首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the results of research into the heat of hydration and activation energy of calcium sulphoaluminate (CSA) cement in terms of the dependence on curing temperature and water/cement ratio. Cement pastes with water/cement ratios in the range of 0.3–0.6 were tested by isothermal calorimetry at 20 °C, 35 °C and 50 °C, with the evolved hydration heat and its rate monitored for 168 h from mixing water with cement. Reference pastes with ordinary Portland cement (OPC) were also tested in the same range. The apparent activation energy of CSA and OPC was determined based on the results of the measurements. CSA pastes exhibited complex thermal behaviour that differed significantly from the thermal behaviour of ordinary Portland cement. The results show that both the w/c ratio and elevated temperature have a meaningful effect on the heat emission and the hydration process of CSA cement pastes. The determined apparent activation energy of CSA revealed its substantial variability and dependence, both on the w/c ratio and the curing temperature.  相似文献   

2.
The substitution of river sand with glass aggregate (GA) and cement with glass powder (GP) is a mainstream method to recycle waste glass. Traditionally, standard curing was widely used for glass-based mortars. However, it is time-consuming and cannot address low mechanical strengths of the early-age mortars. Therefore, the effect of water curing at 80 °C on the properties of GA mortars is investigated. Furthermore, the effect of the GP size is also considered. Results show that compared with the expansion of alkali-silica reaction (ASR), water curing at 80 °C has a negligible effect on the volume change. Moreover, the compressive strength of GA mortars under 1-day water curing at 80 °C is comparable with that under 28-day water curing at 20 °C. Therefore, the 1-day water curing at 80 °C is proposed as an accelerated curing method for GA mortars. On the other hand, the addition of GP with the mean size of 28.3 and 47.9 μm can effectively mitigate the ASR expansion of GA mortars. Compared with the size of 28.3 μm, GA mortars containing GP (47.9 μm) always obtain higher compressive strength. In particular, when applying the 1-day water curing at 80 °C, GA mortars containing GP (47.9 μm) can even gain higher strength than those containing fly ash.  相似文献   

3.
The effect of the dosage of sulphur-containing tailings (STs) and curing temperature on the properties of M32.5 cement mortar was studied in this work. An experimental study was conducted to evaluate the effects of STs with different substitution ratios (0, 10%, 20%, 30%, 40%) on the compressive strength experiment, fluidity, expansion ratio, and pore structure of M32.5 cement mortar. The results showed that the addition of STs reduced the fluidity of mortar, and the fluidity decreased with the increase of the STs dosage. The compressive strength of mortars increased at a lower substitution rate (0~20%) but decreased at a higher substitution rate (>20%). Ettringite peaks and new sulfate peaks were found by X-ray diffraction (XRD) analysis. Scanning electron microscope (SEM) observation of the microstructure showed that a large number of hydrated products, such as ettringite, formed and filled in the interstitial space, which was conducive to the development of strength. The optimal STs replacement ratio of river sand was 10%. Then, the performance of mortar at curing temperatures of 23 ± 1, 40, 60, and 80 °C was further investigated under the optimal STs replacement ratio. Under high-temperature curing conditions, the early strength of M32.5 cement mortar with STs increased greatly, but the late strength decreased gradually with the increase in curing temperature. The early strength development of the mortar mainly depended on the high speed of hydration reaction, and the late strength variation was mainly affected by hydration products and the pore size distribution. After comprehensive consideration, the optimal curing temperature of M32.5 cement mortar with STs was 40 °C.  相似文献   

4.
Concrete is the most commonly used structural material, without which modern construction could not function. It is a material with a high potential to adapt to specific operating conditions. The use of this potential is made by its material modification. The aim of the performed investigations was the assessment of rational application possibilities of fly ashes from thermally conversed municipal sewage sludge as an alternative concrete admixture. A concrete mix was designed, based on the Portland cement CEM I 42.5R and containing various quantity of ash, amounting to 0–25% of cement mass. The samples were conditioned and heated in a furnace at the temperature of 300 °C, 500 °C, and 700 °C. Physical and chemical properties of the ashes as well as utility properties of the concrete, i.e., density, compressive strength after 28, 56, and 90 days of maturation, frost resistance, and compressive strength in high temperature were determined. The tests were performed at cubic samples with 10 cm edge. The replacement of a determined cement quantity by the fly ashes enables obtaining a concrete composite having good strength parameters. The concrete modified by the fly ashes constituting 20% of the cement mass achieved its average compressive strength after 28 days of maturation equal to 50.12 MPa, after 56 days 50.61 MPa and after 90 days 50.80 MPa. The temperature growth weakens the composite structure. The obtained results confirm the possibility of waste recycling in the form of fly ashes as a cement substitute in concrete manufacturing.  相似文献   

5.
Replacement of Portland cement with high volumes of blast furnace slag is known to negatively affect the early-age properties of concrete, particularly at low temperatures. In this study, the effectiveness of Na2SO4 on the mechanical properties, hydration kinetics and microstructure development of a commercial CEM III/B (~69% slag) is investigated at 10 and 20 °C. Na2SO4 enhances compressive strength at both 10 and 20 °C, and at both early (1 and 7 days) and later ages (28 and 90 days). QXRD shows an increase in the degree of alite hydration at 1 day with Na2SO4 addition, while the degree of clinker and slag hydration is similar for all the systems from 7 to 90 days. An increase in ettringite content is observed at all ages in the systems with Na2SO4. Microstructure and pore structure shows densification of hydrates and reduction in porosity on addition of Na2SO4.  相似文献   

6.
The effect of the thermal properties of aggregates on the mechanical properties of high-strength concrete was evaluated under loading and high-temperature conditions. For the concrete, granite was selected as a natural aggregate, and ash-clay and clay as lightweight aggregates. The mechanical properties of the concrete (stress–strain, compressive strength, elastic modulus, thermal strain, and transient creep) were evaluated experimentally under uniform heating from 20 to 700 °C while maintaining the load at 0, 20, and 40% of the compressive strength at room temperature. Experimental results showed that the concrete containing lightweight aggregates had better mechanical properties, such as compressive strength and elastic modulus, than that of the concrete with a granite aggregate at high temperature. In particular, the concrete containing lightweight aggregates exhibited high compressive strength (60–80% of that at room temperature) even at 700 °C. Moreover, the concrete containing granite exhibited a higher thermal strain than that containing lightweight aggregates. The influence of the binding force under loaded conditions, however, was found to be larger for the latter type. The transient creep caused by the loading was constant regardless of the aggregate type below 500 °C but increased more rapidly when the coefficient of the thermal expansion of the aggregate was above 500 °C.  相似文献   

7.
The effect of calcium nitrate (CN) dosages from 0 to 3% (of cement mass) on the properties of fresh cement paste rheology and hardening processes and on the strength of hardened concrete with two types of limestone-blended composite cements (CEM II A-LL 42.5 R and 42.5 N) at different initial (two-day) curing temperatures (−10 °C to +20 °C) is presented. The rheology results showed that a CN dosage up to 1.5% works as a plasticizing admixture, while higher amounts demonstrate the effect of increasing viscosity. At higher CN content, the viscosity growth in normal early strength (N type) cement pastes is much slower than in high early strength (R type) cement pastes. For both cement-type pastes, shortening the initial and final setting times is more effective when using 3% at +5 °C and 0 °C. At these temperatures, the use of 3% CN reduces the initial setting time for high early strength paste by 7.4 and 5.4 times and for normal early strength cement paste by 3.5 and 3.4 times when compared to a CN-free cement paste. The most efficient use of CN is achieved at −5 °C for compressive strength enlargement; a 1% CN dosage ensures the compressive strength of samples at a −5 °C initial curing temperature, with high early strength cement exceeding 3.5 MPa but being less than the required 3.5 MPa in samples with normal early strength cement.  相似文献   

8.
Using the waste materials in the production of the building materials limits the storage of the wastes, burdensome for the environment and landscape, and makes possible to manufacture the materials and products with the use of the less volume of the raw materials. Cement concretes and mortars as the basic building materials offer the broad prospects of utilization of the recyclable or waste materials. The wastes from the iron ore processing are the solid wastes resulting from the process of enrichment of the ore concentrate. The paper presents the results of testing three mortars, in which a part of fine aggregate was replaced with the iron oxide concentrate (IOC) resulting from such a process. IOC has been used as a substitute of 10%, 20% and 30% (by mass) of the fine aggregate. The effect of the concentrate on the mechanical performance of the mortars at the high temperature (up to 600 °C) was also investigated. The IOC is a neutral material, not affecting chemically the process of cement hydration. The addition of IOC slightly improves the strength of the cement mortars (by 5% to 10%). In the case of the larger amount (20–30%) of the addition, the use of superplasticizer is necessary. The IOC significantly improves the high temperature resistance of the cement mortars (300 °C). The cement mortars containing 30% of the IOC addition keep 80% of the initial flexural and compressive strength when exposed to the temperature 450 °C.  相似文献   

9.
The hydration process and compressive strength and flexural strength development of sulphate-resistant Portland cement (SRPC) curing at 20 °C, 40 °C, 50 °C, and 60 °C were studied. In addition, MIP, XRD, SEM, and a thermodynamic simulation (using Gibbs Energy Minimization Software (GEMS)) were used to study the pore structure, the types, contents, and transformations of hydration products, and the changes in the internal micro-morphology. The results indicate that, compared with normal-temperature curing (20 °C), the early compressive strength (1, 3, and 7 d) of SRPC cured at 40~60 °C increased by 10.1~57.4%, and the flexural strength increased by 1.8~21.3%. However, high-temperature curing was unfavorable for the development of compressive strength and flexural strength in the later period (28~90 d), as they were reduced by 1.5~14.6% and 1.1~25.5%, respectively. With the increase in the curing temperature and curing age, the internal pores of the SRPC changed from small pores to large pores, and the number of harmful pores (>50 nm) increased significantly. In addition, the pore structure was further coarsened after curing at 60 °C for 90 d, and the number of multiple harmful pores (>200 nm) increased by 17.9%. High-temperature curing had no effect on the types of hydration products of the SRPC but accelerated the formation rate of hydration products. The production of the hydration products C-S-H increased by 13.5%, 18.6%, and 22.8% after curing at 40, 50, and 60 °C for 3 d, respectively. The stability of ettringite (AFt) reduced under high-temperature curing, and its diffraction peak was not observed in the XRD patterns. When the curing temperature was higher than 50 °C, AFt began to transform into monosulfate, which consumed more tricalcium aluminate hydrate and inhibited the formation of “delayed ettringite”. Under high-temperature curing, the compactness of the internal microstructure of the SRPC decreased, and the distribution of hydration products was not uniform, which affected the growth in its strength during the later period.  相似文献   

10.
This article presents recent research on cements containing GGBFS and their modifications with accelerating admixtures. The initial setting time and hydration heat evolution results are presented for cement CEM II/B-S and CEM III/A manufactured with three Portland clinkers of various phase compositions. The research was carried out at 8 °C and 20 °C. The main objective is to assess the behavior of blended cements in cooperation with modern admixtures that contain nucleation seeds. The authors aimed to compare and evaluate different methods to reduce setting time, namely, the effects of temperature, the specific surface area of cement and GGBFS, the type of Portland clinker, the content of GGBFS, and presence of accelerators. Many of these aspects appear in separate studies, and the authors wanted a more comprehensive coverage of the subject. Those methods of reducing the setting time can be ranked: the most effective is to increase the temperature of the ingredients and the surroundings, the second is to reduce the GGBFS content in cement, and the use of accelerators, and the least effective is the additional milling of Portland clinker. However, of these methods, only the use of accelerators is acceptable in terms of sustainability. Prospective research is a detailed study on the amounts of C-S-H phase and portlandite to determine the hydration rate.  相似文献   

11.
In order to make full use of magnesium chloride resources, the development and utilisation of magnesium oxychloride cement have become an ecological and economic goal. Thus far, however, investigations into the effects on these cements of high temperatures are lacking. Herein, magnesium oxychloride cement was calcinated at various temperatures and the effects of calcination temperature on microstructure, phase composition, flexural strength, and compressive strength were studied by scanning electron microscopy, X-ray diffraction, and compression testing. The mechanical properties varied strongly with calcination temperature. Before calcination, magnesium oxychloride cement has a needle-like micromorphology and includes Mg(OH)2 gel and a trace amount of gel water as well as 5 Mg(OH)2·MgCl2·8H2O, which together provide its mechanical properties (flexural strength, 18.4 MPa; compressive strength, and 113.3 MPa). After calcination at 100 °C, the gel water is volatilised and the flexural strength is decreased by 57.07% but there is no significant change in the compressive strength. Calcination at 400 °C results in the magnesium oxychloride cement becoming fibrous and mainly consisting of Mg(OH)2 gel, which helps to maintain its high compressive strength (65.7 MPa). When the calcination temperature is 450 °C, the microstructure becomes powdery, the cement is mainly composed of MgO, and the flexural and compressive strengths are completely lost.  相似文献   

12.
The high pavement temperature plays an important role in the development of urban heat island (UHI) in summer. The objective of this study was to develop water retentive and thermal resistant cement concrete (WTCC) to enhance the pavement cooling effects. The WTCC was prepared by combining a water retentive material and a high aluminum refractory aggregate (RA) with porous cement concrete (PCC). Water retention capacity test, fluidity test, and compressive strength test were used to determine the composition ratio of the water retentive material. Mechanical performance and cooling effects of WTCC were evaluated by compressive and flexural strength tests and temperature monitoring test. The mass ratios of fly ash, silica fume, cement, and water in the water retentive material were determined as 65:35:15:63.9. The compressive strength and the flexural strength of WTCC after 28 days curing were 30.4 MPa and 4.6 MPa, respectively. Compared with stone mastic asphalt (SMA) mixture, PCC, and water retentive cement concrete (WCC), surface temperature of WTCC decreased by 11.4 °C, 5.5 °C, and 4.1 °C, respectively, and the internal temperatures of WTCC decreased by 10.3 °C, 6.1 °C, and 4.6 °C, respectively. The water retentive material has benefits of strength improvements and temperature reduction for WTCC. Based on the results, WTCC proved to have superior cooling effects and the potential to efficiently mitigate the UHI effects and be used in medium traffic roads.  相似文献   

13.
In this research, structural-functional integrated cement-based materials were prepared by employing cement paste and a microencapsulated phase change material (MPCM) manufactured using urea-formaldehyde resin as the shell and paraffin as the core material. The encapsulation ratio of the MPCM could reach up to 91.21 wt%. Thermal energy storage cement pastes (TESCPs) incorporated with different MPCM contents (5%, 10%, 15%, 20% and 25% by weight of cement) were developed, and their thermal and mechanical properties were studied. The results showed that the total energy storage capacity of the hardened cement specimens with MPCM increased by up to 3.9-times compared with that of the control cement paste. The thermal conductivity at different temperature levels (35–36 °C, 55–56 °C and 72–74 °C) decreased with the increase of MPCM content, and the decrease was the highest when the temperature level was 55–56 °C. Moreover, the compressive strength, flexural strength and density of hardened cement paste decreased with the increase in MPCM content linearly. Among the evaluated properties, the compressive strength of TESCPs had a larger and faster degradation with the increase of MPCM content.  相似文献   

14.
In this study, the compressive strength and water contact angle of mortar specimens prepared by mixing two types of water repellent with ordinary Portland cement (OPC) and rapid-hardening cement mortar were measured before and after surface abrasion. In addition, the hydration products and chemical bonding of cement mortar with the repellents were examined using X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), and Fourier-transform infrared spectroscopy (FT-IR) to evaluate the performance of these cement mortar mixtures as repair materials. We found that the fast-hardening cement mortar mixture containing the oligomer water repellent showed the best performance with a high compressive strength and large water contact angle. With the oligomer water repellent, the rapid-hardening cement mortar mixture showed contact angles of 131° and 126° even after a 2 mm abrasion, thereby confirming that the water repellent secured hydrophobicity through strong bonding with the entire cement mortar as well as its surface. The compressive strengths were found to be 34.5 MPa at 3 h and 54.8 MPa at 28 days, confirming that hydration occurred well despite the addition of water repellent.  相似文献   

15.
The early strength of magnesium phosphate cement (MPC) decreases sharply in severe cold environments ≤−10 °C, with the 2 h compressive strength falling to 3.5 MPa at−20 °C. Therefore, it cannot be used as a repair material for emergency repair construction in such environments. In this study, MPC is adapted for use in such cold environments by replacing part of the dead-burned magnesia (M) in the mixture with a small amount of light-burned magnesia (LBM) and introducing dilute phosphoric acid (PA) solution as the mixing water. The heat released by the highly active acid–base reaction of PA and LBM stimulates an MPC reaction. Moreover, the early strength of the MPC significantly improves with the increase in the Mg2+ concentration and the initial reaction temperature of the MPC paste, which enables MPC hardening in severe cold environments. Although the morphology of the reaction products of the MPC is poor and the grain plumpness and size of the struvite crystals are remarkably reduced, the early strength of MPC prepared in the severe cold environment is close to that of MPC prepared under normal temperature. Furthermore, the increases in the early reaction temperature and early strength of magnesium phosphate cement concrete (MPCC) are significantly improved when the PA concentration in the mixing water and the LBM/M ratio are 10% and 4–6% at −10 °C and 20% and 6–8% at −20 °C, respectively. Moreover, self-curing of MPCC can be realized even at −20 °C, at which temperature the 2 h and 24 h compressive strength of MPCC reach 36 MPa and 45 MPa, respectively.  相似文献   

16.
Magnesium oxychloride cement (abbreviated as MOC) was prepared using magnesium residue obtained from Li2CO3 extraction from salt lakes as raw material instead of light magnesium oxide. The properties of magnesium residue calcined at different temperatures were researched by XRD, SEM, LSPA, and SNAA. The preparation of MOC specimens with magnesium residue at different calcination temperatures (from 500 °C to 800 °C) and magnesium chloride solutions with different Baume degrees (24 Baume and 28 Baume) were studied. Compression strength tests were conducted at different curing ages from 3 d to 28 d. The hydration products, microstructure, and porosity of the specimens were analyzed by XRD, SEM, and MIP, respectively. The experimental results showed that magnesium residue’s properties, the BET surface gradually decreased and the crystal size increased with increasing calcination temperature, resulting in a longer setting time of MOC cement. Additionally, the experiment also indicated that magnesium chloride solution with a high Baume makes the MOC cement have higher strength. The MOC specimens prepared by magnesium residue at 800 °C and magnesium chloride solution Baume 28 exhibited a compressive of 123.3 MPa at 28 d, which met the mechanical property requirement of MOC materials. At the same time, magnesium oxychloride cement can be an effective alternative to Portland cement-based materials. In addition, it can reduce environmental pollution and improve the environmental impact of the construction industry, which is of great significance for sustainable development.  相似文献   

17.
In this paper, the mechanical performance of an ultra-high-performance concrete (UHPC) repaired cementitious composite system, including the old matrix and the new reinforcement (UHPC), under various high temperature levels (20 °C, 100 °C, 300 °C, and 500 °C) was studied. In this system, UHPC reinforced with different contents of steel fibers and polypropylene (PP) fibers was utilized. Moreover, the physical, compressive, bonding, and flexural behaviors of the UHPC repaired system after being exposed to different high temperatures were investigated. Meanwhile, X-ray diffraction (XRD), baseline evaluation test (BET), and scanning electron microscope (SEM) tests were conducted to analyze the effect of high temperature on the microstructural changes in a UHPC repaired cementitious composite system. Results indicate that the appearance of the bonded system changed, and its mass decreased slightly. The average percentage of residual mass of the system was 99.5%, 96%, and 94–95% at 100 °C, 300 °C, and 500 °C, respectively. The residual compressive strength, bonding strength, and flexural performance improved first and then deteriorated with the increase of temperature. When the temperature reached 500 °C, the compressive strength, bonding strength, and flexural strength decreased by about 20%, 30%, and 15% for the UHPC bonded system, respectively. Under high temperature, the original components of UHPC decreased and the pore structure deteriorated. The cumulative pore volume at 500 °C could reach more than three times that at room temperature (about 20 °C). The bonding showed obvious deterioration, and the interfacial structure became looser after exposure to high temperature.  相似文献   

18.
In this research, the mechanical properties of lightweight mortars containing different percentages of additional powder materials has been investigated using response surface methodology (RSM). Box–Behnken design, one of the RSM techniques, was used to study the effects of silica fume content (5, 10, and 15%), vermiculite/cement (V/C) ratio (4, 6, and 8), and temperature (300, 600, and 900 °C) on the ultrasonic pulse velocity (UPV), bending strength, and compressive strength of lightweight mortars. Design expert statistical software was accustomed to determining and evaluating the mix-design of materials in mortar mixtures and temperature effect on mortars. After preliminary experimental research of the relationships between independent and response variables, regression models were built. During the selection of the model parameters, F value, p-value, and R2 values of the statistical models were taken into account by using the backward elimination technique. The results showed a high correlation between the variables and responses. Multi-objective optimization results showed that the critical temperatures for different levels of silica fume (5–10–15%) were obtained as 371.6 °C, 306.3 °C, and 436 °C, respectively, when the V/C ratio kept constant as 4. According to the results obtained at high desirability levels, it is found that the UPS values varied in the range of 2480–2737 m/s, flexural strength of 3.13–3.81 MPa, and compressive strength of 9.9–11.5 MPa at these critical temperatures. As a result of this research, RSM is highly recommended to evaluate mechanical properties where concrete includes some additional powder materials and was exposed to high temperature.  相似文献   

19.
In the hydration process of inorganic cements, the analysis of calorimetric measurements is one of the possible ways to better understand hydration processes and to keep these processes under control. This study contains data from the study of thermokinetic processes in alkali-activated blast-furnace slag cements compared to ordinary Portland cement (OPC). The obtained results show that, in contrast to OPC, the heat release values cannot be considered as a characteristic of the activity of alkali-activated blast-furnace slag cements. In addition, it is concluded that in the case of OPC cements, cumulative heat release is a criterion for the selection of effective curing parameters, while in the case of alkali-activated blast-furnace slag cements, a higher heat rate (which increases sharply with increasing temperature from 20 to 40 °C) is a criterion. From the point of views of thermokinetics, the rate of heat release at temperatures up to 40 °C can be a qualitative criterion that allows to choose the parameters of heat curing of alkali-activated cement concretes. By introducing a crystallo-chemical hardening accelerator, such as Portland cement clinker, into the composition of alkali-activated blast-furnace slag cements, it is possible to accelerate the processes not only in the condensation-crystallization structure formation stage, but also in the dispersion-coagulation structure formation stage. Portland cement clinker increased the efficiency of thermal curing at relatively non-high temperatures.  相似文献   

20.
Nanomaterials are potential candidates to improve the mechanical properties and durability of cementitious composites. SiC nanowhiskers (NWs) present exceptional mechanical properties and have already been successfully incorporated into different matrices. In this study, cementitious composites were produced with a superplasticizer (SP) and 0–1.0 wt % SiC NWs. Two different NWs were used: untreated (NT-NW) and thermally treated at 500 °C (500-NW). The rheological properties, cement hydration, mechanical properties, and microstructure were evaluated. The results showed that NWs incorporation statistically increased the yield stress of cement paste (by up to 10%) while it led to marginal effects in viscosity. NWs enhanced the early cement hydration, increasing the main heat flow peak. NWs incorporation increased the compressive strength, tensile strength, and thermal conductivity of composites by up to 56%, 66%, and 80%, respectively, while it did not statistically affect the water absorption. Scanning electron microscopy showed a good bond between NWs and cement matrix in addition to the bridging of cracks. Overall, the thermal treatment increased the specific surface area of NWs enhancing their effects on cement properties, while SP improved the NWs dispersion, increasing their beneficial effects on the hardened properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号