytocompatible, but it is the smallest ones that are lower and very close to the 70% survival limit in both fibroblasts and osteoblasts.  相似文献   

11.
To evaluate the failure-load and survival-rate of screw-retained monolithic and bi-layered crowns bonded to titanium-bases before and after mouth-motion fatigue, 72 titanium-implants (SICvantage-max, SIC-invent-AG) were restored with three groups (n = 24) of screw-retained CAD/CAM implant-supported-single-crowns (ISSC) bonded to titanium-bases: porcelain-fused-to-metal (PFM-control), porcelain-fused-to-zirconia (PFZ-test) and monolithic LDS (LDS-test). Half of the specimens (n = 12/group) were subjected to fatigue in a chewing-simulator (1.2 million cycles, 198 N, 1.67 Hz, thermocycling 5–55 °C). All samples were exposed to single-load-to-failure without (PFM0, PFZ0, LDS0) or with fatigue (PFM1, PFZ1, LDS1). Comparisons were statistically analyzed with t-tests and regression-models and corrected for multiple-testing using the Student–Neuman–Keuls method. All PFM and LDS crowns survived fatigue exposure, whereas 16.7% of PFZ showed chipping failures. The mean failure-loads (±SD) were: PFM0: 2633 ± 389 N, PFM1: 2349 ± 578 N, PFZ0: 2152 ± 572 N, PFZ1: 1686 ± 691 N, LDS0: 2981 ± 798 N, LDS1: 2722 ± 497 N. Fatigue did not influence load to failure of any group. PFZ ISSC showed significantly lower failure-loads than monolithic-LDS regardless of artificial aging (p < 0.05). PFM ISSC showed significantly higher failure loads after fatigue than PFZ (p = 0.032). All ISSC failed in a range above physiological chewing forces. Premature chipping fractures might occur in PFZ ISSC. Monolithic-LDS ISSC showed high reliability as an all-ceramic material for screw-retained posterior hybrid-abutment-crowns.  相似文献   

12.
Objectives: The aim of the present work was to comparatively investigate the generation and characteristics of fretting and sliding wear debris produced by CuNiAl against 42CrMo4. Methods: Tribological tests were conducted employing a self-developed tribometer. Most experimental conditions were set the same except for the amplitudes and number of cycles. Morphological, chemical, microstructural and dimensional features of the worn area and debris were investigated using optical microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and a laser particle sizer. Outcomes: Not only wear scar profiles but also the wear debris color, distribution and generated amount under fretting and sliding wear modes were quite different, which can be attributed to the significant difference in wear mechanisms. Particle size analysis indicates that the fretting debris has a smaller size distribution range; the biggest detected fretting and sliding wear debris sizes were 141 μm and 355 μm, respectively. Both fretting and sliding debris are mainly composed of copper and its oxides, but the former shows a higher oxidation degree.  相似文献   

13.
Statement of the problem: The gingival configuration around implant abutments is of paramount importance for preserving the underlying marginal bone, and hence for the long-term success of dental implants. Objective: The objective was to study, clinically and histologically, the effects of the change in the morphology of abutments connected to the endosseous implant, and of their surface treatment. In particular, the objective was to ascertain the effect of changing the shape of the transepithelial pillar and the treatment of its surface on the dimensions, quality and health of the components of the peri-implant biological space, such as the dimensions of the epithelial and connective tissues of the biological space, the concentration of inflammatory cells and the density of collagen fibers. Methods: A clinical trial of 10 patients with a totally edentulous maxilla, who had four implants (IPX4010_GALIMPLANT®, Sarria, Spain) inserted in the area of the first and second molars on both sides with computer-guided implant surgery, was conducted with the final purpose of assessing the quality of the peri-implant soft tissue attachment around the transepithelial abutments which were employed (aesthetic machined (RM), aesthetic anodized (RA), slim machined (SM) and slim anodized (SA)). At 8 weeks and following the collection of the samples (removal of the implant-abutment assembly with its surrounding hard and soft tissue) and their processing for subsequent histological and histomorphometric analysis in order to study the dimensions, quality and health of the peri-implant soft tissue area, the variables previously mentioned were determined according to the aims of the study. By using appropriate diameter trephine in order to obtain a useful fringe of soft tissue around the transepithelial pillars, ANOVA and chi-square tests were performed. Results: The SPSS statistical analysis ANOVA results revealed that the machined slim abutments have a better performance considering the variables analyzed with epithelial and connective attachment heights of 1.52 mm and 2.3 mm, respectively, and that connective density (density of collagen fibers) was high at 85.7% of the sample size affected by the design for the slim abutments and 92.9% of the high-density sample size affected by the surface treatment for the machined surface. Conclusions: All variables studied, despite the small sample size, showed the superiority of the slim machined abutment among the four groups.  相似文献   

14.
The paper presents the optimization of diode laser irradiation of corroded dental implants in order to reduce the number of microorganisms associated peri-implantitis. The research included the identification of microorganisms on the surface of removed dental implants in patients with peri-implantitis and the assessment of the biocidal effectiveness of the diode laser against these microorganisms. Laser desorption/mass spectrometry (MALDI-TOF MS) was used to identify microorganisms and metagens were examined by next generation sequencing (NGS). Irradiation was performed with a diode laser with a wavelength of λ = 810, operating mode: 25 W/15.000 Hz/10 μs, average = 3.84 W with the number of repetitions t = 2 × 15 s and t = 3 × 15 s. The structure and surface roughness of the implants were analysed before and after laser irradiation by optical profilometry and optical microscopy with confocal fixation. In total, 16 species of Gram-positive bacteria and 23 species of Gram-negative bacteria were identified on the surface of the implants. A total of 25 species of anaerobic bacteria and 12 species with corrosive potential were detected. After diode laser irradiation, the reduction in bacteria on the implants ranged from 88.85% to 100%, and the reduction in fungi from 87.75% to 96.77%. The reduction in microorganisms in the abutment was greater than in the endosseous fixture. The applied laser doses did not damage, but only cleaned the surface of the titanium implants. After 8 years of embedding, the removed titanium implant showed greater roughness than the 25-year-old implant, which was not exposed to direct influence of the oral cavity environment. The use of a diode laser in an optimised irradiation dose safely reduces the number of microorganisms identified on corroded dental implants in patients with peri-implantitis.  相似文献   

15.
Titanium-20 mass% Silver (Ti-20%Ag) alloy can suppress biofilm formation on the surface. Unlike bactericidal agents, it does not kill bacteria; therefore, the healthy oral microflora remains undisturbed. To utilize the unique functions of this alloy and enable its use in the fabrication of dental prostheses that require relatively high strength, we added copper (Cu) as an alloying element to improve strength. This study aimed to develop ternary Ti-Ag-Cu alloys with excellent mechanical properties and antibiofilm activity. As a result of investigating the mechanical properties of several experimental alloys, the tensile strength, yield strength, and hardness of Ti-20%Ag-1%Cu and Ti-20%Ag-2%Cu alloys were improved by the solid-solution strengthening or hardening of the αTi phase. In addition, these alloys had the same ability to suppress biofilm formation as the Ti-20Ag alloy. Thus, Ti-20%Ag-1–2%Cu alloys can be used for fabrication of narrow-diameter dental implants and prostheses subjected to extremely high force, and these prostheses are useful in preventing post-treatment oral diseases.  相似文献   

16.
(1) Background: Most of the clinical literature dealing with dental implants has been issued by experienced teams working either in university settings or in private practice. The purpose of this study was to identify contributing covariates to implant failure and marginal bone loss (MBL) at the 1-year follow-up of a novel triangular-neck implant design when placed by inexperienced post-graduate students. (2) Methods: A prospective cohort study was conducted on study participants eligible for implant placement at the UIC (International University of Catalonia), Barcelona, Spain. Implant failure rate and contributors to implant failure and MBL were investigated among 24 implant and patient variables. (3) Results: One hundred and twenty implants (V3, MIS) were placed and rehabilitated by the students. The mean insertion torque was 37.1 Ncm. Survival and success rates were 97.5% and 96.7%, respectively. Implants placed in patients with smoking habits displayed a tendency of higher failure risk (OR = 5.31, p = 0.17) when compared to non-smokers. The mean (SD) MBL was 0.51 (0.44) mm. Gender significantly affected the MBL (p = 0.020). Bleeding on probing (BoP) on the buccal sites proved to be a good predictor of proximal MBL (p = 0.030). (4) Conclusions: The survival and success rates of the V3 triangular-neck implant placed by inexperienced post-graduate students at the 1-year follow-up were high and similar to the ones published in the literature by experienced teams on other implants.  相似文献   

17.
Background: Considerations about implant surface wear and metal particles released during implant placement have been reported. However, little is known about implant surface macro- and microstructural components, which can influence these events. The aim of this research was to investigate accurately the surface morphology and chemical composition of commercially available dental implants, by means of multivariate and multidimensional statistical analysis, in order to predict their effect on wear onset and particle release during implant placement. Methods: The implant surface characterization (roughness, texture) was carried out through Confocal Microscopy and SEM-EDS analysis; the quantitative surface quality variables (amplitude and hybrid roughness parameters) were statistically analyzed through post hoc Bonferroni’s test for pair comparisons. Results: The parameters used by discriminant analysis evidenced several differences in terms of implant surface roughness between the examined fixtures. In relation to the observed surface quality, some of the investigated implants showed the presence of residuals due to the industrial surface treatments. Conclusions: Many structural components of the dental implant surface can influence the wear onset and particles released during the implant placement.  相似文献   

18.
The aim of the current experimental study was to comparatively assess the surface alterations in titanium and titanium-zirconium alloy implants in terms of thread pitch topography after irradiation with an Er:YAG laser, which is recommended in the literature for its sterilizing effect in the treatment of contaminated implant surfaces. Roxolid® and SLA® (Sand-blasted, Large-grit, Acid-etched) implants from Straumann® company with the same macro topography were investigated. The surface treatment was carried out using a wavelength of 2940 nm, 60 s irradiation time, a frequency of 10 Hz, and energies between 120 mJ and 250 mJ. The alterations were quantitatively analyzed by conducting roughness analysis via white light interferometry and qualitatively using SEM images. Roxolid® could particularly maintain its surface topography at a level of 160 mJ. At an energy level of 250 mJ, the surface properties of the pitch could be significantly altered for the first time. Compared to the Standard Plus dental implants studied, no distinct removal of the material from the surface was detected. The alloy properties of Roxolid® confirm the manufacturer’s statement in terms of stability and could offer advantages in peri-implantitis management if decontamination has been selected. However, as a part of a respective strategy, smoothening of a Roxolid® implant surface requires a significantly higher energy level compared to SLA-Standard® dental implants.  相似文献   

19.
Ca-P coatings on Ti implants have demonstrated good osseointegration capability due to their similarity to bone mineral matter. Three databases (PubMed, Embase, and Web of Science) were searched electronically in February 2021 for preclinical studies in unmodified experimental animals, with at least four weeks of follow-up, measuring bone-to-implant contact (BIC). Although 107 studies were found in the initial search, only eight experimental preclinical studies were included. Adverse events were selected by two independent investigators. The risk of bias assessment of the selected studies was evaluated using the Cochrane Collaboration Tool. Finally, a meta-analysis of the results found no statistical significance between implants coated with Ca-P and implants with etched conventional surfaces (difference of means, random effects: 5.40; 99% CI: −5.85, 16.65). With the limitations of the present review, Ca-P-coated Ti surfaces have similar osseointegration performance to conventional etched surfaces. Future well-designed studies with large samples are required to confirm our findings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号