首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The uptake and metabolism of trichloroethylene (TCE), and the stoichiometric yield and kinetic behavior of one of its major metabolites, trichloroacetic acid (TCA), were compared in Fischer 344 rats and B6C3F1 mice using a physiological model. Physiologically based pharmacokinetic (PB-PK) model parameters (metabolic rate constants and tissue partition coefficients) were determined in male and female B6C3F1 mice and were taken from the literature for the male and female Fischer 344 rats. The kinetic behavior of TCA was described by a classical one-compartment model linked to a PB-PK model for TCE. The TCE blood/air partition coefficients for male and female mice, determined by vial equilibration, were 13.4 and 14.3. The Vmaxe values for male and female mice, using gas uptake techniques, were 32.7 +/- .06 and 23.2 +/- 0.1 mg/kg/hr and the Km was 0.25 mg/liter. The PB-PK model for TCE adequately described the uptake and clearance of TCE in male and female rats exposed to a single, constant concentration of TCE vapor, but failed to describe the uptake and clearance of TCE in male and female mice exposed to a wide range TCE vapor concentrations. Computer-predicted blood concentrations of TCE were generally greater than observed blood concentrations of TCE. The stoichiometric yield of TCA in mice exposed to these TCE vapors was concentration dependent. The capacity for oxidation of TCE was much greater in B6C3F1 mice than in Fischer 344 rats, and as a result the systemic concentration of TCA was greater in these mice than rats. An increased body burden of TCA in B6C3F1 mice may be related to the formation of hepatocellular carcinomas in B6C3F1 mice exposed to TCE.  相似文献   

3.
The metabolism of trichloroethylene (TRI) and its metabolites, chloral hydrate (CH), trichloroethanol (free-TCE) and trichloroacetic acid (TCA), were examined in the isolated perfused rat liver, to clarify the role of the liver in the metabolism of TRI. TRI was rapidly converted to TCE and TCA by the perfused liver. TCA was produced from TRI about 2.5 times greater than was total-TCE. CH was metabolized to TCE and TCA immediately. TCA was also a dominant metabolite of CH over total-TCE. TCE(free type) was speedily conjugated by the liver. A portion of TCE was converted to TCA. Less than 10% of these metabolites produced by the liver were excreted into the bile. Most of them appeared in the perfusate.  相似文献   

4.
Tao L  Li Y  Kramer PM  Wang W  Pereira MA 《Toxicology》2004,196(1-2):127-136
Dichloroacetic acid (DCA) and trichloroacetic acid (TCA) are mouse liver carcinogens. DNA hypomethylation is a common molecular event in cancer that is induced by DCA and TCA. Hypomethylation of DNA and the insulin-like growth factor-II (IGF-II) gene was determined in DCA- and TCA-promoted liver tumors. Mouse liver tumors were initiated by N-methyl-N-nitrosourea and promoted by either DCA or TCA. By dot-blot analysis using an antibody for 5-methylcytosine, the DNA in DCA- and TCA-promoted tumors was demonstrated to be hypomethylated. The methylation status of 28 CpG sites in the differentially methylated region-2 (DMR-2) of mouse IGF-II gene was determined. In liver, 79.3 +/- 1.7% of the sites were methylated, while in DCA- and TCA-treated mice, only 46.4 +/- 2.1% and 58.0 +/- 1.7% of them were methylated and 8.7 +/- 2.6% and 10.7 +/- 7.4% were methylated in tumors. The decreased methylation found in liver from mice exposed to DCA or TCA occurred only in the upstream region of DMR-2, while in tumors it occurred throughout the probed region. mRNA expression of the IGF-II gene was increased in DCA- and TCA-promoted liver tumors but not in non-involved liver from DCA- and TCA-exposed mice. The results support the hypothesis that DNA hypomethylation is involved in the mechanism for the tumorigenicity of DCA and TCA.  相似文献   

5.
Male Sprague-Dawley rats were treated with either dichloroacetic acid (DCA) or trichloroacetic acid (TCA) in the drinking water at levels of 0, 50, 500 and 5000 ppm for a period of 90 days to determine the toxicities associated with subchronic exposure. All animals were sacrificed and examined for gross and histopathologic lesions, serochemical changes, immune dysfunction, hepatic peroxisomal and mixed function oxidase enzyme induction and organ-body weight changes. Animals treated with DCA had decreased body weight gains (500 and 5000 ppm) and decreased total serum protein (all doses). Rats given either TCA (5000 ppm) or DCA (500 or 5000 ppm) had increased liver and kidney organ to body weight ratios. Rats offered DCA had significantly elevated alkaline phosphatase (500 and 5000 ppm) and alanine-amino transferase (5000 ppm). No consistent immunotoxicity was observed in animals exposed to either compound. Rats treated with 5000 ppm TCA or DCA had significantly increased hepatic peroxisomal beta-oxidation activity. These data, along with histopathologic changes, suggest that TCA and DCA produce substantial systemic organ toxicity to the liver and kidney during a 90-day subchronic exposure, although only at doses greater than those expected to occur in the environment.  相似文献   

6.
Metabolism, toxicity, and carcinogenicity of trichloroethylene   总被引:6,自引:0,他引:6  
Lifetime cancer or unit risk estimates for TRI have been calculated by the EPA on the basis of metabolized dose-tumor incidence relationships. Previously, it was common practice to directly extrapolate exposure dose-tumor incidence data from laboratory animal studies to predict cancer risks in humans. Such direct species-to-species extrapolations, however, do not take into account potentially important species differences in systemic uptake, tissue distribution, metabolism, deposition at the site(s) of action, and elimination. The consideration and use of pharmacokinetic and metabolic data can significantly reduce, though not eliminate, uncertainties inherent in species-to-species, route-to-route, and high- to low-dose extrapolations. The total amount of TRI metabolized was considered in the most recent EPA Health Assessment Document for Trichloroethylene to be the effective dose (EFD) producing tumors. Exposure dose-metabolism relationships were determined from direct measurement data in inhalation and oral dosing studies in mice and rats. The magnitude of TRI metabolism in these two species closely approximated body surface area. Thus, it was assumed that the amount of TRI metabolized per square meter of surface area was equivalent among species when calculating human equivalent doses from the animal data. Direct measurement data from an inhalation study in humans were used to calculate the amount of TRI metabolized and the unit risk estimate when a person inhales 1 microgram TRI per cubic meter continuously for 24 h. The EPA Cancer Assessment Group (CAG) elected to use this risk estimate for TRI in air, since it was calculated on the basis of a human metabolized dose rather than unit risk estimates based on animal studies. The current survey of literature and ongoing research uncovered no new animal or human studies in which TRI metabolites were directly measured, which would be any more suitable for use in estimating the total metabolized dose of TRI. On the basis of information now available, it is appropriate to continue to use the total amount of TRI metabolized as the EFD producing tumors in the liver. Use of the total amount metabolized represents an important "step in the right direction" in reducing uncertainties in interspecies extrapolations of data on a chemical such as TRI. TRI is believed to be metabolically activated to a reactive intermediate(s), although the identity of the intermediate(s) is unclear. There is evidence that formation of reactive intermediate(s) and TRI hepatotoxicity are directly proportional to the overall extent of TRI metabolism.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
In order to examine the cholecystohepatic circulation of trichloroethylene (TRI) and its metabolites, we injected the gallbladder with TRI and its metabolites, i.e. chloral hydrate (CH), free-trichloroethanol (F-TCE), trichloroacetic acid (TCA) and conjugated-trichloroethanol (Conj-TCE), using anesthetized dogs. The absorption rates of water from the gallbladder were 25-30% 2 h after administration for all substances. The absorption rates of substances were 65-70% in the CH, F-TCE and TRI groups, and 40-50% in the Conj-TCE and TCA groups 2 h after the administration. Conj-TCE in the blood absorbed from the gallbladder has a tendency to be directly transported to the venous system rather than to be taken into hepatocytes in the liver. All of the administered substances, in particular, F-TCE might be metabolized to other substances in the gallbladder.  相似文献   

8.
The ability of trichloroethylene (TCE) and selected metabolites to induce single-strand breaks in hepatic DNA of male B6C3F1 mice and Sprague-Dawley rats in vivo was evaluated using an alkaline unwinding assay. Doses of TCE of 22-30 mmol/kg were required to produce strand breaks in DNA in rats, whereas a dose of 11.4 mmol/kg was sufficient to increase the rate of alkaline unwinding in mice. To assess the importance of TCE metabolism to this response, rats were subjected to pretreatments of ethanol, phenobarbital, TCE, or the appropriate vehicle for 4 days prior to challenge doses of TCE. Phenobarbital and TCE, but not ethanol pretreatments, reduced the dose of TCE required to produce significant increases in single-strand breaks. In another series of experiments, mice and rats were treated with metabolites of TCE. Trichloroacetate, dichloroacetate, and chloral hydrate induced strand breaks in hepatic DNA in a dose-dependent manner in both species. Strand breaks in DNA were observed at doses that produced no observable hepatotoxic effects as measured by serum aspartate aminotransferase and alanine aminotransferase levels. The slopes of the dose-response curves and the order of potency of these metabolites differed significantly between rats and mice, suggesting that different mechanisms of single-strand break induction may be involved in the two species. These data provide a potential explanation for the different sensitivity of mice and rats to the hepatocarcinogenic effects of TCE.  相似文献   

9.
10.
To examine the biliary excretion of trichloroethylene (TRI) and its metabolites, we carried out various experiments with TRI and its metabolites, i.e., chloral hydrate (CH), free-trichloroethanol (F-TCE) and trichloroacetic acid (TCA), using anesthetized dogs. The amount of biliary excretion was significantly increased with the administration of CH and F-TCE, whereas it remained at control levels with the administration of TRI and TCA. The substances excreted into bile were conducted in the form of conjugated-TCE (Conj-TCE) in over 90% of the CH, F-TCE and TRI administration groups. About 95% of these Conj-TCE were conjugated with glucuronic acid. The cumulative excretion ratios of substances and metabolites to dose were 20% for CH and F-TCE, and about 1% for TCA and TRI 2 h after administration.  相似文献   

11.
A physiologically based pharmacokinetic (PB-PK) model was developed to describe trichloroethylene (TCE) kinetics in the pregnant rat exposed to TCE by inhalation, by bolus gavage, or by oral ingestion in drinking water. The kinetics of trichloroacetic acid (TCA), an oxidative metabolite of TCE, were described by a classical one-compartment pharmacokinetic model. Among the required model parameters for TCE, partition coefficients (PCs) and kinetic constants for oxidation were determined by vial equilibration and gas uptake methods, respectively. The fat:blood PC was 33.9; the blood:air PC was 13.2; and the fetal tissue:fetal blood PC was 0.51. TCE was readily metabolized with high substrate affinity. In naive and pregnant female rats the maximum velocities of oxidative metabolism were 10.98 +/- 0.155 and 9.18 +/- 0.078 mg/kg/hr, while the estimated Michaelis constant for the two groups of rats was very low, 0.25 mg/liter. The first-order rate constant for oral absorption of TCE from water was 5.4 +/- 0.42/hr-1 in naive rats. With TCA, the volume of distribution (0.618 liter/kg) and the plasma elimination rate constant (0.045 +/- 0.0024/hour) were estimated both from intravenous dosing studies with TCA and from an inhalation study with TCE. By comparison of the two routes of administration, the stoichiometric yield of TCA from TCE was estimated to be 0.12 in pregnant rats. To develop a data base for testing the fidelity of the PB-PK model, inhalation and bolus gavage exposures were conducted from Day 3 to Day 21 of pregnancy and a drinking water exposure from Day 3 to Day 22 of pregnancy. Inhalation exposures with TCE vapor were 4 hr/day at 618 ppm. The TCE concentration in drinking water was 350 micrograms/ml and the gavaged rats received single daily doses of 2.3 mg TCE/kg. Time varying physiological parameters for compartment volumes and blood flows during pregnancy were obtained from the published literature. Using the kinetic parameters determined by experimentation, TCE concentrations in maternal and fetal blood and TCA concentrations in maternal and fetal plasma were predicted from the PB-PK model by computer simulation and compared favorably with limited data obtained at restricted time points during pregnancy for all three routes of exposure. On the basis of the PB-PK model, fetal exposure to TCE, as area-under-the-curve, ranged from 67 to 76% of maternal exposure. For TCA the fetal exposure was 63 to 64% of the maternal exposure. The fetus is clearly at risk both to parent TCE and its TCA metabolite.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
We have investigated the potential of the male reproductive tract to accumulate trichloroethylene (TCE) and its metabolites, including chloral, trichloroethanol (TCOH), trichloroacetic acid (TCA), and dichloroacetic acid (DCA). Human seminal fluid and urine samples from eight mechanics diagnosed with clinical infertility and exposed to TCE occupationally were analyzed. In in vivo experimental studies, TCE and its metabolites were determined in epididymis and testis of mice exposed to TCE (1000 ppm) by inhalation for 1 to 4 weeks. In other studies, incubations of monkey epididymal microsomes were performed in the presence of TCE and NADPH. Our results showed that seminal fluid from all eight subjects contained TCE, chloral, and TCOH. DCA was present in samples from two subjects, and only one contained TCA. TCA and/or TCOH were also identified in urine samples from only two subjects. TCE, chloral, and TCOH were detected in murine epididymis after inhalation exposure with TCE for 1 to 4 weeks. Levels of TCE and chloral were similar throughout the entire exposure period. TCOH levels were similar at 1 and 2 weeks but increased significantly after 4 weeks of TCE exposure. Chloral was identified in microsomal incubations with TCE in monkey epididymis. CYP2E1, a P450 that metabolizes TCE, was localized in human and monkey epididymal epithelium and testicular Leydig cells. These results indicated that TCE is metabolized in the reproductive tract of the mouse and monkey. Furthermore, TCE and its metabolites accumulated in seminal fluid, and suggested associations between production of TCE metabolites, reproductive toxicity, and impaired fertility.  相似文献   

13.
14.
A physiologically based pharmacokinetic (PB-PK) model was developed to describe trichloroethylene (TCE) kinetics in the lactating rat and nursing pup. The lactating dam was exposed to TCE either by inhalation or by ingestion in drinking water. The nursing pup's exposure to TCE was by ingestion of maternal milk containing TCE. The kinetics of trichloroacetic acid (TCA), a metabolite of TCE, were described in the lactating dam and developing pup by a hybrid one-compartment model. The lactating dam's exposure to TCA was from metabolism of TCE to TCA. The pup's exposure to TCA was from metabolism of TCE ingested in suckled milk and from direct ingestion of TCA in maternal milk. For the PB-PK model, partition coefficients (PCs) were determined by vial equilibration, and metabolic constants for TCE oxidation, by gas uptake methods. The blood/air and the fat/blood PCs for the dam were 13.1 and 34.2, and for the pup, 10.6 and 42.3, respectively. The milk/blood PC for the dam was 7.1. In lactating rats and rat pups (19-21 days old) the maximum velocities of oxidative metabolism were 9.26 +/- 0.073 and 12.94 +/- 0.107 mg/kg/hr. The plasma elimination rate constant (K = 0.063 +/- 0.004 hr-1) and apparent volume of distribution (Vd = 0.568 liter/kg) for TCA in the lactating dam were estimated from both intravenous dosing studies and an inhalation study with TCE. For the pup, K (0.014 +/- hr-1) and Vd (0.511 liter/kg) were estimated from a single 4-hr inhalation exposure with TCE. The dose-rate-dependent stoichiometric yield of TCA from oxidative metabolism of TCE in the lactating rat is 0.17 for a low-concentration inhalation exposure (27 ppm TCE) and 0.27 for an exposure above metabolic saturation (about 600 ppm TCE). For the pup, the stoichiometric yield of TCA is 0.12. With changing physiological values during lactation for compartmental volumes, blood flows, and milk yields obtained from the published literature and kinetic parameters and PCs determined by experimentation, a PB-PK model was constructed to predict maternal and pup concentrations of TCE and TCA. To test the fidelity of the PB-PK lactation model, a multiday inhalation exposure study was conducted from Days 3 to 14 of lactation and a drinking water study, from Days 3 to 21 of lactation. The inhalation exposure was 4 hr/day, 5 days/week, at 610 ppm. The TCE concentration in the drinking water was 333 micrograms/ml. Prediction compared favorably with limited data obtained at restricted time points during the period of lactation.  相似文献   

15.
Trichloroethylene (TCE) and its metabolite trichloroacetic acid (TCA) are common drinking water contaminants in the United States. Both chemicals have been implicated in causing congenital heart defects (CHD) in human epidemiological and animal model studies. However, the latter studies have primarily focused on assessment of cardiac morphology at late embryonic stages. Here, we tested whether treating avian embryos with TCE or TCA during an exposure window encompassing cardiac specification (Hamburger-Hamilton [HH] 3+) until the onset of chambering (HH 17) informs the etiology of CHD at later stages of development. Embryos were exposed to TCE or TCA via direct injection into the yolk, over a range of doses that included each compound's maximum contaminant level as established by the U.S. Environmental Protection Agency. A modified TUNEL (Terminal deoxynucleotide transferase mediated dUTP-biotin Nick-End Labeling) assay indicated that neither compound induced apoptotic cell death in ventricular myocytes or endocardiocytes at HH 18. However, mid-range dosages of TCE increased myocyte and endocardiocyte proliferation by this time, as determined by monitoring BrdU incorporation; in contrast, an intermediate dose of TCA inhibited proliferation in endocardiocytes. These cellular changes had no apparent functional consequences because all measured hemodynamic parameters were normal for TCE- and TCA-exposed embryos at HH 18, HH 21, and HH 23. In summary, TCE or TCA exposure during the cardiac specification window has only minimal effects on the developing avian heart. These results sharply contrast with our previously reported observations following administration of equivalent doses during a window of valvuloseptal morphogenesis. Taken together, these findings indicate that, as for other teratogens, sensitivity is dictated by the embryo's stage of development.  相似文献   

16.
《Toxicology letters》1995,81(1):55-71
Dichloroacetic acid (DCA) is a complete hepatocarcinogen and tumor promoter in the male B6C3F1 mouse. Published reports indicate that the compound is non-genotoxic. This study examines possible non-genotoxic (epigenetic) mechanisms by which DCA elicits its carcinogenic response. Correlative biochemical, pathologic and morphometric techniques are used to characterize and quantify the acute, short-term response of hepatocytes in the male B6C3F1 mouse to drinking water containing DCA. Cellularity, [ 3H]ithymidine incorporation, DNA concentration, nuclear size, and binuclearity are evaluated in terms of level of exposure (0, 0.5 and 5 g/l) and length of exposure to DCA. The dose-related alterations in hepatocytes of animals exposed to DCA for 30 days or less indicate that shortterm exposure to DCA results in inhibition of mitoses, alterations in cellular metabolism and a shift in ploidy class. Thus, DCA carcinogenesis may involve cellular adaptations, development of drug resistance and selection of phenotypically altered cells with a growth advantage.  相似文献   

17.
In order to examine the absorption of trichloroethylene (TRI) and its metabolites from the urinary bladder of dogs, we injected TRI and its metabolites, i.e., chloral hydrate (CH), free trichloroethanol (F-TCE), trichloroacetic acid (TCA) and conjugated trichloroethanol (Conj-TCE), into the urinary bladder of anesthetized dogs, and measured the agents and their respective metabolites in the blood or serum, urine and bile. The percentage of water absorbed from the urinary bladder was 10-20% 2 h after the administration of all substances. The percentage of agents absorbed was 60-70% for the TRI and TCA groups, and 50-60% for the CH, F-TCE and Conj-TCE groups 2 h after administration. The combined urinary and biliary excretion rates of the absorbed materials from the urinary bladder 2 h after administration were 46% for F-TCE, 30% for CH, 6% for Conj-TCE and 0.5-1.0% for TRI and TCA. Urinary re-excretion rates of the total excreted amounts were 65-70% in TRI, CH and F-TCE groups, about 50% in TCA and 99% in Conj-TCE group. It is possible that all of the substances administered, particularly F-TCE, are metabolized to Conj-TCE in the urinary bladder.  相似文献   

18.
The discussion on renal carcinogenicity of trichloroethylene addresses epidemiological, mechanistic, and metabolic aspects. After trichloroethylene exposure of rats, renal cell tumors were found increased in males, and an increased incidence of interstitial cell tumors of the testes was reported. Studies on the metabolism of trichloroethylene in rodents and in humans support the role of bioactivation reactions for the development of tumors following exposure to trichloroethylene. Epidemiological cohort studies addressing the carcinogenicity of trichloroethylene with respect to the renal or urothelial target sites have been conducted, and no clear evidence for an elevated renal or urinary tract cancer risk in trichloroethylene-exposed groups was visible in exposed populations. However, a cohort study of 169 male workers having been exposed to unusually high levels of trichloroethylene in Germany within the period between 1956 and 1975 supported a nephrocarcinogenic effect of trichloroethylene in humans. The results of this study were discussed in the literature with considerable reserve; criticism was based mainly on the choice of the study group, which had been recruited from personnel of a company in which a cluster of four renal tumors was observed previously. Hence, a further case-control study was conducted in the same region. This study confirmed the results of the previous cohort study, supporting the concept of involvement of prolonged and high-dose trichloroethylene exposures in the development of renal cell cancer. Further investigations on patients with renal cell carcinoma and with histories of high trichloroethylene exposures, on the basis of excretion of marker proteins in the urine, pointed to toxic damage to the proximal renal tubules by trichloroethylene. The hypothesis of implication of a glutathione transferase-dependent bioactivating pathway of trichloroethylene, established in experimental animals, seems at least also plausible for humans. Apparently, the occurrence of renal cell carcinomas in man follows high-dose exposures to trichloroethylene that are also accompanied by damage to tubular renal cells. Development of renal cell carcinomas has been related to mutations in the vonHippel-Lindau (VHL) tumor suppressor gene. Renal cell carcinoma tissues of persons with histories of prolonged high-dose exposure to trichloroethylene were investigated for the occurrence of mutations of the vonHippel-Lindau (VHL) tumor suppressor gene. VHL gene mutations were found in the majority of renal cell tumors associated with high-level exposure to trichloroethylene. A specific mutational hot spot at the VHL nucleotide 454 was addressed as a unique mutation pattern of the VHL tumor suppressor gene. A synopsis of all experimental, clinical, and epidemiological data suggests that reactive metabolites of trichloroethylene, with likely involvement of dichlorovinyl-cysteine (DCVC), exert a genotoxic effect on the proximal tubule of the human kidney. This constitutes a tumor-initiating process of genotoxic nature, the initial genotoxic effect apparently being linked with mutational changes in the VHL tumor suppressor gene. However, there is compelling evidence that the full development of a malignant tumor requires continued promotional stimuli. Repetitive episodes of high peak exposures to trichloroethylene over a prolonged period of time apparently led to nephrotoxicity, visualized by the excretion of tubular marker proteins in the urine. This critical process of development of tubular damage by trichloroethylene must follow a "conventional" dose-dependence, implying a practical threshold. This view is much corroborated by the fact that the occurrence of human renal cell cancer is obviously confined to cases of unusually high trichloroethylene exposures in the past, with special characteristics of very high and repetitive peak exposures. Current instruments of regulation should be adjusted to allow adequate consideration of su  相似文献   

19.
Trichloroethylene (TCE) is an industrial solvent and a widespread environmental contaminant. Induction of liver cancer in mice by TCE is thought to be mediated by two metabolites, dichloroacetate (DCA) and trichloroacetate (TCA), both of which are themselves mouse liver carcinogens. TCE, TCA, and DCA are relatively weak peroxisome proliferators (PP), a group of rodent hepatocarcinogens that activate a nuclear receptor, PP-activated receptor alpha (PPARalpha. The objective of this review is to assess the weight of evidence (WOE) that PPARalpha is or is not mechanistically involved in mouse liver tumor induction by TCE and metabolites. Based on similarities of TCE and TCA to typical PP, including dose-response characteristics showing PPARalpha-dependent responses coincident with liver tumor induction and abolishment of TCE and TCA effects in PPARalpha-null mice, the WOE supports the hypothesis that PPARalpha plays a dominant role in TCE- and TCA-induced hepatocarcinogenesis. Data indicates that the MOA for DCA tumor induction is PPARalpha-independent. Uncertainties remain regarding the genesis of the TCE-induced tumors. In contrast to the TCA-induced tumors, which have molecular features similar to those induced by typical PP, there is evidence, albeit weak, that TCE tumors arise by a mode of action (MOA) different from that of TCA tumors, based largely on dissimilarities in molecular markers found in TCE versus TCA-induced tumors. In summary, the WOE indicates that TCA-induced liver tumors arise by a PPARalpha-dependent MOA. Although the TCE MOA is likely dominated by a PPARalpha-dependent contribution from TCA, the contribution of a PPARalpha-independent MOA from DCA cannot be ruled out.  相似文献   

20.
Chronic exposure to trichloroethylene (TCE) results in hepatocellular cancer in mice but not rats. The induction of hepatic tumors by TCE appears to be mediated through nongenotoxic or tumor promotion mechanisms. One cellular effect exhibited by a number of nongenotoxic carcinogens and tumor promoters is the inhibition of gap junction mediated intercellular communication. In the present study, the effects of trichloroethylene (TCE) and its metabolites, trichloracetic acid (TCA), trichloroethanol (TCEth), and chloral hydrate (CH) on gap junction mediated intercellular communication in cultured B6C3F1 mouse and F344 rat hepatocytes were assessed. TCE and TCA inhibited intercellular communication in mouse hepatocytes but not in rat hepatocytes. TCEth and CH had no effect on hepatocyte intercellular communication in either rat or mouse cells. TCE and TCA inhibited intercellular communication in both 24-hr-old and freshly plated mouse hepatocytes. Both compounds produced greater inhibition of intercellular communication in freshly plated cells when compared to 24-hr-old cultures. TCE appeared to require cytochrome P450 metabolism by the mouse hepatocytes to exhibit its inhibitory effect on dye coupling since treatment with SKF-525A prevented the inhibition of intercellular communication by TCE. The inhibitory effect of TCA on intercellular communication was unaffected by treatment with SKF-525A. While the species dependent effect of TCE on intercellular communication may be correlated with different rates and extent of metabolism of TCE by rat and mouse hepatocytes, the inhibiting effect of TCA only on mouse hepatocytes suggests that other intrinsic factors in the male mouse make this species more susceptible to the effects of TCE and TCA on gap junction mediated intercellular communication. These findings may account, in part, for the observed species difference in susceptibility to TCE induced liver carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号