首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper presents the experimental results of static and dynamic compressive tests conducted on ceramic-elastomer composites. The alumina ceramic preforms were fabricated by the four-step method: ceramic mixture preparation, consolidation under pressure, presintering, and sintering under pressure, respectively. To obtain ceramic preforms with a similar volume fraction of open pores, but with different pore sizes, alumina powder with different particle size and a ceramic binder were used, as well as pore-forming agents that were evenly distributed throughout the volume of the molding mass. The composites were obtained using vacuum pressure infiltration of porous alumina ceramic by urea-urethane elastomer in liquid form. As a result, the obtained composites were characterized by two phases that interpenetrated three-dimensionally and topologically throughout the microstructure. The microstructure of the ceramic preforms was revealed by X-ray tomography, which indicated that the alumina preforms had similar porosity of approximately 40% vol. but different pore diameter in the range of 6 to 34 µm. After composite fabrication, image analysis was carried out. Due to the microstructure of the ceramic preforms, the composites differed in the specific surface fraction of the interphase boundaries (Sv). The highest value of the Sv parameter was achieved for composite fabricated by infiltration method of using ceramic preform with the smallest pore size. Static and dynamic tests were carried out using different strain rate: 1.4·10−3, 7·10−2, 1.4·10−1, and 3·103 s−1. Compressive strength, stress at plateau zone, and absorbed energy were determined. It was found that the ceramic-elastomer composites’ ability to absorb energy depended on the specific surface fraction of the interphase boundaries and achieved a value between 15.3 MJ/m3 in static test and 51.1 MJ/m3 for dynamic strain rate.  相似文献   

2.
The influences of the sintering process and AgNO3 addition on the phase formation and radiation shielding characteristics of Bi1.6Pb0.4Sr2Ca2Cu3O10 were studied. Three ceramics (code: C0, C1, and C2) were prepared as follows: C0 was obtained after calcination and only one sintering step, C1 was obtained after calcination and two sintering cycles, and C2 was prepared after the addition of AgNO3 at the beginning of the final sintering stage. C2 displayed the maximum volume fraction of the Bi-2223 phase (76.4 vol%), the greatest crystallite size, and high density. The linear mass attenuation coefficient (µ) has been simulated using the Monte Carlo simulation. The µ values are high at 15 keV (257.2 cm−1 for C0, 417.57 cm−1 for C1, and 421.16 cm−1 for C2), and these values dropped and became 72.58, 117.83 and 133.19 cm−1 at 30 keV. The µ value for the ceramics after sintering is much higher than the ceramic before sintering. In addition, the µ value for C2 is higher than that of C1, suggesting that the AgNO3 improves the radiation attenuation performance for the fabricated ceramics. It was demonstrated that the sintering and AgNO3 addition have a considerable influence on the ceramic thickness required to attenuate the radiation.  相似文献   

3.
Electrochemical oxidation (EO) of organic compounds and ammonium in the complex matrix of landfill leachates (LLs) was investigated using three different boron-doped diamond electrodes produced on silicon substrate (BDD/Si)(levels of boron doping [B]/[C] = 500, 10,000, and 15,000 ppm—0.5 k; 10 k, and 15 k, respectively) during 8-h tests. The LLs were collected from an old landfill in the Pomerania region (Northern Poland) and were characterized by a high concentration of N-NH4+ (2069 ± 103 mg·L−1), chemical oxygen demand (COD) (3608 ± 123 mg·L−1), high salinity (2690 ± 70 mg Cl·L−1, 1353 ± 70 mg SO42−·L−1), and poor biodegradability. The experiments revealed that electrochemical oxidation of LLs using BDD 0.5 k and current density (j) = 100 mA·cm−2 was the most effective amongst those tested (C8h/C0: COD = 0.09 ± 0.14 mg·L−1, N-NH4+ = 0.39 ± 0.05 mg·L−1). COD removal fits the model of pseudo-first-order reactions and N-NH4+ removal in most cases follows second-order kinetics. The double increase in biodegradability index—to 0.22 ± 0.05 (BDD 0.5 k, j = 50 mA·cm−2) shows the potential application of EO prior biological treatment. Despite EO still being an energy consuming process, optimum conditions (COD removal > 70%) might be achieved after 4 h of treatment with an energy consumption of 200 kW·m−3 (BDD 0.5 k, j = 100 mA·cm−2).  相似文献   

4.
For the first time, activated carbon from a durian shell (ACDS) activated by H2SO4 was successfully synthesized in the present study. The fabricated ACDS has a porous surface with a specific surface area of 348.0017 m2·g−1, average capillary volume of 0.153518 cm3·g−1, the average pore diameter of 4.3800 nm; ash level of 55.63%; humidity of 4.74%; density of 0.83 g·cm−3; an iodine index of 634 mg·g−1; and an isoelectric point of 6.03. Several factors affecting Methylene Blue (MB) adsorption capacity of ACDS activated carbon was investigated by the static adsorption method, revealing that the adsorption equilibrium was achieved after 90 min. The best adsorbent pH for MB is 7 and the mass/volume ratio is equal to 2.5 g·L−1. The MB adsorption process of ACDS activated carbon follows the Langmuir, Freundlich, Tempkin, and Elovich isotherm adsorption model, which has determined the maximum adsorption capacity for MB of ACDS as qmax = 57.47 mg·g−1. The MB adsorption process of ACDS follows the of pseudo-second-order adsorption kinetic equation. The Weber and Morris Internal Diffusion Model, the Hameed and Daud External Diffusion Model of liquids have been studied to see if the surface phase plays any role in the adsorption process. The results of thermodynamic calculation of the adsorption process show that the adsorption process is dominated by chemical adsorption and endothermic. The obtained results provide an insight for potential applications of ACDS in the treatment of water contaminated by dyes.  相似文献   

5.
This study focuses on the phenol biodegradation kinetics by Stenotrophomonas maltophilia KB2 in a nickel-contaminated medium. Initial tests proved that a nickel concentration of 33.3 mg·L−1 caused a cessation of bacterial growth. The experiments were conducted in a batch bioreactor in several series: without nickel, at constant nickel concentration and at varying metal concentrations (1.67–13.33 g·m−3). For a constant Ni2+ concentration (1.67 or 3.33 g·m−3), a comparable bacterial growth rate was obtained regardless of the initial phenol concentration (50–300 g·m−3). The dependence µ = f (S0) at constant Ni2+ concentration was very well described by the Monod equations. The created varying nickel concentrations experimental database was used to estimate the parameters of selected mathematical models, and the analysis included different methods of determining metal inhibition constant KIM. Each model showed a very good fit with the experimental data (R2 values were higher than 0.9). The best agreement (R2 = 0.995) was achieved using a modified Andrews equation, which considers the metal influence and substrate inhibition. Therefore, kinetic equation parameters were estimated: µmax = 1.584 h−1, KS = 185.367 g·m−3, KIS = 106.137 g·m−3, KIM = 1.249 g·m−3 and n = 1.0706.  相似文献   

6.
The catalytic activity of ruthenium(III) acetylacetonate was investigated for the first time in the dehydrogenation of dimethylamine borane. During catalytic reaction, a new ruthenium(II) species is formed in situ from the reduction of ruthenium(III) and characterized using UV-Visible, Fourier transform infrared (FTIR), 1H NMR, and mass spectroscopy. The most likely structure suggested for the ruthenium(II) species is mer-[Ru(N2Me4)3(acac)H]. Mercury poisoning experiment indicates that the catalytic dehydrogenation of dimethylamine-borane is homogeneous catalysis. The kinetics of the catalytic dehydrogenation of dimethylamine borane starting with Ru(acac)3 were studied depending on the catalyst concentration, substrate concentration and temperature. The hydrogen generation was found to be first-order with respect to catalyst concentration and zero-order regarding the substrate concentration. Evaluation of the kinetic data provides the activation parameters for the dehydrogenation reaction: the activation energy Ea = 85 ± 2 kJ·mol−1, the enthalpy of activation ∆H# = 82 ± 2 kJ·mol−1 and the entropy of activation; ∆S# = −85 ± 5 J·mol−1·K−1. The ruthenium(II) catalyst formed from the reduction of ruthenium(III) acetylacetonate provides 1700 turnovers over 100 hours in hydrogen generation from the dehydrogenation of dimethylamine borane before deactivation at 60 °C.  相似文献   

7.
Diesel particulates are deposited in the diesel particulate filter and removed by the regeneration process. The Printex-U (PU) particles are simulated as the diesel soot to investigate the influence of thermal aging conditions on soot combustion performance with the addition of catalysts. The comprehensive combustion index S, combustion stability index Rw and peak temperature Tp are obtained to evaluate the combustion performance. Compared with the PU/Pt mixtures of different Pt contents (2 g/ft3, 3.5 g/ft3, and 5 g/ft3), the 10 g/ft3 Pt contents improve soot combustion with the outstanding oxygen absorption ability. When the weight ratio of PU/Pt mixture is 1:1, the promoted effect achieves the maximum degree. The S and Rw increase to 8.90 × 10−8 %2min−2°C−3 and 39.11 × 105, respectively, compared with pure PU. After the thermal aging process, the PU/Pt mixture with a 350 °C aging temperature for 10 h promotes the soot combustion the best when compared to pure PU particles. It is not good as the PU/Pt mixture without aging, because the inner properties of soot and Pt/Al2O3 catalyst may have been changed. The S and Rw are 9.07 × 10−8 %2min−2°C−3 and 38.39 × 105, respectively, which are close to the no aging mixture. This work plays a crucial role in understanding the mechanism of the comprehensive effect of soot and catalyst on soot combustion after the thermal aging process.  相似文献   

8.
9.
Refractory sulphidic ore with gold captured in pyrite has motivated researchers to find efficient means to break down pyrite to make gold accessible and, ultimately, improve gold extraction. Thus, the dissolution of pyrite was investigated to understand the mechanism and find the corresponding kinetics in a nitric acid solution. To carry this out, the temperature (25 to 85 °C), nitric acid concentration (1 to 4 M), the particle size of pyrite from 53 to 212 µm, and different stirring speeds were examined to observe their effect on pyrite dissolution. An increase in temperature and nitric acid concentration were influential parameters to obtaining a substantial improvement in pyrite dissolution (95% Fe extraction achieved). The new shrinking core equation (1/3ln (1 − X) + [(1 − X)−1/3 − 1)]) = kt) fit the measured rates of dissolution well. Thus, the mixed–controlled kinetics model describing the interfacial transfer and diffusion governed the reaction kinetics of pyrite. The activation energies (Ea) were 145.2 kJ/mol at 25–45 °C and 44.3 kJ/mol at higher temperatures (55–85 °C). A semiempirical expression describing the reaction of pyrite dissolution under the conditions studied was proposed: 1/3ln(1 − X) + [(1 − X)−1/3 − 1)] = 88.3 [HNO3]2.6 r0−1.3 e−44280/RT t. The solid residue was analysed using SEM, XRD, and Raman spectrometry, which all identified sulphur formation as the pyrite dissolved. Interestingly, two sulphur species, i.e., S8 and S6, formed during the dissolution process, which were detected using XRD Rietveld refinement.  相似文献   

10.
Li3FeN2 material was synthesized by the two-step solid-state method from Li3N (adiabatic camera) and FeN2 (tube furnace) powders. Phase investigation of Li3N, FeN2, and Li3FeN2 was carried out. The discharge capacity of Li3FeN2 is 343 mAh g−1, which is about 44.7% of the theoretic capacity. The ternary nitride Li3FeN2 molar heat capacity is calculated using the formula Cp,m = 77.831 + 0.130 × T − 6289 × T−2, (T is absolute temperature, temperature range is 298–900 K, pressure is constant). The thermodynamic characteristics of Li3FeN2 have the following values: entropy S0298 = 116.2 J mol−1 K−1, molar enthalpy of dissolution ΔdHLFN = −206.537 ± 2.8 kJ mol−1, the standard enthalpy of formation ΔfH0 = −291.331 ± 5.7 kJ mol−1, entropy S0298 = 113.2 J mol−1 K−1 (Neumann–Kopp rule) and 116.2 J mol−1 K−1 (W. Herz rule), the standard Gibbs free energy of formation ΔfG0298 = −276.7 kJ mol−1.  相似文献   

11.
Solid-state reaction was used for Li7La3Zr2O12 material synthesis from Li2CO3, La2O3 and ZrO2 powders. Phase investigation of Li7La3Zr2O12 was carried out by x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) methods. The thermodynamic characteristics were investigated by calorimetry measurements. The molar heat capacity (Cp,m), the standard enthalpy of formation from binary compounds (ΔoxHLLZO) and from elements (ΔfHLLZO), entropy (S0298), the Gibbs free energy of the Li7La3Zr2O12 formation (∆f G0298) and the Gibbs free energy of the LLZO reaction with metallic Li (∆rGLLZO/Li) were determined. The corresponding values are Cp,m = 518.135 + 0.599 × T − 8.339 × T−2, (temperature range is 298–800 K), ΔoxHLLZO = −186.4 kJ·mol−1, ΔfHLLZO = −9327.65 ± 7.9 kJ·mol−1, S0298 = 362.3 J·mol−1·K−1, ∆f G0298 = −9435.6 kJ·mol−1, and ∆rGLLZO/Li = 8.2 kJ·mol−1, respectively. Thermodynamic performance shows the possibility of Li7La3Zr2O12 usage in lithium-ion batteries.  相似文献   

12.
W D Rees  L C Gibbons  L A Turnberg 《Gut》1983,24(9):784-789
The effects of non-steroidal anti-inflammatory drugs and prostaglandins E2 and F on the secretory and electrical activity of isolated rabbit fundic mucosa have been studied. Spontaneous acid secretion was inhibited by serosal side application of sodium thiocyanate (6×10−2M) and the resulting alkali secretion measured by pH stat tiration. Serosal side application of indomethacin (10−5M) or aspirin (3×10−3M) inhibited alkali secretion (0·55±0·06 to 0·12±0·06 μmol/cm2/h, n=6, p<0·01 and 0·28±0·06 to 0·11±0·03 μmol/cm2/h, n=7, p<0·02 respectively). Mucosal or serosal side prostaglandin E2 (10−5 to 10−10M) and F (10−4 to 10−10M) failed to alter the rate of alkalinisation but secretion was significantly increased by serosal side 16,16-dimethyl-prostaglandin E2 (10−6M) (0·90±0·20 to 1·50±0·30 μmol/cm2/h, n=6, p<0·01). Serosal side application of 10−6M prostaglandin E2 to fundic mucosae pretreated with either aspirin (5×10−3M) or indomethacin (10−5M), to reduce endogenous E2 formation, also failed to alter alkali secretion. Pretreatment of the mucosa with 16,16-dimethyl-E2 (10−6M) abolished the inhibitory effect of indomethacin (10−5M) on alkali secretion (n=6) but did not modify the secretory response to aspirin (3×10−3M) (fall in alkali secretion with aspirin = 81±11% and with aspirin plus 16,16-dimethyl-E2 = 72±10%, n=7). In the doses used, none of the prostaglandins or non-steroidal anti-inflammatory drugs altered transmucosal potential difference or electrical resistance. These results show that the damaging agents, aspirin and indomethacin, both inhibit gastric alkali secretion but that modes of action may differ. The observation that prostaglandins, E2 and F failed to increase alkali production suggests that their protective activity against a variety of damaging agents as shown by others, may be mediated by another mechanism.  相似文献   

13.
Random mutagenesis and screening for enzymatic activity has been used to engineer horse heart myoglobin to enhance its intrinsic peroxidase activity. A chemically synthesized gene encoding horse heart myoglobin was subjected to successive cycles of PCR random mutagenesis. The mutated myoglobin gene was expressed in Escherichia coli LE392, and the variants were screened for peroxidase activity with a plate assay. Four cycles of mutagenesis and screening produced a series of single, double, triple, and quadruple variants with enhanced peroxidase activity. Steady-state kinetics analysis demonstrated that the quadruple variant T39I/K45D/F46L/I107F exhibits peroxidase activity significantly greater than that of the wild-type protein with k1 (for H2O2 oxidation of metmyoglobin) of 1.34 × 104 M−1 s−1 (≈25-fold that of wild-type myoglobin) and k3 [for reducing the substrate (2, 2′-azino-di-(3-ethyl)benzthiazoline-6-sulfonic acid] of 1.4 × 106 M−1 s−1 (1.6-fold that of wild-type myoglobin). Thermal stability of these variants as measured with circular dichroism spectroscopy demonstrated that the Tm of the quadruple variant is decreased only slightly compared with wild-type (74.1°C vs. 76.5°C). The rate constants for binding of dioxygen exhibited by the quadruple variant are identical to the those observed for wild-type myoglobin (kon, 22.2 × 10−6 M−1 s−1 vs. 22.3 × 10−6 M−1 s−1; koff, 24.3 s−1 vs. 24.2 s−1; KO2, 0.91 × 10−6 M−1 vs. 0.92 × 10−6 M−1). The affinity of the quadruple variant for CO is increased slightly (kon, 0.90 × 10−6 M−1s−1 vs. 0.51 × 10−6 M−1s−1; koff, 5.08 s−1 vs. 3.51 s−1; KCO, 1.77 × 10−7 M−1 vs. 1.45 × 10−7 M−1). All four substitutions are in the heme pocket and within 5 Å of the heme group.  相似文献   

14.
Benzene alkylation with propylene was studied in the gas phase using a catalytic membrane reactor and a fixed-bed reactor in the temperature range of 200–300 °C and with a weight hourly space velocity (WHSV) of 51 h−1. β-zeolite was prepared by hydrothermal synthesis using silica, aluminum metal and TEAOH as precursors. The membrane’s XRD patterns showed good crystallinity for the β-zeolite film, while scanning electron microscopy SEM results indicated that its random polycrystalline film was approximately 1 μm thick. The powders’ specific area was determined to be 400 m2·g−1 by N2 adsorption/desorption, and the TPD results indicated an overall acidity of 3.4 mmol NH3·g−1. Relative to the powdered catalyst, the catalytic membrane showed good activity and product selectivity for cumene.  相似文献   

15.
A facile and environmentally friendly fabrication is proposed to prepare nitrogen-doped hierarchical porous activated carbon via normal-pressure popping, one-pot activation and nitrogen-doping process. The method adopts paddy as carbon precursor, KHCO3 and dicyandiamide as the safe activating agent and nitrogen dopant. The as-prepared activated carbon presents a large specific surface area of 3025 m2·g−1 resulting from the synergistic effect of KHCO3 and dicyandiamide. As an electrode material, it shows a maximum specific capacitance of 417 F·g−1 at a current density of 1 A·g−1 and very good rate performance. Furthermore, the assembled symmetric supercapacitor presents a large specific capacitance of 314.6 F·g−1 and a high energy density of 15.7 Wh·Kg−1 at 1 A·g−1, maintaining 14.4 Wh·Kg−1 even at 20 A·g−1 with the energy density retention of 91.7%. This research demonstrates that nitrogen-doped hierarchical porous activated carbon derived from paddy has a significant potential for developing a high-performance renewable supercapacitor and provides a new route for economical and large-scale production in supercapacitor application.  相似文献   

16.
Low-temperature co-fired ceramics (LTCCs) are dielectric materials that can be co-fired with Ag or Cu; however, conventional LTCC materials are mostly poorly thermally conductive, which is problematic and requires improvement. We focused on ZnAl2O4 (gahnite) as a base material. With its high thermal conductivity (~59 W·m−1·K−1 reported for 0.83ZnAl2O4–0.17TiO2), ZnAl2O4 is potentially more thermally conductive than Al2O3 (alumina); however, it sinters densely at a moderate temperature (~1500 °C). The addition of only 4 wt.% of Cu3Nb2O8 significantly lowered the sintering temperature of ZnAl2O4 to 910 °C, which is lower than the melting point of silver (961 °C). The sample fired at 960 °C for 384 h exhibited a relative permittivity (εr) of 9.2, a quality factor by resonant frequency (Q × f) value of 105,000 GHz, and a temperature coefficient of the resonant frequency (τf) of −56 ppm·K−1. The sample exhibited a thermal conductivity of 10.1 W·m−1·K−1, which exceeds that of conventional LTCCs (~2–7 W·m−1·K−1); hence, it is a superior LTCC candidate. In addition, a mixed powder of the Cu3Nb2O8 additive and ZnAl2O4 has a melting temperature that is not significantly different from that (~970 °C) of the pristine Cu3Nb2O8 additive. The sample appears to densify in the solid state through a solid-state-activated sintering mechanism.  相似文献   

17.
A series of three-dimensional porous composite α-MnO2/reduced graphene oxides (α-MnO2/RGO) were prepared by nano-assembly in a hydrothermal environment at pH 9.0–13.0 using graphene oxide as the precursor, KMnO4 and MnCl2 as the manganese sources and F as the control agent of the α-MnO2 crystal form. The α-MnO2/RGO composites prepared at different hydrothermal pH levels presented porous network structures but there were significant differences in these structures. The special pore structure promoted the migration of ions in the electrolyte in the electrode material, and the larger specific surface area promoted the contact between the electrode material and the electrolyte ions. The introduction of graphene solved the problem of poor conductivity of MnO2, facilitated the rapid transfer of electrons, and significantly improved the electrochemical performance of materials. When the pH was 12.0, the specific surface area of the 3D porous composite material αMGs-12.0 was 264 m2·g−1, and it displayed the best super-capacitive performance; in Na2SO4 solution with 1.0 mol·L−1 electrolyte, the specific capacitance was 504 F·g−1 when the current density was 0.5 A·g−1 and the specific capacitance retention rate after 5000 cycles was 88.27%, showing that the composite had excellent electrochemical performance.  相似文献   

18.
In this study, we incorporated 2,3-dialdehyde nanocrystalline cellulose (DANC) into chitosan as a reinforcing agent and manufactured biodegradable films with enhanced gas barrier properties. DANC generated via periodate oxidation of cellulose nanocrystal (CNC) was blended at various concentrations with chitosan, and bionanocomposite films were prepared via casting and characterized systematically. The results showed that DANC developed Schiff based bond with chitosan that improved its properties significantly. The addition of DANC dramatically improved the gas barrier performance of the composite film, with water vapor permeability (WVP) value decreasing from 62.94 g·mm·m−2·atm−1·day−1 to 27.97 g·mm·m−2·atm−1·day−1 and oxygen permeability (OP) value decreasing from 0.14 cm3·mm·m−2·day−1·atm−1 to 0.026 cm3·mm·m−2·day−1·atm−1. Meanwhile, the maximum decomposition temperature (Tdmax) of the film increased from 286 °C to 354 °C, and the tensile strength of the film was increased from 23.60 MPa to 41.12 MPa when incorporating 25 wt.% of DANC. In addition, the chitosan/DANC (75/25, wt/wt) films exhibited superior thermal stability, gas barrier, and mechanical strength compared to the chitosan/CNC (75/25, wt/wt) film. These results confirm that the DANC and chitosan induced films with improved gas barrier, mechanical, and thermal properties for possible use in film packaging.  相似文献   

19.
A powerful characterization technique, pulse capacitance-voltage (CV) technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111) substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD). The results indicated that: (1) more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrOx; (2) the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N2 ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 1012 cm−2 for as-deposited sample to 4.55 × 1012 cm−2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10−6 A/cm2 at Vg = +0.5 V for the as-deposited sample to 10−3 A/cm2 at Vg = +0.5 V for the 900 °C annealed one.  相似文献   

20.
The goal of this research is the statistical optimisation of the chemical stability of hybrid microwave-sintered alumina ceramics in nitric acid. The chemical stability of ceramic materials in corrosive media depends on many parameters, such as the chemical and phase composition of the ceramics, the properties of the aggressive medium (concentration, temperature, and pressure), and the exposure time. Therefore, the chemical stability of alumina ceramics in different aqueous nitric acid solution concentrations (0.50 mol dm−3, 1.25 mol dm−3, and 2.00 mol dm−3), different exposure times (up to 10 days), as well as different temperatures (25, 40, and 55 °C), was investigated, modelled, and optimised. The chemical stability of high purity alumina ceramics (99.8345 wt.% of Al2O3) was determined by measuring the amount of eluted ions (Al3+, Ca2+, Fe3+, Mg2+, Na+, and Si4+) obtained by inductively coupled plasma atomic emission spectrometry. The changes in the density of alumina ceramics during the chemical stability monitoring were also determined. The Box–Behnken approach was employed to reach the optimum conditions for obtaining the highest possible chemical stability of alumina at a given temperature range, exposure time, and molar concentration of nitric acid. It was found that an increase in exposure time, temperature, and nitric acid concentration led to an increase in the elution of ions from hybrid microwave-sintered alumina. Higher amounts of eluted ions, Al3+ (14.805 µg cm−2), Ca2+ (7.079 µg cm−2), Fe3+ (0.361 µg cm−2), Mg2+ (3.654 µg cm−2), and Na+ ions (13.261 µg cm−2), were obtained at 55 °C in the 2 mol dm− 3 nitric acid. The amount of eluted Si4+ ions is below the detection limit of inductively coupled plasma atomic emission spectrometry. The change in the alumina ceramic density during the corrosion test was negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号