首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic resonance first-pass perfusion imaging has developed considerably over the past decade. It is possible to acquire 7-8 imaging planes every heartbeat at rest and in two heartbeats during stress using high-performance gradients and hybrid echoplanar methods. T1 weighting can be achieved with volumetric saturation pulses or selective "notch" pulses. First-pass studies can be quantified, but it also is possible to directly visualize myocardial perfusion abnormalities as subendocardial defects with less contrast enhancement than surrounding myocardium. It is feasible to detect stress-induced perfusion abnormalities in patients with coronary artery disease. Magnetic resonance imaging (MRI) perfusion abnormalities associated with myocardial infarction have significantly different characteristics from those seen on nuclear methods such as thallium, where the final appearance of images represents a combination of perfusion, viability, and wall thickness. Infarcted myocardium enhances during the first-pass MRI study unless there is microvascular or epicardial obstruction. Microvascular obstruction after myocardial infarction is easily detected and has adverse prognostic significance. Stress-induced perfusion abnormalities are not synonymous with coronary artery disease, as they can be detected in hypertrophic cardiomyopathy. MRI perfusion methods appear promising as long as physicians interpret the results in accordance of the physiology portrayed in the images.  相似文献   

2.
The knowledge of myocardial perfusion in healthy volunteers is fundamental for evaluation of patients with ischemic heart disease. The study was conducted to determine range, regional variability, and transmural gradient of myocardial perfusion in normal volunteers with Magnetic Resonance Perfusion Imaging (MRPI). Perfusion was assessed in 17 healthy volunteers (age: 20-47 yr, 11 males) at rest and adenosine-induced hyperemia using a 1.5 T MR scanner. Perfusion was quantified (mL/g/min) for the transmural myocardium and separately for the endo- and epimyocardium in the anterior, lateral, posterior, and septal left ventricular wall using the Fermi model for constrained deconvolution. Regional variabilities for resting, hyperemic perfusion, and perfusion reserve were 22 +/- 8%, 21 +/- 10%, and 35 +/- 18%. Mean resting, hyperemic perfusion, and perfusion reserve were 1.1 +/- 0.4 mL/g/min, 4.2 +/- 1.1 mL/g/min, and 4.1 +/- 1.4. Perfusion in the septum was higher at rest (1.3 +/- 0.3 mL/g/min vs. 1.0 +/- 0.3 mL/g/min, p < 0.05) and lower during hyperemia (3.6 +/- 0.8 mL/g/min vs. 4.5 +/- 1.1 mL/g/min, p < 0.03), resulting in a reduced perfusion reserve (PR) (3.2 +/- 0.9 vs. 4.5 +/- 1.4, p < 0.01) in the septum vs. the combined anterior, lateral, and posterior segments. Resting (0.9 +/- 0.3 mL/g/min vs. 1.4 +/- 0.5 mL/g/min, p < 0.01), but not hyperemic perfusion, was lower in the epi- vs. endomyocardium, resulting in a higher epimyocardial PR (4.8 +/- 1.8 vs. 3.5 +/- 1.4, p < 0.01) in all regions but the septum, where endo- and epimyocardial perfusion and perfusion reserve were not different. A considerable regional variability of myocardial perfusion was confirmed with MRPI. The exceptional anatomical position of the septum is reflected by the lack of a perfusion gradient, which was demonstrated in all other regions but the septum.  相似文献   

3.
Vasodilator first-pass stress cardiac magnetic resonance perfusion imaging [stress cardiac magnetic resonance (CMR)] is a reliable, noninvasive method for evaluating myocardial ischemia; however, it does not routinely evaluate metrics such as wall-motion abnormality (WMA) and transient ischemic dilation (TID). Using the new selective A2A adenosine receptor agonist regadenoson, we tested a novel protocol for assessing perfusion defects, WMA, and TID in a single stress CMR session. We evaluated 29 consecutive patients who presented for clinically indicated regadenoson stress CMR. Immediately before and after the regadenoson stress perfusion sequence, we obtained baseline and post-stress cine images in the short-axis orientation to detect worsening or newly developed WMAs. This approach also allowed evaluation of TID. Delayed-enhancement imaging was performed in the standard orientations. All patients tolerated the procedure well. Thirteen patients (45 %) had perfusion abnormalities, and four patients developed TID. Seven patients had WMAs, and three of them also had TID. Patients with TID ± WMAs had multivessel disease documented by coronary angiography. By using regadenoson to assess myocardial ischemia during stress CMR, perfusion defects, WMAs, and TID can be evaluated in a single imaging session. To our knowledge, we are the first to describe this novel approach in a vasodilator stress CMR study.  相似文献   

4.
5.
A comprehensive review is undertaken of the methods available for 3D whole-heart first-pass perfusion (FPP) and their application to date, with particular focus on possible acceleration techniques. Following a summary of the parameters typically desired of 3D FPP methods, the review explains the mechanisms of key acceleration techniques and their potential use in FPP for attaining 3D acquisitions. The mechanisms include rapid sequences, non-Cartesian k-space trajectories, reduced k-space acquisitions, parallel imaging reconstructions and compressed sensing. An attempt is made to explain, rather than simply state, the varying methods with the hope that it will give an appreciation of the different components making up a 3D FPP protocol. Basic estimates demonstrating the required total acceleration factors in typical 3D FPP cases are included, providing context for the extent that each acceleration method can contribute to the required imaging speed, as well as potential limitations in present 3D FPP literature. Although many 3D FPP methods are too early in development for the type of clinical trials required to show any clear benefit over current 2D FPP methods, the review includes the small but growing quantity of clinical research work already using 3D FPP, alongside the more technical work. Broader challenges concerning FPP such as quantitative analysis are not covered, but challenges with particular impact on 3D FPP methods, particularly with regards to motion effects, are discussed along with anticipated future work in the field.  相似文献   

6.
7.

Background

Adenosine cardiovascular magnetic resonance (CMR) can accurately quantify myocardial perfusion reserve. While regadenoson is increasingly employed due to ease of use, imaging protocols have not been standardized. We sought to determine the optimal regadenoson CMR protocol for quantifying myocardial perfusion reserve index (MPRi) – more specifically, whether regadenoson stress imaging should be performed before or after rest imaging.

Methods

Twenty healthy subjects underwent CMR perfusion imaging during resting conditions, during regadenoson-induced hyperemia (0.4 mg), and after 15 min of recovery. In 10/20 subjects, recovery was facilitated with aminophylline (125 mg). Myocardial time-intensity curves were used to obtain left ventricular cavity-normalized myocardial up-slopes. MPRi was calculated in two different ways: as the up-slope ratio of stress to rest (MPRi-rest), and the up-slope ratio of stress to recovery (MPRi-recov).

Results

In all 20 subjects, MPRi-rest was 1.78 ± 0.60. Recovery up-slope did not return to resting levels, regardless of aminophylline use. Among patients not receiving aminophylline, MPRi-recov was 36 ± 16% lower than MPRi-rest (1.13 ± 0.38 vs. 1.82 ± 0.73, P = 0.001). In the 10 patients whose recovery was facilitated with aminophylline, MPRi-recov was 20 ± 24% lower than MPRi-rest (1.40 ± 0.35 vs. 1.73 ± 0.43, P = 0.04), indicating incomplete reversal. In 3 subjects not receiving aminophylline and 4 subjects receiving aminophylline, up-slope at recovery was greater than at stress, suggesting delayed maximal hyperemia.

Conclusions

MPRi measurements from regadenoson CMR are underestimated if recovery perfusion is used as a substitute for resting perfusion, even when recovery is facilitated with aminophylline. True resting images should be used to allow accurate MPRi quantification. The delayed maximal hyperemia observed in some subjects deserves further study.

Trial registration

ClinicalTrials.gov NCT00871260  相似文献   

8.

Background

Despite increasing clinical use, there is limited data regarding regadenoson in stress perfusion cardiovascular magnetic resonance (CMR). In particular, given its long half-life the optimal stress protocol remains unclear. Although Myocardial Perfusion Reserve (MPR) may provide additive prognostic information, current techniques for its measurement are cumbersome and challenging for routine clinical practice.The aims of this study were: 1) To determine the feasibility of MPR quantification during regadenoson stress CMR by measurement of Coronary Sinus (CS) flow; and 2) to investigate the role of aminophylline reversal during regadenoson stress-CMR.

Methods

117 consecutive patients with possible myocardial ischemia were prospectively enrolled. Perfusion imaging was performed at 1 minute and 15 minutes after administration of 0.4 mg regadenoson. A subgroup of 41 patients was given aminophylline (100 mg) after stress images were acquired. CS flow was measured using phase-contrast imaging at baseline (pre CS flow), and immediately after the stress (peak CS flow) and rest (post CS flow) perfusion images.

Results

CS flow measurements were obtained in 92% of patients with no adverse events. MPR was significantly underestimated when calculated as peak CS flow/post CS flow as compared to peak CS flow/pre CS flow (2.43 ± 0.20 vs. 3.28 ± 0.32, p = 0.03). This difference was abolished when aminophylline was administered (3.35 ± 0.44 vs. 3.30 ± 0.52, p = 0.95). Impaired MPR (peak CS flow/pre CS flow <2) was associated with advanced age, diabetes, current smoking and higher Framingham risk score.

Conclusions

Regadenoson stress CMR with MPR measurement from CS flow can be successfully performed in most patients. This measurement of MPR appears practical to perform in the clinical setting. Residual hyperemia is still present even 15 minutes after regadenoson administration, at the time of resting-perfusion acquisition, and is completely reversed by aminophylline. Our findings suggest routine aminophylline administration may be required when performing stress CMR with regadenoson.  相似文献   

9.
目的 探讨双源CT(DECT)心肌灌注成像的临床应用价值.方法 选取59例接受DECT心肌灌注成像及SPECT负荷心肌显像者,根据检查结果分为A组(对照组,20例)和B组(缺血性心脏病组,39例),测量A组各心肌节段以及B组灌注缺损区、缺损周边及缺损对侧心肌CT灌注值(VNC及Overlay值).比较DECT与SPECT检出早期心肌灌注缺损(EPD)的差异,分析冠状动脉狭窄程度对两种检查方法一致性的影响.结果 A组心尖部、中间部及基底部VNC、Overlay值的差异无统计学意义(P均>0.05).B组中DECT检出92处EPD,其中53处经SPECT证实,二者检查结果的差异无统计学意义(x2 =3.403,P=0.065),呈中等相关(r=0.533,P<0.01).供血冠脉轻度狭窄时两种检查方法检出EDP的差异有统计学意义(x2=11.396,P<0.01),而中度及重度狭窄时两种检查方法检出EDP的差异无统计学意义(P均>0.05).结论 DECT首过心肌灌注成像能准确评估正常心肌及缺血心肌的灌注情况,与SPECT检查结果具有相关性,且更易检出早期、轻度心肌缺血.  相似文献   

10.
目的了解潘生丁负荷MR首过灌注(MRFP)显像在冠心病诊断中的临床意义.方法 42例拟诊冠心病的患者,按临床分为心肌梗死、心肌缺血、正常三组,行MRFP显像,其中25例行冠状动脉造影(CAG),并按冠脉狭窄程度分为狭窄<50%,50%~99%和100%三组.制定5分制标准,定性判断MRFP图像.分别分析临床分组和CAG分组的MR心肌灌注显像结果.结果定性判断MRFP图像对冠心病诊断的敏感性、特异性与准确性分别为90%、70%和80%.MRFP与临床分组的相关系数r=0.352(P=0.041);MRFP与CAG分组的相关系数r=0.402(P=0.001).出现灌注缺损的比例在临床分组中,分别为85.7%、61.1%和33.3%;在CAG分组中,分别为20%、60%和100%.结论 MRFP显像能够区分缺血和正常心肌,对冠心病诊断有一定意义.  相似文献   

11.
CT-based myocardial perfusion imaging (CTP) has been shown to accurately detect myocardial perfusion defects when compared to SPECT. When performing single-phase first-pass stress CTP, timing is of major importance. The aim of this study was to provide guidance for optimal timing of single-phase first-pass stress CTP acquisitions. 16 patients (12 male, age, 69 ± 8 years) with known or suspected coronary artery disease underwent invasive coronary angiography with fractional flow reserve (FFR) measurements using a pressure wire as well as a time-resolved CTP protocol under adenosine stress, performed on a dual-Source CT scanner over a period of 30 s. From the CTP data, time-attenuation curves have been determined both in known ischemic myocardium with a corresponding coronary artery stenosis as proven by a FFR below 0.75 in invasive coronary angiography, as well as in non-ischemic reference myocardium during pharmacological stress. Furthermore, contrast enhancement in the ascending aorta was determined. The time point for an optimal contrast (i.e., difference in Hounsfield Units, HU) between ischemic and normal myocardium was determined. Under pharmacological stress using adenosine, a maximum mean HU difference between ischemic and non-ischemic myocardium (17.7–22.5 HU) was observed 24–32 s after injection of contrast medium. The maximal attenuation difference between normal and ischemic myocardium ranged from 15 to 77 HU in the analyzed patient cohort. When applying a bolus-tracking technique with an automatic contrast detection in the proximal ascending aorta, the optimal time frame for stress CTP was between 8 and 16 s after contrast enhancement in the aorta exceeds 100 HU, or between 7 and 15 s using a threshold of 150 HU. For first-pass CT myocardial perfusion imaging there is a time frame of approximately 8 s for optimal differentiation of ischemic and non-ischemic myocardium, which will be helpful to optimize single-phase CTP scans.  相似文献   

12.
PURPOSE: While both first-pass perfusion and late gadolinium enhancement by cardiovascular magnetic resonance (CMR) can assess coronary microvascular status in acute myocardial infarction (AMI), there are only limited data on their respective diagnostic utility. We aim to evaluate: the utility of first-pass perfusion and late gadolinium enhancement imaging in the detection and quantification of microvascular dysfunction after reperfused acute myocardial infarction, using TIMI frame count (TIMI FC) as the reference standard of microvascular assessment; and their relationship with infarct size and ventricular function. METHODS: First-pass perfusion and late gadolinium enhancement imaging were performed in 25 consecutive AMI patients (84% men, age 58 +/- 10) within 72 h of successful reperfusion. We assessed the myocardial extent of microvascular dysfunction using the size of the perfusion defect on first-pass perfusion (PD%) and the hypoenhanced core region within late gadolinium enhancement (MDEcore%). PD%, MDEcore%, and TIMI FC were analyzed independently of each other and with blinding to clinical data. We adjusted PD% and MDEcore% to the myocardial mass subtended by the infarct-related artery according to the 16-segment model. RESULTS: Median infarct size involved 13.9% (interquartile range: 8.5 to 22.2%) of the left ventricle and median left ventricular ejection fraction was 52% (interquartile range: 43 to 61%). PD% demonstrated evidence of microvascular dysfunction more frequently (84% vs. 36% of patients, p < 0.002) and involved a larger myocardial extent (23.5 +/- 17.5% vs. 3.5 +/- 7.7%, p < 0.001) compared to MDEcore%. PD% had strong correlations with TIMI FC (Spearman rho = 0.62, p < 0.001) and infarct size (rho = 0.64, p < 0.001), and a moderate correlation with LVEF (rho = -0.39, p = 0.055). MDEcore% also correlated with TIMI FC (rho = 0.54, p = 0.005) and infarct size (rho = 0.52, p < 0.01) but not with LVEF (p = NS). CONCLUSIONS: PD% appeared to provide a stronger noninvasive assessment of the microvascular function than MDEcore% and correlated well with prognostic markers such as left ventricular ejection fraction and infarct size. Future studies should consider quantitative analyses of both first-pass perfusion and late gadolinium enhancement imaging in the evaluation of novel therapies targeted to the microvasculature of the infarct-related artery.  相似文献   

13.
Purpose The purpose of this study is to follow myocardial angiogenesis temporally using quantitative magnetic resonance first pass perfusion imaging and compare this with the “gold standard“ of radioactive microspheres in a random subset of animals. Materials and Methods Ameriod constrictors where placed around the left circumflex in 15 pigs to induce an ischemic area. Two groups were randomized to receive either a sham operation or treatment with angiogenic implants inserted into myocardium in the distribution of the left circumflex artery (LCX). These implants are designed to induce myocardial angiogenesis. Magnetic resonance first pass perfusion imaging was performed at baseline and also after treatment with either sham or implant therapy by using first pass perfusion imaging with a TurboFLASH sequence. Absolute myocardial blood flow was derived by applying a quantitative Fermi function model. Radioactive microspheres were also injected into a random subset of animals to measure myocardial blood flow. Results Angiogenic implant therapy increased absolute myocardial blood flow in the left circumflex territory relative to baseline and sham treated groups during adenosine infusion. Myocardial blood flows measured with radioactive microspheres was increased significantly in both the LCX and LAD territories during stress. Myocardial Perfusion reserve was also significantly increased in both the LCX and left anterior descending territories relative to baseline. Ejection Fraction during stress with dobutamine infusion increased significantly in the implant therapy group while that in the sham group was not affected. Conclusion Quantitative MR myocardial first pass perfusion imaging can be used to track the development of angiogenesis as corroborated by radioactive microspheres. Angiogenic implant therapy is a new device based therapy that has potential to protect an ischemic region by accelerating angiogenesis although further research is necessary with this device.  相似文献   

14.
Treadmill exercise stress testing is an essential tool in the prevention, detection, and treatment of a broad spectrum of cardiovascular disease. After maximal exercise, cardiac images at peak stress are typically acquired using nuclear scintigraphy or echocardiography, both of which have inherent limitations. Although CMR offers superior image quality, the lack of MRI-compatible exercise and monitoring equipment has prevented the realization of treadmill exercise CMR. It is critical to commence imaging as quickly as possible after exercise to capture exercise-induced cardiac wall motion abnormalities. We modified a commercial treadmill such that it could be safely positioned inside the MRI room to minimize the distance between the treadmill and the scan table. We optimized the treadmill exercise CMR protocol in 20 healthy volunteers and successfully imaged cardiac function and myocardial perfusion at peak stress, followed by viability imaging at rest. Imaging commenced an average of 30 seconds after maximal exercise. Real-time cine of seven slices with no breath-hold and no ECG-gating was completed within 45 seconds of exercise, immediately followed by stress perfusion imaging of three short-axis slices which showed an average time to peak enhancement within 57 seconds of exercise. We observed a 3.1-fold increase in cardiac output and a myocardial perfusion reserve index of 1.9, which agree with reported values for healthy subjects at peak stress. This study successfully demonstrates in-room treadmill exercise CMR in healthy volunteers, but confirmation of feasibility in patients with heart disease is still needed.  相似文献   

15.
Background- Blood oxygen level-dependent (BOLD) cardiac magnetic resonance imaging (CMR) has been shown to be able to detect myocardial perfusion differences. However, validation of BOLD CMR against fractional flow reserve (FFR) is lacking. The aim of our study was to analyze the potential diagnostic accuracy of BOLD CMR in comparison to invasively measured FFR, which served as gold standard for a hemodynamic significant coronary lesion. Methods and Results- BOLD image was performed at rest and during adenosine infusion in a 1.5-T CMR scanner. Thirty-six patients were analyzed for relative BOLD signal intensity increase according to the 16-segment model. Invasive FFR measurements were performed in the 3 major coronary arteries during adenosine infusion in all patients. An FFR≤0.8 was regarded to indicate a significant coronary lesion. Relative BOLD signal intensity increase was significantly lower in myocardial segments supplied by coronary arteries with an FFR≤0.8 compared with segments with an FFR>0.8 (1.1±0.2 versus 1.5±0.2; P<0.0001). Sensitivity and specificity yielded 88.2% and 89.5%, respectively. Conclusions- CMR BOLD imaging reliably detects hemodynamic significant coronary artery disease and is, thus, an alternative to contrast-enhanced perfusion studies.  相似文献   

16.
17.
目的 采用MR心肌首过灌注成像评估肥厚型心肌病(HCM)心肌缺血情况。方法 选取20例HCM患者(HCM组)和10名健康志愿者(对照组)行CMR检查(包括左心室短轴电影、心肌首过灌注成像和延迟增强扫描),测量舒张末期心肌厚度(EDTH),绘制左心室基底部、中部及心尖部的血池-信号强度心肌灌注曲线,获得各节段达峰时间(tpeak)、心肌信号强度最大上升斜率(Slopemax)、峰值信号强度(SIpeak)等。根据EDTH,将HCM组各心肌节段分为非肥厚亚组和肥厚亚组,肥厚亚组又分为轻度肥厚(15~19 mm)、中度肥厚(20~24 mm)和重度肥厚(25~29 mm)节段3个水平,采用单因素方差分析比较所有组别tpeak、Slopemax、SIpeak的总体差异,对HCM各亚组及各水平的tpeak、Slopemax、SIpeak行两两检验。结果 对照组与HCM非肥厚亚组的Slopemax、tpeak差异均无统计学意义(P均>0.05)。HCM非肥厚亚组与HCM肥厚亚组Slopemax、tpeak差异均有统计学意义(P均<0.05)。HCM肥厚亚组中,轻度肥厚水平Slopemax明显高于中度和重度肥厚(P均<0.05),中度肥厚水平tpeak高于轻度肥厚(P<0.05);中度与重度肥厚间Slopemax、tpeak及轻度、中度和重度肥厚间SIpeak差异均无统计学意义(P均>0.05)。结论 MR心肌首过灌注成像可反映HCM不同肥厚节段的心肌缺血情况,有助于对HCM患者进行风险分层、制定治疗计划和预后评估。  相似文献   

18.

Background

Two-dimensional (2D) perfusion cardiovascular magnetic resonance (CMR) remains limited by a lack of complete myocardial coverage. Three-dimensional (3D) perfusion CMR addresses this limitation and has recently been shown to be clinically feasible. However, the feasibility and potential clinical utility of quantitative 3D perfusion measurements, as already shown with 2D-perfusion CMR and positron emission tomography, has yet to be evaluated. The influence of systolic or diastolic acquisition on myocardial blood flow (MBF) estimates, diagnostic accuracy and image quality is also unknown for 3D-perfusion CMR. The purpose of this study was to establish the feasibility of quantitative 3D-perfusion CMR for the detection of coronary artery disease (CAD) and to compare systolic and diastolic estimates of MBF.

Methods

Thirty-five patients underwent 3D-perfusion CMR with data acquired at both end-systole and mid-diastole. MBF and myocardial perfusion reserve (MPR) were estimated on a per patient and per territory basis by Fermi-constrained deconvolution. Significant CAD was defined as stenosis ≥70% on quantitative coronary angiography.

Results

Twenty patients had significant CAD (involving 38 out of 105 territories). Stress MBF and MPR had a high diagnostic accuracy for the detection of CAD in both systole (area under curve [AUC]: 0.95 and 0.92, respectively) and diastole (AUC: 0.95 and 0.94). There were no significant differences in the AUCs between systole and diastole (p values >0.05). At stress, diastolic MBF estimates were significantly greater than systolic estimates (no CAD: 3.21 ± 0.50 vs. 2.75 ± 0.42 ml/g/min, p < 0.0001; CAD: 2.13 ± 0.45 vs. 1.98 ± 0.41 ml/g/min, p < 0.0001); but at rest, there were no significant differences (p values >0.05). Image quality was higher in systole than diastole (median score 3 vs. 2, p = 0.002).

Conclusions

Quantitative 3D-perfusion CMR is feasible. Estimates of MBF are significantly different for systole and diastole at stress but diagnostic accuracy to detect CAD is high for both cardiac phases. Better image quality suggests that systolic data acquisition may be preferable.  相似文献   

19.
目的探讨和实现一种自触发磁共振心脏成像(CMRI)。方法将心电图(ECG)信号和呼吸信号从监测信号中提取出来,然后将K空间数据重新排列、重建,得到心脏图像。结果自触发CMRI克服了传统的导联法难以获得稳定ECG信号的缺点,可提高扫描效率,得到高品质的亮血和黑血小鼠心脏电影图像。结论采用自触发CMRI可以实现小鼠心脏电影成像以及黑血成像,并用于评价其心脏结构和功能。  相似文献   

20.
This article is an invited editorial comment on the paper entitled “In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy” by Ferreira et al., and published as Journal of Cardiovascular Magnetic Resonance 2014; 16:87.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号