首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
This article reports on the dosimetric properties of a new N-isopropylacrylamide, high %T, polymer gel formulation (19.5%T, 23%C), optimized for x-ray computed tomography (CT) polymer gel dosimetry (PGD). In addition, a new gel calibration technique is introduced together with an intensity-modulated radiation therapy (IMRT) treatment validation as an example of a clinical application of the new gel dosimeter. The dosimetric properties investigated include the temporal stability, spatial stability, batch reproducibility and dose rate dependence. The polymerization reaction is found to stabilize after 15 h post-irradiation. Spatial stability investigations reveal a small overshoot in response for gels imaged later than 36 h post-irradiation. Based on these findings, it is recommended that the new gel formulation be imaged between 15-36 h after irradiation. Intra- and inter-batch reproducibility are found to be excellent over the entire range of doses studied (0-28 Gy). A significant dose rate dependence is found for gels irradiated between 100-600 MU?min?1. Overall, the new gel is shown to have promising characteristics for CT PGD, however the implication of the observed dose rate dependence for some clinical applications remains to be determined. The new gel calibration method, based on pixel-by-pixel matching of dose and measured CT numbers, is found to be robust and to agree with the previously used region of interest technique. Pixel-by-pixel calibration is the new recommended standard for CT PGD. The dose resolution for the system was excellent, ranging from 0.2-0.5 Gy for doses between 0-20 Gy and 0.3-0.6 Gy for doses beyond 20 Gy. Comparison of the IMRT irradiation with planned doses yields excellent results: gamma pass rate (3%, 3 mm) of 99.3% at the isocentre slice and 93.4% over the entire treated volume.  相似文献   

2.
The aim of this work was to investigate the dosimetric performance properties of the N-vinylpyrrolidone argon (VIPAR) based polymer gel as a dosimetric tool in clinical radiotherapy. VIPAR gels with a larger concentration of gelatin than the standard recipe were manufactured and irradiated up to 68 Gy using a 6 and 18 MV linear accelerator. Using MRI, the R2-dose response was recorded at different imaging sessions within a 34 day time period post-irradiation. The R2-dose response was found to be linear between 5 and 68 Gy. Although dose sensitivity did not show significant variation with time, the measured R2-dose values showed an increasing trend, which was less evident beyond 17 days. At one day post-irradiation, calculated dose standard uncertainties at 20 Gy and 56 Gy were 2.2% and 1.7%, providing a dose resolution of 0.45 Gy and 0.97 Gy, respectively. Although these values fulfilled the 2% limit of ICRU, when gels were imaged at one day post-irradiation, it was shown that the temporal evolution of the R2 values deteriorated the per cent standard uncertainty and the dose resolution by approximately 57%, when imaged 17 days post-irradiation. Variation in the coagulation temperature of the gels did not impact the R2-dose sensitivity. This study has shown that the VIPAR gel has the properties of a dosimetric tool required in clinical radiotherapy, especially in applications where a wide dose dynamic range is employed. For results with the lowest per cent uncertainty and the optimum dose resolution, the dosimetry gels used in this work should be MR scanned at one day post-irradiation. Furthermore, a preliminary study on the R2-dose response of a new normoxic N-vinylpyrrolidone-based polymer gel showed that it could potentially replace the traditional VIPAR gel formulation, while preserving the wide dynamic dose response inherent to that monomer.  相似文献   

3.
Baxter P  Jirasek A  Hilts M 《Medical physics》2007,34(6):1934-1943
This study reports on the effects of x-ray CT dose in CT imaged normoxic polyacrylamide (nPAG) gel dosimeters. The investigation is partitioned into three sections. First, the CT dose absorbed in nPAG is quantified under a range of typical gel CT imaging protocols. It is found that the maximum absorbed CT dose occurs for volumetric imaging and is in the range of 4.6 +/- 0.2 cGy/image. This does scales linearly with image averaging. Second, using Raman spectroscopy, the response of nPAG to CT imaging photon energies (i.e., 120-140 kVp) is established and compared to the well known dose response of nPAG exposed to 6 MV photons. It is found that nPAG exhibits a weaker response (per unit dose) to 140-kVp incident photons as compared to 6 MV incident photons (slopes m6 mv = -0.0374 +/- 0.0006 Gy(-1) and m140 kVp = -0.016 +/- 0.001 Gy(-1)). Finally, using the above data, an induced change in CT number (deltaN(CT)) is calculated for nPAG imaged using a range of gel imaging protocols. It is found that under typical imaging protocols (120-140 kVp, 200 mAs, approximately 16-32 image averages) a deltaN(CT) < 0.2 H is induced in active nPAG dosimeters. This deltaN(CT) is below the current limit of detectability of CT nPAG polymer gel dosimetry. Under expanded imaging protocols (e.g., very high number of image averages) an induced deltaN(CT) of approximately 0.5 H is possible. In these situations the additional polymerization occurring in nPAG due to the imaging process may need to be accounted for.  相似文献   

4.
Of the antioxidants used to scavenge oxygen in polymer gel dosimeters, tetrakis (hydroxymethyl) phosphonium chloride (THPC) has been shown to hold great promise due to its rapid oxygen scavenging abilities. In this study we (a) investigate the use of THPC as an antioxidant for polyacrylamide gel (PAGAT) dosimeters used in conjunction with x-ray computed tomography (CT) and (b) work to establish the reaction mechanisms of THPC with the polymer gel constituents. We establish the dose response reproducibility of PAGAT dosimeters when imaged with CT and show that PAGAT dosimeters exhibit highly reproducible dose responses for a range of irradiation times post gel manufacture (2-6 h) and CT imaging times post gel irradiation (1-5 days). The THPC concentration within the gel leading to a maximized dose response and minimized O(2) inhibition of polymerization is found to be approximately 4.5 mM. We further assess the stability of PAGAT dosimeters by investigating the reactions of THPC with the individual gel constituents. The importance of utilizing deionized water in polymer gel manufacture is noted. We show that, while THPC remains unreactive with acrylamide and bis-acrylamide under unirradiated conditions, THPC can react with gelatin to increase the cross-linking of the gelatin matrix in unirradiated dosimeters. THPC reactions with gelatin can lead to the lower observed dose sensitivity of PAGAT (approximately 0.36 +/- 0.04 H Gy(-1)) as compared to polyacrylamide gels manufactured under anoxic conditions (approximately 0.83 +/- 0.03 H Gy(-1)). The reactions of THPC which lead to O(2) scavenging, and potential reactions of THPC with other gel constituents, are proposed.  相似文献   

5.
Polymer gels whose NMR and optical properties change when irradiated offer unique advantages for measuring radiation dose distributions. To date, all acrylic polymer gel dosimeters must be manufactured, stored and irradiated in hypoxic conditions which severely limits their use and stability. A new formulation of acrylic dosimeter gel has been developed that responds well in normal atmosphere and which we have named MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper). To produce dosimeter gels, an aqueous solution of gelatin, open to the atmosphere, is mixed with methacrylic acid, copper(II) ions, ascorbic acid and hydroquinone. It is believed that the copper(II) and ascorbic acid form a complex with oxygen which (with radiolysis of water) serves as a free radical source for the initiation of the polymerization of methacrylic acid. At room air the water proton spin relaxation rate R2 in MAGIC gels is proportional to absorbed dose though the precise relationship depends on the composition of the gel and the initiating complex. For example, in the range 0-30 Gy the slope of the response of R2 versus dose at 20 MHz was 0.300, 0.519 and 0.681 s(-1) Gy(-1), respectively, when the concentration of MAA was 3, 6 and 9%. The slopes increased to 0.310, 0.567 and 0.868 s(-1) Gy(-1) at 85 MHz. An important determinant of the sensitivity to detect small dose changes is shown to be the slope-to-intercept ratio of the dose-response curve. These varied from 0.08 to 0.17, comparable to hypoxic gels described earlier. MAGIC gels can be manufactured and used much more easily than the previous formulations and can be imaged by magnetic resonance imaging or optical scanning, and thus they will likely be of considerable interest to radiation physicists.  相似文献   

6.
The use of magnetic resonance imaging as a readout method for polymer gel dosimetry commonly involves long imaging sessions, particularly when high spatial resolution is required in all three dimensions, for the investigation of dose distributions with steep dose gradients and stringent dose delivery specifications. In this work, a volume selective turbo spin echo (TSE) pulse sequence is compared to the established Carr-Purcell-Meiboom-Gill (CPMG) multiecho acquisition with regard to providing accurate dosimetric results in significantly reduced imaging times. Polyethylene glycol diacrylate based (PABIG) gels were irradiated and subsequently scanned to obtain R2 relaxation rate measurements, using a CPMG multiecho sequence and a dual echo TSE utilizing an acceleration (turbo) factor of 64. R2 values, plotted against corresponding Monte Carlo dose calculations, provided calibration data of PABIG gels dose response over a wide dose range. A linear R2 versus dose relationship was demonstrated for both sequences with TSE results presenting reduced dose sensitivity. Although TSE data were found to deviate from linearity at lower doses compared to CPMG data, a relatively wide dynamic dose range of response extending up to approximately 100 Gy was observed for both sequences. The TSE and CPMG sequences were evaluated with a brachytherapy irradiation using a high dose rate 192Ir source and a gamma knife stereotactic radiosurgery irradiation with a single 4 mm collimator helmet shot. Dosimetric results obtained with the TSE and CPMG are shown to compare equally well with the expected dose distributions for these irradiations. The 60-fold scan time reduction achieved with TSE implies that this sequence could prove to be a useful tool for the introduction of polymer gel dosimetry in clinical radiation therapy applications involving high doses and steep dose gradients.  相似文献   

7.
New composition polymer gels, the N-vinylpyrrolidone argon (VIPAR) gels, were developed and investigated as MRI dosimeters. VIPAR gels were irradiated in the dose range of 0-12 Gy by a 6 MV x-ray linear accelerator and MR-scanned in a 1.5 T magnetic resonance imager. A linear relationship was found between absorbed dose and spin spin relaxation rate R2. The dose sensitivity was found to be approximately 0.1 s(-1) Gy(-1) for a gel composition of 4% w/w in N-vinylpyrrolidone, 4% w/w in N,N'-methylene-bisacrylamide, 5% w/w in gelatine type A and 87% w/w in water. This dose sensitivity was stable with time and did not deteriorate even when a boost radiation dose of 2.5 Gy was applied 15 days after the first irradiation. Good reproducibility of these results was observed when a new batch of gels was produced and used for corresponding measurements and analysis.  相似文献   

8.
Fourier transform Raman spectroscopy was undertaken in the study of irradiated polyacrylamide gels (PAGs) used in 3D radiation dosimetry. By employing correlation techniques, monomer and crosslinker consumption were characterized in the spectra as a function of absorbed dose. The consumption of both monomer and crosslinker is monoexponential up to 13 Gy, although the rates of consumption differ for the two molecules. A sensitivity parameter, D0, in the exponential function has been used to characterize this difference. Up to 13 Gy, D0(acr) = 12 +/- 2 Gy while D0(bis) = 8.0 +/- 0.5 Gy, indicating that bis is consumed at a greater rate than acrylamide and that bis is the limiting factor in the onset of gel saturation, for a gel composition of 6% by weight total monomer (6%T) and where 3% of the total monomer is crosslinker (50%C). Direct evidence of polymer formation was observed in the Raman spectra of irradiated PAG. Polymer formation is monoexponential to a dose of 13 Gy, with a sensitivity parameter of D0(poly) = 14 +/- 2 Gy. This is in good agreement with the consumption rate of acrylamide. The exponential nature of the polymer formation observed here is compared with existing MRI and x-ray CT dose response measurements previously reported to be linear. The results confirm previous studies indicating that Raman spectroscopy provides a direct and useful tool for characterization of irradiated PAG.  相似文献   

9.
In this work, three new polymer gel dosimeter recipes were investigated that may be more suitable for widespread applications than polyacrylamide gel dosimeters, since the extremely toxic acrylamide has been replaced with the less harmful monomers N-isopropylacrylamide (NIPAM), diacetone acrylamide and N-vinylformamide. The new gel dosimeters studied contained gelatin (5 wt%), monomer (3 wt%), N,N'-methylene-bis-acrylamide crosslinker (3 wt%) and tetrakis (hydroxymethyl) phosphonium chloride antioxidant (10 mM). The NMR response (R2) of the dosimeters was analysed for conditions of varying dose, dose rate, time post-irradiation, and temperature during irradiation and scanning. It was shown that the dose-response behaviour of the NIPAM/Bis gel dosimeter is comparable to that of normoxic polyacrylamide gel (PAGAT) in terms of high dose-sensitivity and low dependence on dose rate and irradiation temperature, within the ranges considered. The dose-response (R2) of NIPAM/Bis appears to be linear over a greater dose range than the PAGAT gel dosimeter. The effects of time post-irradiation (temporal instability) and temperature during NMR scanning on the R2 response were more significant for NIPAM/Bis dosimeters. Diacetone acrylamide and N-vinylformamide gel dosimeters possessed considerably lower dose-sensitivities. The optical dose-response, measured in terms of the attenuation coefficient for each polymer gel dosimeter, showed potential for the use of optical imaging techniques in future studies.  相似文献   

10.
The change in linear attenuation coefficient with absorbed dose has been investigated for aqueous polyacrylamide, gelatine and tetrakis (PAGAT) and aqueous methacrylic acid, gelatine and tetrakis (MAGAT) normoxic polymer gel dosimeters using tetrakis (hydroxy methyl) phosphonium chloride as the antioxidant. The measured linear attenuation coefficient increased linearly with absorbed dose up to 15 Gy for PAGAT gels and 10 Gy for MAGAT gels. Computerized tomography (CT) numbers or Hounsfield units (H) were calculated from the linear attenuation coefficients and compared with values obtained using a CT scanner. Both calculated and measured CT numbers followed a similar pattern when fitted with a biexponential curve. The CT numbers obtained from linear attenuation measurements were found to be greater than that obtained with the CT scanner for both PAGAT and MAGAT polymer gels. The H-dose sensitivities of the MAGAT and PAGAT polymer gel dosimeters measured on a CT scanner were calculated to be (0.85 +/- 0.08) H Gy(-1) and (0.31 +/- 0.03) H Gy(-1), respectively. The H-dose sensitivities of the MAGAT and PAGAT polymer gel dosimeters from attenuation measurements were found to be (1.10 +/- 0.66) H Gy(-1) and (0.34 +/- 0.01) H Gy(-1), respectively.  相似文献   

11.
With the introduction of conformal techniques in radiation therapy, gel dosimetry plays an important role as a 3D dose verification system. There are two main types of gels in use for dosimetry: Fricke gels and polymer gels. The advantages of polymer gels are improved dose response and stability with no diffusion problems. However, the more complicated fabrication procedure and the greater cost compared to Fricke gels makes polymer gels less attractive in routine clinical use. Dose resolution has recently been introduced as a concept for comparing and optimizing the performance of different types of gel dosimeters. This parameter has not yet been investigated for Fricke gels. In this study, the effect on the dose resolution and the diffusion from different gelatine- and Fe2+-concentrations and different pH was evaluated. Increasing the concentration of gelatine from 6 wt% to 10 wt% influenced the diffusion coefficient the most, while reducing the pH from 2.0 to 1.5 had the largest effect on the dose resolution. For a gel consisting of 10 wt% gelatine, 1.0 mM Fe2+ and pH 1.5 the diffusion coefficient was found to be 1.5 mm2 h-1 and the dose resolution was about 4.1% (at 95% confidence level), for a dose of 40 Gy. By evaluating different dose gradients by the gamma-method, the diffusion was shown to have no clinically relevant impact on the dose distribution and plan acceptance within 3 h of irradiation. The results indicate a potential use of Fricke gels for IMRT verification.  相似文献   

12.
With the development of conformal radiotherapy, particularly intensity modulated radiation therapy (IMRT), there is a clear need for multidimensional dosimeters. A commercial polymerizing gel, BANG-2 gel (MGS Research, Inc., Guilford, CT), has recently been developed that shows potential as a multi-dimensional dosimeter. This study investigates and characterizes the noise and magnetic resonance (MR) artifacts from imaging BANG-2 gels. Seven cylindrical vials (4 cm diam, 20 cm length) were irradiated end on in a water bath and read using MRI (B0=1.5 T, TE=20 ms/100 ms, TR=3000 ms). The gel calibration compared the measured depth-dose distributions in water against the change in solvent-proton R2 relaxivity of the gel. A larger vial (13 cm diam, 14 cm length) was also irradiated to test the calibration accuracy in a vial of sufficient volume for dose distribution measurements. The calibration curve proved accurate to within 1.3% in determining the depth dose measured by the larger vial. An investigation of the voxel-to-voxel (IXIX 3 mm3) noise and sensitivity response curve showed that the voxel-to-voxel variation dominated the dose measurement uncertainty. The voxel-to-voxel standard deviation ranged from 0.2 Gy for the unirradiated gel to 0.7 Gy at 20 Gy. Slice-to-slice R2 magnitude deviations were also observed corresponding to 0.2 Gy. These variations limited the overall accuracy of the gel dose measurements and warrant an investigation of more accurate MR readout sequences.  相似文献   

13.
Changes in the linear attenuation coefficient of polymer gel dosimeters post-irradiation enable the imaging of dose distributions by x-ray computed tomography (CT). Various compositions of polymer gel dosimeters manufactured from acrylamide (AA), and N,N'-methylene-bis-acrylamide (BIS) comonomers and gelatin or agarose gelling agents were investigated. This work shows that increasing the comonomer concentration increases the CT-dose sensitivity of the polymer gel dosimeter. This can be further increased by replacing gelatin with agarose. Varying the gelatin concentration however does not significantly change the CT-dose sensitivity. Among the compositions studied, dose resolution (D(delta)95%) was found to be optimal for polymer gel dosimeters comprising 5% gelatin, 3% AA, 3% BIS and 89% water.  相似文献   

14.
Wuu CS  Xu Y 《Medical physics》2006,33(5):1412-1419
Dose distributions generated from intensity-modulated-radiation-therapy (IMRT) treatment planning present high dose gradient regions in the boundaries between the target and the surrounding critical organs. Dose accuracy in these areas can be critical, and may affect the treatment. With the increasing use of IMRT in radiotherapy, there is an increased need for a dosimeter that allows for accurate determination of three-dimensional (3D) dose distributions with high spatial resolution. In this study, polymer gel dosimetry and an optical CT scanner have been employed to implement 3D dose verification for IMRT. A plastic cylinder of 17 cm diameter and 12 cm height, filled with BANG3 polymer gels (MGS Research, Inc., Madison, CT) and modified to optimal dose-response characteristics, was used for IMRT dose verification. The cylindrical gel phantom was immersed in a 24 x 24 x 20 cm water tank for an IMRT irradiation. The irradiated gel sample was then scanned with an optical CT scanner (MGS Research Inc., Madison, CT) utilizing a single He-Ne laser beam and a single photodiode detector. Similar to the x-ray CT process, filtered back-projection was used to reconstruct the 3D dose distribution. The dose distributions measured from the gel were compared with those from the IMRT treatment planning system. For comparative dosimetry, a solid water phantom of 24 x 24 x 20 cm, having the same geometry as the water tank for the gel phantom, was used for EDR2 film and ion chamber measurements. Root mean square (rms) deviations for both dose difference and distance-to-agreement (DTA) were used in three-dimensional analysis of the dose distribution comparison between treatment planning calculations and the gel measurement. Comparison of planar dose distributions among gel dosimeter, film, and the treatment planning system showed that the isodose lines were in good agreement on selected planes in axial, coronal, and sagittal orientations. Absolute point-dose verification was performed with ion chamber measurements at four different points, varying from 48% to 110% of the prescribed dose. The measured and calculated doses were found to agree to within 4.2% at all measurement points. For the comparison between the gel measurement and treatment planning calculations, rms deviations were 2%-6% for dose difference and 1-3 mm for DTA, at 60%-110% doses levels. The results from this study show that optical CT based polymer gel dosimetry has the potential to provide a high resolution, accurate, three-dimensional tool for IMRT dose distribution verification.  相似文献   

15.
A new three-dimensional dosimetry technique using x-ray computed tomography (CT) to analyse polymer gels is proposed. The CT imaging is sensitive to radiation-induced density changes that occur within irradiated polyacrylamide gel (PAG). In this preliminary study, a CT imaging protocol is developed to optimize CT images of PAG; the response of PAG CT number to dose (N(CT)-dose response) and the reproducibility of the response are investigated, and the use of CT to analyse PAG is compared with MRI. Experiments were conducted using two 1.5 l cylindrical PAG phantoms (3% acrylamide, 3% bis and 5% gelatin by weight), one irradiated with four intersecting 10 MV photon beams and the other with 10 sets of 6 MV parallel opposed circular radiosurgery fields. The final imaging protocol involves using optimum CT parameters (120 kVp and 200 mAs for our GE HiSpeed CT/i scanner), image averaging and background subtraction. The N(CT)-dose response is reproducible, linear up to 800-1000 cGy and is relatively insensitive to the gel temperature during imaging. The dose resolution is approximately 50 cGy for an image thickness of 10 mm. Despite the low dose resolution, preliminary results indicate that this CT technique provides accurate localization of high dose gradients such as those observed in stereotactic radiosurgery. Thus, given the availability and speed of CT scanners, the technique has the potential to be a valuable and practical 3D dose verification tool in radiation therapy.  相似文献   

16.
A new formulation of a tissue-equivalent polymer-gel dosimeter for the measurement of three-dimensional dose distributions of ionizing radiation has been developed. It is composed of aqueous gelatin infused with acrylamide and N, N'-methylene-bisacrylamide monomers, and made hypoxic by nitrogen saturation. Irradiation of the gel, referred to as BANG, causes localized polymerization of the monomers, which, in turn, reduces the transverse NMR relaxation times of water protons. The dose dependence of the NMR transverse relaxation rate, R2, is reproducible (less than 2% variation) and is linear up to about 8 Gy, with a slope of 0.25 s(-1)Gy(-1) at 1.5 T. Magnetic resonance imaging may be used to obtain accurate three-dimensional dose distributions with high spatial resolution. Since the radiation-induced polymers do not diffuse through the gelatin matrix, the dose distributions recorded by BANG gels are stable for long periods of time, and may be used to measure low-activity radioactive sources. Since the light-scattering properties of the polymerized regions are different from those of the clear, non-irradiated regions, the dose distributions are visible, and their optical densities are dependent on dose.  相似文献   

17.
Radiation sensitive gels have been used as dosimeters for clinical dose verification of different radiation therapy modalities. However, the use of gels is not widespread, because careful techniques are required to achieve the dose precision and accuracy aimed for in clinical dose verification. Here, the introduction of gel dosimetry in a clinical environment is described, including the whole chain of customizations and preparations required to introduce magnetic resonance (MR) based gel dosimetry into clinical routine. In order to standardize gel dosimetry in dose verifications for radiosurgery and intensity modulated radiotherapy (IMRT), we focused on both the customization of the gel composition and of the MR imaging parameters to increase its precision. The relative amount of the components of the normoxic, methacrylic acid based gel (MAGIC) was changed to obtain linear and steep dose response relationships. MR imaging parameters were customized for the different dose ranges used in order to lower the relative standard deviation of the measured transversal relaxation rate (R2). An optimization parameter was introduced to quantify the change in the relative standard deviation of R2 (sigma(R2,rel)) taking the increase in MR time into account. A 9% methacrylic acid gel customized for radiosurgery was found to give a linear dose response up to 40 Gy with a slope of 0.94 Gy(-1) s(-1), while a 6% methacrylic acid gel customized for IMRT had a linear range up to 3 Gy with a slope of 1.86 Gy(-1) s(-1). With the help of an introduced optimization parameter, the mean sigma(R2,rel) was improved by 13% for high doses and by 55% for low doses, without increasing MR time to unacceptable values. A mean dose resolution of less than 0.13 Gy has been achieved with the gel and imaging parameters customized for IMRT and a dose resolution from 0.97 Gy (at 5 Gy) to 2.15 Gy (at 40 Gy) for the radiosurgery dose range. The comparisons of calculated and measured relative 3D dose distributions performed for radiosurgery and IMRT showed an acceptable overall correlation. The gamma criterion for the radiosurgery verification with a voxel size of 1.5 x 1.5 x 1.5 mm3 was passed by 96.8% of the voxels (1.5 mm distance, 8% in dose). For the IMRT verification using a voxel size of 1.25 x 1.25 x 5 mm3 the gamma criterion was passed by 50.3% of the voxels (3 mm distance, 3% dose uncertainty). Using dedicated data analysis and visualization software, MR based normoxic gel dosimetry was found to be a valuable tool for clinically based dose verification, provided that customized gel compositions and MR imaging parameters are used. While high dose precision was achieved, further work is required to achieve clinically acceptable dose accuracy.  相似文献   

18.
Two gels have been found to be suitable to load with ferrous sulphate solution. In these soft tissue equivalent phantoms, the absorbed dose distribution can be measured after irradiation in clinically used MR imaging equipment. The present studies were carried out using a 0.25 T NMR analyser without imaging properties. A ferrous sulphate solution, 0.05 M with respect to sulphuric acid, can be gelled with 4% gelatin to give a dosemeter which has a response which is linearly correlated (r = 0.998) with the absorbed dose in the interval 0-40 Gy. Ferrous sulphate solution can also be gelled with 1% agarose, but this gel has to be purged with oxygen to obtain a linear relationship (r = 0.997) in the same absorbed dose interval. The ferrous sulphate loaded gels have a sensitivity which is a factor of 2.2 or 4.0 times higher for gelatin and agarose, respectively, than the ordinary dosemeter solution. Because the standard deviation of background measurements is higher for the gels than for the dosemeter solution, the minimum detectable absorbed dose is about the same, or 1.0 Gy, for the two gels and the dosemeter solution. The sensitivity of the ferrous sulphate loaded gels shows no dependence on dose rate if the mean dose rate and the absorbed dose per pulse are within the limits normally used by accelerators for radiotherapy.  相似文献   

19.
The verification of dose distributions with high dose gradients as appearing in brachytherapy or stereotactic radiotherapy for example, calls for dosimetric methods with sufficiently high spatial resolution. Polymer gels in combination with a MR or optical scanner as a readout device have the potential of performing the verification of a three-dimensional dose distribution within a single measurement. The purpose of this work is to investigate the spatial resolution achievable in MR-based polymer gel dosimetry. The authors show that dosimetry on a very small spatial scale (voxel size: 94 x 94 x 1000 microm3) can be performed with normoxic polymer gels using parameter selective T2 imaging. In order to prove the spatial resolution obtained we are relying on the dose-modulation transfer function (DMTF) concept based on very fine dose modulations at half periods of 200 microm. Very fine periodic dose modulations of a 60Co photon field were achieved by means of an absorption grid made of tungsten-carbide, specifically designed for quality control. The dose modulation in the polymer gel is compared with that of film dosimetry in one plane via the DMTF concept for general access to the spatial resolution of a dose imaging system. Additionally Monte Carlo simulations were performed and used for the calculation of the DMTF of both, the polymer gel and film dosimetry. The results obtained by film dosimetry agree well with those of Monte Carlo simulations, whereas polymer gel dosimetry overestimates the amplitude value of the fine dose modulations. The authors discuss possible reasons. The in-plane resolution achieved in this work competes with the spatial resolution of standard clinical film-scanner systems.  相似文献   

20.
X-ray diffraction computed tomography   总被引:1,自引:0,他引:1  
Coherent scattering of x-ray photons leads to the phenomenon of x-ray diffraction, which is widely used for determining atomic structure in materials science. A technique [x-ray diffraction computed tomography (CT)] is described, analogous to conventional CT, in which the x-ray diffraction properties of a stack of two-dimensional object sections may be imaged. The technique has been investigated using a first generation (single pencil beam) CT scanner to measure small angle coherent scatter, in addition to the customary transmitted radiation. Diffraction data from a standard CT performance phantom obtained with this new technique and with an x-ray diffractometer are compared. The agreement is satisfactory bearing in mind the poor momentum resolution of our apparatus. The dose and sensitivity of x-ray diffraction CT are compared with those of conventional transmission CT. Diffraction patterns of some biological tissues and plastics presented in a companion paper indicate the potential of x-ray diffraction CT for tissue discrimination and material characterization. Finally, possibilities for refinement of the technique by improving the momentum resolution are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号