首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitory receptor FcgammaRIIb regulates B-cell functions. Genetic studies have associated Fcgr2b polymorphisms and lupus susceptibility in both humans and murine models, in which B cells express reduced FcgammaRIIb levels. Furthermore, FcgammaRIIb absence results in lupus on the appropriate genetic background, and lentiviral-mediated FcgammaRIIb overexpression prevents disease in the NZM2410 lupus mouse. The NZM2410/NZW allele Fcgr2b is, however, located in-between Sle1a and Sle1b, two potent susceptibility loci, making it difficult to evaluate Fcr2b(NZW) independent contribution. By using two congenic strains that each carries only Sle1a (B6.Sle1a(15-353)), or Fcr2b(NZW) in the absence of Sle1a or Sle1b (B6.Sle1(111-148)), we show that the Fcr2b(NZW) allele does not upregulate its expression on germinal center B cells and plasma cells, as does the C57BL/6 allele on B6.Sle1a(15-353) B cells. Furthermore, in the absence of the flanking Sle1a and Sle1b, Fcr2b(NZW) does not produce an autoimmune phenotype, but is associated with an increased number of class-switched plasma cells. These results show that while a lower level of FcgammaRIIb does not by itself induce the development of autoreactive B cells, it has the potential to amplify the contribution of autoreactive B cells induced by other lupus-susceptibility loci by enhancing the production of class-switched plasma cells.  相似文献   

2.
The NZM2410-derived Sle2 lupus susceptibility locus induces an abnormal B-cell differentiation, which most prominently leads to the expansion of autoreactive B1a cells. We have mapped the expansion of B1a cells to three Sle2 sub-loci, Sle2a, Sle2b and Sle2c. Sle2 also enhances the breach of B-cell tolerance to nuclear antigens in the 56R anti-DNA immunoglobulin transgenic (Tg) model. This study used the Sle2 sub-congenic strains to map the activation of 56R Tg B cells. Sle2c strongly sustained the breach of tolerance and the activation of anti-DNA B cells. The production of Tg-encoded anti-DNA antibodies was more modest in Sle2a-expressing mice, but Sle2a was responsible for the recruitment for Tg B cells to the marginal zone, a phenotype that has been found for 56R Tg B cells in mice expressing the whole Sle2 interval. In addition, Sle2a promoted the production of endogenously encoded anti-DNA antibodies. Overall, this study showed that at least two Sle2 genes are involved in the activation of anti-DNA B cells, and excluded more than two-thirds of the Sle2 interval from contributing to this phenotype. This constitutes an important step toward the identification of novel genes that have a critical role in B-cell tolerance.  相似文献   

3.
The major murine systemic lupus erythematosus (SLE) susceptibility locus, Sle1, corresponds to three loci independently affecting loss of tolerance to chromatin in the NZM2410 mouse. The congenic interval corresponding to Sle1c contains Cr2, which encodes complement receptors 1 and 2 (CR1/CR2, CD35/CD21). NZM2410/NZW Cr2 exhibits a single nucleotide polymorphism that introduces a novel glycosylation site, resulting in higher molecular weight proteins. This polymorphism, located in the C3d binding domain, reduces ligand binding and receptor-mediated cell signaling. Molecular modeling based on the recently solved CR2 structure in complex with C3d reveals that this glycosylation interferes with receptor dimerization. These data demonstrate a functionally significant phenotype for the NZM2410 Cr2 allele and strongly support its role as a lupus susceptibility gene.  相似文献   

4.
Genetic analyses of the lupus-prone NZM2410 mouse have identified multiple susceptibility loci on chromosome 7, termed Sle3 and Sle5. Both of these loci were contained within a large congenic interval, originally termed as Sle3 that strongly impacts a variety of myeloid and T-cell phenotypes and mediates fatal lupus nephritis when combined with Sle1. We have now produced two subcongenic strains, B6.Sle3 and B6.Sle5, carrying the Sle3 and Sle5 intervals separately and characterized their phenotypes as monocongenic strains and individually in combination with Sle1. Neither B6.Sle3 nor B6.Sle5 monocongenic strain develop severe autoimmunity; however, both of these intervals cause the development of severe glomerulonephritis when combined with Sle1. Thus, B6.Sle1Sle3 and B6.Sle1Sle5 exhibit splenomegaly, expansion of activated B and CD4+ T-cell populations and high levels of IgG and IgM autoantibodies targeting multiple nuclear antigens, intact glomeruli and various other autoantigens. In addition, B6.Sle1Sle3 mice also produced higher levels of IgA antinuclear autoantibodies, which were implicated in the development of IgA nephropathy. Our results indicate that Sle3 and Sle5 can independently complement with Sle1, through shared and unique mechanisms, to mediate the development of severe autoimmunity.  相似文献   

5.
Marginal zone (MZ) B cells contain a large number of autoreactive clones and the expansion of this compartment has been associated with autoimmunity. MZ B cells also efficiently transport blood-borne antigen to the follicles where they activate T cells and differentiate into plasma cells. Using the B6.NZM2410.Sle1.Sle2.Sle3 (B6.TC) model of lupus, we show that the IgM+ CD1d(hi)/MZ B-cell compartment is expanded, and a large number of them reside inside the follicles. Contrary to the peripheral B-cell subset distribution and their activation status, the intrafollicular location of B6.TC IgM+ CD1d(hi)/MZ B cells depends on both bone marrow- and stromal-derived factors. Among the factors responsible for this intrafollicular location, we have identified an increased response to CXCL13 by B6.TC MZ B cells and a decreased expression of VCAM-1 on stromal cells in the B6.TC MZ. However, the reduced number of MZ macrophages observed in B6.TC MZs was independent of the IgM+ CD1d(hi)/B-cell location. B7-2 but not B7-1 deficiency restored IgM+ CD1d(hi)/MZ B-cell follicular exclusion in B6.TC mice, and it correlated with tolerance to dsDNA and a significant reduction of autoimmune pathology. These results suggest that follicular exclusion of IgM+ CD1d(hi)/MZ B cells is an important B-cell tolerance mechanism, and that B7-2 signaling is involved in breaching this tolerance checkpoint.  相似文献   

6.
B6.Sle1 mice, congenic for the NZM2410-derived lupus susceptibility locus, Sle1 on chromosome 1 exhibit many of the features seen in human lupus including activated lymphocytes and high titers of antinuclear autoantibodies. Among the different surface molecules that were aberrantly expressed on the B6.Sle1 lymphocytes was Ly-6A/E. Splenic B- and T-lymphocytes but not myeloid cells from B6.Sle1 mice exhibited enhanced levels of Ly-6A/E compared to B6 controls. In particular, MZ B cells, GC B cells and B-cell blasts expressed the highest levels of Ly-6A/E in both strains, with the levels being even higher on B6.Sle1 derived cells. Following stimulation with LPS or anti-IgM, there was a profound up-regulation in Ly-6A/E, particularly on MZ B cells and B-cell blasts. CD4 and CD8 T cells also up-regulated Ly-6A/E after stimulation with anti-CD3 and anti-CD28. These studies were extended to additional autoimmune strains including B6.Sle3, B6.Sle1.lpr and BXSB. Importantly, Ly-6A/E levels on lymphocytes were commensurate with the degree of disease exhibited by these lupus strains. Finally, it appears that increased interferon levels, in addition to antigen receptor stimulation, may also be a factor accounting for elevated Ly-6A/E in lupus. Given these observations it is important to elucidate the functional role of Ly-6A/E in lupus in future studies.  相似文献   

7.
Previous studies have demonstrated that the NZM2410/NZW 'z' allele of Sle1 on telomeric murine chromosome 1 led to lymphoproliferative autoimmunity, when acting in concert with the FAS(lpr) defect on the C57BL/6 background. The present report shows that the Sle1b sub-locus, harboring the NZM2410/NZW 'z' allele of SLAM, in epistasis with FAS(lpr), may be sufficient to induce lymphoproliferative autoimmunity. Disease in this simplified genetic model is accompanied by significant activation of the AKT signaling axis in both B- and T cells, as evidenced by increased phosphorylation of AKT, mTOR, 4EBP-1 and p70S6K, resulting from increased PI3K and reduced PTEN activity. In addition, blocking this axis using RAD001, an mTOR inhibitor, ameliorated lymphoproliferation and modulated serum IgG anti-nuclear auto-antibodies. Finally, mTOR inhibition also dampened signaling via parallel axes, including the MAPK and NFkB pathways. Hence, hypersignaling via the PI3K/AKT/mTOR axis appears to be an important mechanism underlying autoimmune lymphoproliferative disease, presenting itself as a potential target for therapeutic intervention.  相似文献   

8.
Lessons from the NZM2410 model and related strains   总被引:2,自引:0,他引:2  
SLE susceptibility requires the interplay of an unknown number of genes and equally unidentified triggering events. The past few years have seen significant advances in our understanding of SLE susceptibility through the genetic analysis of murine models. The NZM2410 strain, which is derived from the NZB/WF1 model has played a significant role in these advances. The main advantages presented by this strain over other models are the genetic homozygozity at all loci and an highly penetrant early onset lupus nephritis in both males and females, indicating that the strongest BWF1 susceptibility loci were retained in NZM2410. After identification of NZM2410 susceptibility loci via linkage analyses, congenic strains have been derived in order to convert a polygenic system into a series of monogenic traits. These congenic strains have been analyzed in an integrated process which has provided simultaneously 1) novel functional characterization of the Sle susceptibility loci, 2) high resolution genetic maps that will lead to the identification of the corresponding susceptibility genes by either candidate locus or positional cloning, and 3) insights into the mechanisms by which these loci interact to produce systemic autoimmunity with fatal end-organ damage.  相似文献   

9.
B6.Sle1b mice, which contain the Sle1b gene interval derived from lupus prone NZM2410 mice on a C57BL/6 background, present with gender-biased, highly penetrant anti-nuclear antibody (ANA) production. To obtain some insight into the possible induction mechanism of autoantibodies in these mice we compared antigen-specific T dependent (TD) and T independent (TI-II) responses between B6.Sle1b and B6 mice before the development of high ANA titers. Our results show that B6.Sle1b mice mount enhanced responses to a TI-II antigen. Additionally, the memory T cell response generated by a TD antigen also increased. This enhancement correlates with the greater ability of B cells from B6.Sle1b mice to present antigen to T cells. The SLAM Associated Protein (SAP) is critical for signaling of many of the molecules encoded by the SLAM/CD2 gene cluster, candidates for mediating the Sle1b phenotype; therefore, we also investigated the effect of sap deletion in these strains on the TD and TI-II responses as well as on ANA production. The results of these studies of responses to non-self-antigens provide further insight into the mechanism by which responses to self-antigens might be initiated in the context of specific genetic alterations.  相似文献   

10.
《Journal of autoimmunity》2009,32(4):345-353
B6.Sle1b mice, which contain the Sle1b gene interval derived from lupus prone NZM2410 mice on a C57BL/6 background, present with gender-biased, highly penetrant anti-nuclear antibody (ANA) production. To obtain some insight into the possible induction mechanism of autoantibodies in these mice we compared antigen-specific T dependent (TD) and T independent (TI-II) responses between B6.Sle1b and B6 mice before the development of high ANA titers. Our results show that B6.Sle1b mice mount enhanced responses to a TI-II antigen. Additionally, the memory T cell response generated by a TD antigen also increased. This enhancement correlates with the greater ability of B cells from B6.Sle1b mice to present antigen to T cells. The SLAM Associated Protein (SAP) is critical for signaling of many of the molecules encoded by the SLAM/CD2 gene cluster, candidates for mediating the Sle1b phenotype; therefore, we also investigated the effect of sap deletion in these strains on the TD and TI-II responses as well as on ANA production. The results of these studies of responses to non-self-antigens provide further insight into the mechanism by which responses to self-antigens might be initiated in the context of specific genetic alterations.  相似文献   

11.
Interactions between Sle1 and other susceptibility loci were required for disease development in the NZM2410 model of lupus. Sle1 corresponds to at least three subloci, Sle1a, Sle1b, and Sle1c, each of which independently causes loss of tolerance to chromatin, but displays a distinctive immune profile. We have used congenic strains to analyze the interactions between the Sle1 subloci and other lupus susceptibility loci using Y autoimmunity accelerator (Yaa) and Faslpr as sensitizing mutations. Sle1 coexpressed with either one of these single susceptibility alleles resulted in a highly penetrant nephritis, splenomegaly, production of nephrophilic antibodies, and increased expression of B- and T-cell activation markers. Here, we show that only Sle1b interacted with Yaa to produce these phenotypes, suggesting that Sle1b and Yaa belong to the same functional pathway. Interactions between the three Sle1 loci and lpr resulted in lymphocyte activation and lupus nephritis, but a significant mortality was observed only for the Sle1a.lpr combination. This suggests a major role for the FAS pathway in keeping in check the loss of tolerance mediated by the Sle1 loci, especially for Sle1a. Our results illustrate the complexity of interactions between susceptibility loci in polygenic diseases such as lupus and may explain the clinical heterogeneity of the disease.  相似文献   

12.
The purpose of this study was to evaluate the ability to induce TNFalpha-dependent apoptosis in vivo in predisease lupus-prone NZM2410 and derived B6.NZM congenic mouse strains. An endotoxicosis model that utilizes LPS and d-galactosamine to induce mortality by TNFalpha/TNFR1-dependent hepatocyte apoptosis was used to assess TNFalpha production, apoptotic signaling, and effects on the production of IL-6 and IL-10. NZM2410 was found to be resistant to endotoxicosis and to produce significantly less TNFalpha-induced IL-6 and IL-10. At low doses of LPS, partial resistance was associated with the Tnfa(w) allele. At higher doses of LPS, partial resistance cosegregated with lupus-susceptibility loci and functionally mapped downstream of caspase 3. Additional partial resistance in NZM2410 was also found upstream of FADD. These results demonstrate the existence of multiple defects in the TNFalpha/TNFR1 signaling pathway in the NZM2410 mouse and their relevance to lupus pathogenesis is discussed.  相似文献   

13.
Among NZB/W-derived New Zealand mixed (NZM) strains, only NZM/Aeg2410 (NZM2410) has been well characterized. In contrast to NZM2410, NZM2328 mice develop autoantibodies and acute and severe chronic glomerulonephritis (GN) with female predominance similarly to NZB/WF1 and humans with systemic lupus erythematosus (SLE). Chronic GN with glomerular sclerosis and tubular atrophy but not acute GN was correlated with severe proteinuria. In a backcross analysis of (NZM2328 X C57L/J) F1 X NZM2328, four SLE susceptibility genomic intervals were identified. One of them (Cgnz1) is on the telomeric end of chromosome 1 and close to Sle1. It was significantly linked to chronic GN. A locus (Agnz1) distinct from Cgnz1 on this interval was suggestively linked to acute GN. Two genetic intervals on chromosome 17 were also suggestively linked to acute GN, one of which is the H-2-Tnf complex, while the other (Agnz2) is on the distal end of the chromosome. A single locus (Adaz1) identified in the midregion of chromosome 4 in NZM2328 mice was suggestively linked to plasma levels of IgG anti-dsDNA autoantibodies. These results differ significantly from those in the backcross analysis of (NZM2410 X C57BL/6)F1 X NZM2410 by other investigators. They support the concept that different sets of genes are involved in acute and chronic GN. The genomic differences between the NZM strains and between C57L/J and C57BL/6 account for the differences between our analysis and that on NZM 2410. These results provide evidence for the importance of background genes on the expression of SLE, with implications for genetic studies of human SLE.  相似文献   

14.
Yuan D  Thet S  Zhou XJ  Wakeland EK  Dang T 《Autoimmunity》2011,44(8):641-651
The systemic lupus erythematosus (Sle1) interval from the NZM2410 mouse strain has been shown to be responsible for high levels of autoantibody production against antinuclear antibodies (ANA) when transferred into C57BL/6 mice. B cells derived from the B6.Sle1 strain are required for the production but help from both T-dependent and independent sources have been documented. Using radiation chimeras constructed in a strain of mice that is chronically depleted of Natural killer (NK) cells, but not NKT cells, we have examined the role of NK cells in the development of ANA in this context. Our results show that in the presence of intact T cell help depletion of NK cells does not affect ANA production. However, when T cell help is compromised, the prevalence of animals producing ANA is significantly decreased suggesting that NK cells can provide help for the T-independent production of ANA. Further experiments provide a possible mechanism for the NK-cell dependence.  相似文献   

15.
The F(1) hybrid of autoimmune hemolytic anemia-prone NZB and nonautoimmune NZW strains of mice has been studied as a murine model of systemic lupus erythematosus. Both NZB and F(1) hybrid mice show age-dependent spontaneous activation of peripheral CD4(+) T cells as reflected by the elevated frequencies of CD4(+) T cells positive for CD69 early activation marker. Both strains also show age-dependent abnormal decrease of the frequencies of CD62L(+) naive CD4(+) T cells and/or NTA260(+) memory CD4(+) T cells in the spleen. We studied the multigenic control of these abnormal features of peripheral CD4(+) T cells in (NZB x NZW) F(1) x NZW backcross mice by quantitative trait loci mapping and by association rule analysis. The abnormally elevated frequencies of CD69(+)CD4(+) T cells and decreased frequencies of CD62L(+) naive and/or NTA260(+) memory CD4(+) T cells were under the common genetic control, in which the interaction between MHC and a hitherto unknown locus, designated Sta-1 (spontaneous T-cell activation) on chromosome 12, plays a major role. The allelic effects of these loci likely predispose CD4(+) T cells to the loss of self-tolerance, and are responsible for the accelerated autoimmune phenotypes of (NZB x NZW) F(1) hybrid mice.  相似文献   

16.
《Autoimmunity》2013,46(8):641-651
The systemic lupus erythematosus (Sle1) interval from the NZM2410 mouse strain has been shown to be responsible for high levels of autoantibody production against antinuclear antibodies (ANA) when transferred into C57BL/6 mice. B cells derived from the B6.Sle1 strain are required for the production but help from both T-dependent and independent sources have been documented. Using radiation chimeras constructed in a strain of mice that is chronically depleted of Natural killer (NK) cells, but not NKT cells, we have examined the role of NK cells in the development of ANA in this context. Our results show that in the presence of intact T cell help depletion of NK cells does not affect ANA production. However, when T cell help is compromised, the prevalence of animals producing ANA is significantly decreased suggesting that NK cells can provide help for the T-independent production of ANA. Further experiments provide a possible mechanism for the NK-cell dependence.  相似文献   

17.
Systemic lupus erythematosus is a polycongenic autoimmune disease characterized by the production of antinuclear antibodies that lead to subsequent end organ damage. The study of lupus is complicated by its polycongenic origin, contributions from hormones and the environment, epistasis among susceptibility loci, suppressive modifiers, and the fact that a single susceptibility locus may encompass multiple susceptibility genes. Murine models that develop lupus spontaneously have greatly contributed to our understanding of this disease. In particular, the advent of "congenic strains" has greatly simplified the study of this complex autoimmune disease. Thus, congenic strains bearing NZB/NZW/NZM2410, BXSB, and MRL lupus susceptibility loci are steadily replacing the traditionally studied murine lupus models as the models of choice for research. This review summarizes how researchers have used congenic strains over the past few years to dissect out and reconstruct the individual elements contributing to lupus pathogenesis.  相似文献   

18.
Epistatic modifiers of autoimmunity in a murine model of lupus nephritis.   总被引:11,自引:0,他引:11  
Sle1 and Sle3 are NZW-derived loci that mediate lupus nephritis on a C57BL/6 background. The absence of severe autoimmunity in NZW suggests that the NZW genome suppresses these genes. (B6.NZMc1[Sle1] x NZW)F1 hybrids develop severe humoral autoimmunity and fatal lupus nephritis, indicating that suppression of Sle1 from NZW is recessive. Linkage analysis identified four epistatic modifiers, Sles1-4, whose cumulative effect accounted for the benign autoimmunity in NZW. The specific suppression of Sle1 but not Sle2 or Sle3 by Sles1 was directly demonstrated via the production and analysis of bicongenic strains. Moreover, Sles1 was sufficient to completely suppress autoimmunity initiated by Sle1 in B6.NZMc1 x NZW hybrids. These results demonstrate the complex epistatic interactions of loci augmenting and suppressing systemic autoimmunity.  相似文献   

19.
Various abnormalities have been described in B cells from patients with systemic autoimmune diseases such as systemic lupus erythematosus (SLE) and lupus-prone mice. Many of the abnormalities do not appear to be connected with the pathogenesis of the disease. However, various animal models developing lupus-like disease including both spontaneous mutants such as (NZB × NZW)F1 and MRL/lpr and mice generated by transgenic or knockout technology such as Bim-deficient and CD40L-transgenic mice show defect in apoptosis of mature B cells induced by ligation of the B cell antigen receptor (BCR). BCR-mediated apoptosis appears to be involved in deletion of self-reactive B cells. Thus, defect in BCR-mediated apoptosis is a widely observed B cell abnormality in lupus-prone mice and may play a role in the pathogenesis of systemic autoimmune diseases by abrogating deletion of self-reactive B cells.  相似文献   

20.
Tsubata T 《Autoimmunity》2005,38(5):331-337
Various abnormalities have been described in B cells from patients with systemic autoimmune diseases such as systemic lupus erythematosus (SLE) and lupus-prone mice. Many of the abnormalities do not appear to be connected with the pathogenesis of the disease. However, various animal models developing lupus-like disease including both spontaneous mutans such as (NZB x NZW)F1 and MRL/lpr and mice generated by transgenic or knockout technology such as Bim-deficient and CD40L-transgenic mice show defect in apoptosis of mature B cells induced by ligation of the B cell antigen receptor (BCR). BCR-mediated apoptosis appears to be involved in deletion of self-reactive B cells. Thus, defect in BCR-mediated apoptosis is a widely observed B cell abnormality in lupus-prone mice and may play a role in the pathogenesis of systemic autoimmune diseases by abrogating deletion of self-reactive B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号