首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aging in the brain is associated with specific changes in the astrocyte population. The present study establishes that similar changes occur in the aging spinal cord. The levels of glial fibrillary acidic protein (GFAP) mRNA were significantly increased 0.4-fold in aged 8- to 17-month-old rats compared to young 2-month-old rats. The ability of astrocytes in the aging spinal cord to respond to a non-invasive CNS injury was compared to young rats 4 days following sciatic nerve axotomy. The level of GFAP mRNA was significantly increased 0.5-fold in the young rats in response to axotomy. In contrast, the level of GFAP mRNA in aged rats did not increase following injury above that present in non-axotomized rats of the same age.  相似文献   

2.
Gliosis is the most frequent and therefore important neurocellular reaction to brain insult occurring in diseases ranging from AIDS to infarction. Neuropathological diagnosis is bases on morphological changes of brain glial cells. Changes commonly agreed to reflect gliosis are qualitative increases in size, number and glial fibrillary acidic protein (GFAP) immunoreactivity of astrocytes. These parameters were morphometrically quantified in brain tissues of 22 individuals who died with 7 diseases and statistically compared to the extent of gliosis independently determined by 3 qualified observers. The data indicate that the extent of gliosis correlated with the increase in size of astrocytes in white matter (π = 0.67) and this relationship was statistically significant (P = 0.0006). In contrast, the extent of gliosis was not correlated with the density of astrocytes nor the intensity of GFAP staining.  相似文献   

3.
Astrocytes exhibit a diverse morphology and numerous functions in the central nervous system as well as in the retina. In order to obtain markers for the analysis of astrocytes, we prepared monoclonal antibodies that recognized antigens specific to astrocytes. Monoclonal antibody (mAb), designated KK1, reacted with the processes of astrocytes in the nerve fiber layer and the ganglion cell layer in the human retina as detected by indirect immunofluorescence. Normal Müller cells, whose processes are localized vertically in retina, were not labeled by KK1 mAb. In mouse brain, KK1 mAb reacted specifically with astrocytes in the white matter, but not with those in the gray matter. Studies employing a high-resolution confocal laser scanning microscope and double-labeling with KK1 mAb and commercially available anti-glial fibrillary acidic protein (GFAP) mAb (GA5) revealed that KK1 mAb visualized the processes that were not recognized by anti-GFAP rnAb (GA5) in both human retina and mouse brain. In cultured mouse astrocytes. KKI mAb reacted only with anti-GFAP mAb (GA5)-positive cells, but a small percentage of anti-GFAP mAb (GA5)-positive cells were labeled with KK1 mAb. In addition, the subcellular distribution of the KK1 antigen in cultured astrocytes apparently differed from that of GFAP labeled by anti-GFAP mAb (GA5). The antigen that was purified from the normal mouse brain by KK1 mAb-conjugated beads reacted with anti-GFAP mAb(GA5) in immunoblotting. No reactivity of KK1 mAb was observed in immunohistochemical analysis in GFAP − / − mutant mouse brain. These results demonstrate that KK1 mAb specifically recognized an epitope of GFAP that did not react with other anti-GFAP mAb (GA5). Retinal astrocytes and a subtype of astrocytes in the white matter of mouse brain shared the epitope that was recognized by KKI mAb. KKI mAb might be a powerful tool to investigate a subtype of astrocytes.  相似文献   

4.
Summary Astrocytic reaction to various types of pre-and perinatal damage in the brain was studied using the immunohistochemical method for glial fibrillary acidic protein. The reactive gliosis could be detected as early as 20 weeks gestation. Reactive proliferation of the astrocytes could be seen already at 4 days after the insult. In addition to reacting to focal lesions, the astrocytes also proliferated diffusely throughout the white matter. The diffuse proliferation is the most significant finding in the evaluation of the perinatal damage, in both the acute state and in the long-term survivors.Supported in part by NIH Grant NS 06239. Part of the study was carried out while Dr. Roessmann was Visiting Professor at the University of Göttingen, supported by Deutsche Forschungsgemeinschaft, DFG-AZ: GO 76/100-1Presented in part at the IX International Congress of Neuropathology, Vienna, 1982  相似文献   

5.
背景:睫状神经营养因子具有多种生物活性,在神经系统发育、分化和损伤修复中具有重要意义。 目的:观察睫状神经营养因子对坐骨神经切断吻合后大鼠相应脊髓节段前角星形胶质细胞的特异标记物胶质纤维酸性蛋白表达的影响。 方法:将SD大鼠随机分为对照组、模型组、生理盐水组及药物组。除对照组外,对所有大鼠实施双侧坐骨神经切断吻合术,药物组手术区局部注射睫状神经营养因子100 ng/kg,1次/d,生理盐水组局部注射等量生理盐水。术后1,3,7,14,21,28 d取相应脊髓节段,免疫组织化学染色观察胶质纤维酸性蛋白的表达,苏木精-伊红染色、TUNEL染色对脊髓前角神经元进行计数。 结果与结论:大鼠坐骨神经切断吻合后相应脊髓节段星形胶质细胞胞体大,突起分枝多且粗大,神经元数目逐渐减少,凋亡神经元增多,胶质纤维酸性蛋白表达增高。与模型组和生理盐水组比较,药物组神经元存活数目增多,凋亡减少,胶质纤维酸性蛋白表达明显增加(P < 0.05或P < 0.01)。同时,药物组大鼠的运动功能障碍较轻,恢复较快。说明睫状神经营养因子可以通过促进大鼠脊髓前角胶质纤维酸性蛋白的表达起到神经保护作用。 关键词:胶质纤维酸性蛋白;睫状神经营养因子;星形胶质细胞;神经元凋亡;周围神经损伤  相似文献   

6.
Studies were conducted to determine if norepinephrine activates both protein kinase C and the cyclic AMP-dependent protein kinase in cultured rat astrocytes using phosphoproteins as markers. Norepinephrine was found to decrease 32P incorporation into an acidic 80,000 M(R) protein. A similar response was observed with isoproterenol and cyclic AMP analogs. In contrast, phorbol myristate acetate (PMA) increased 32P incorporation into this protein. Further studies looked at phosphorylation sites on glial fibrillary acidic protein and vimentin using two-dimensional tryptic phosphopeptide maps. The pattern of phosphorylation of these two proteins by norepinephrine resembles that of 8-bromo cyclic AMP and isoproterenol, and not that of PMA. Additionally, the effect of norepinephrine on the phosphorylation of GFAP and vimentin was blocked by alprenolol. One difference noted between norepinephrine and isoproterenol was the phosphorylation of an 18,000 M(R) protein. Norepinephrine increased, and isoproterenol decreased, 32P incorporation into this protein; however, the mechanism which mediates the norepinephrine effect remains to be determined. Overall, these studies indicate that the most prominent phosphorylation events mediated by norepinephrine are the consequence of the activation of cyclic AMP-dependent protein kinase.  相似文献   

7.
W Cammer  F A Tansey  C F Brosnan 《Glia》1989,2(4):223-230
Spinal cord sections from rats sensitized to develop experimental allergic encephalomyelitis (EAE) were immunostained with antibodies against glial fibrillary acidic protein (GFAP), carbonic anhydrase, and vimentin, to see whether the latter two antigens could be detected in GFAP-positive reactive astrocytes. Sixteen days after sensitization (16 dpi) there was intense carbonic anhydrase immunostaining in GFAP-positive cells in the spinal cords of EAE rats, particularly in the white matter. At 13 and 20 dpi carbonic anhydrase immunostaining in astrocytes was less intense, and in the spinal cord white matter of control animals carbonic anhydrase was not detected in the few GFAP-positive cells. In the spinal cords of EAE rats vimentin immunostaining was observed in inflammatory cells and astrocytes. In the latter, GFAP and carbonic anhydrase were colocalized with vimentin. The data suggest that carbonic anhydrase expression in astrocytes is an acute response to injury and that vimentin can be detected in astrocytes, as well as inflammatory cells, as early as 16 dpi.  相似文献   

8.
Astroglial alterations in rat hippocampus during chronic lead exposure.   总被引:2,自引:0,他引:2  
The present study was performed in order to follow the response of astroglial cells in the rat hippocampus to chronic low-level lead exposure. The experiments combined immunohistochemistry using anti-glial fibrillary acidic protein (GFAP) antibody and conventional transmission electron microscopy (EM). Chronic administration with drinking water [1 g% w/v (subclinical dose) of lead acetate dissolved in distilled water] was started through the mother's milk when pups were 7 days old. Following weaning, experimental offspring were treated for 3 months with the same concentration of adulterated water. The group of intoxicated animals and their controls were sacrificed by perfusion-fixation at 30, 60, and 90 days of exposure. After 60 days of lead treatment, staining of GFAP-positive cells demonstrated an astroglial transformation from the quiescent to the reactive state, characterized by an increase in GFAP. In control rats no changes in GFAP immunostaining were observed. The intensity of the astroglial response was enhanced after 90 days of lead intoxication, showing an increment of GFAP immunoreactivity. Quantification of these changes was made by computerized image analysis, confirming that the sectional areas of the astroglia in lead-exposed animals were larger than those in controls. These results are consistent with the ultrastructural alterations. Simultaneously with the increment in gliofilaments, intranuclear inclusions were seen in some astrocytes. The mechanisms by which lead affects astrocytes are unknown. Probably the astroglial changes induced by lead intoxication produce microenvironmental modifications that may disturb the neuronal function.  相似文献   

9.
The nucleus basalis of Meynert (nbM) was lesioned by injection of ibotenic acid, in 200 g male Wistar rats. The rats were killed 1, 3, 7 or 21 days after surgery, the brains were removed and the prefrontal cortices were subjected to immunohistochemical and Western blot analysis for the expression of glial fibrillary acidic protein (GFAP). In some rats, vehicle was injected into the nbM and in others 6-hydroxydopamine (6-OHDA) was injected into the ventral tegmental area (VTA). Quantitative Western blot analysis revealed significantly greater immunoreactivity for GFAP in the prefrontal cortex of nbM-lesioned rats. Immunohistochemical examination revealed fibrous and hypertrophic GFAP-positive astrocytes even one day after surgery, and this reaction was stronger at 3 days after surgery. After this peak, GFAP-immunoreactivity of the astrocytes decreased from 7 days to 21 days. In contrast, GFAP-positive astrocytes were not observed in the brains of vehicle-injected or VTA-lesioned rats, even 21 days after surgery. The present results indicate that cortical astrocytes respond to cholinergic deafferentation. In addition, our findings provide new insights into the abnormalities of cortical glial cells after cholinergic deafferentation in Alzheimer's disease.  相似文献   

10.
目的观察大鼠反复前脑缺血再灌注后不同脑白质区胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)表达的变化,探讨其规律,为对脑缺血后星形胶质细胞的进一步研究提供实验依据。方法反复夹闭大鼠双侧颈总动脉制备前脑缺血再灌注模型,免疫组化法检测脑缺血再灌注后1周、2周、4周胼胝体、内囊和脑室周围GFAP的表达。结果缺血再灌注后,不同部位各时间点GFAP的表达均高于假手术组水平;在胼胝体、内囊GFAP的表达在1周时增加,2周时持续上升,4周时更明显;而脑室周围则在1周时上升,2周时达高峰,4周时回落但仍高于1周时的水平。结论反复前脑缺血后白质区GFAP表达明显升高,但不同脑区变化的规律和幅度略有差异,说明不同脑区对缺血的敏感性不同,星形胶质细胞的反应性略有差异。  相似文献   

11.
Immunohistochemistry was used to investigate the induction of growth-associated protein GAP43/B-50 in the astrocytes of rat cerebrum in vivo following ischemic injury produced by 30 min of transient middle cerebral artery occlusion. Three days after operation, GAP43 immunoreactivity first appeared in some astrocytic populations surrounding the infarcted lesion. Induction of GAP43 in those astrocytes persisted for up to 14 days and disappeared at 30 days postoperation. Double-immunofluorescence staining confirmed that the GAP43-immunoreactive astrocytes examined were all positive for glial fibrillary acidic protein. Our present data suggest that certain astrocytes could be induced to synthesize GAP43 in vivo in response to an ischemic insult in adult rats.  相似文献   

12.
J P Schwartz  D J Wilson 《Glia》1992,5(1):75-80
Astrocytes have been prepared from adult rat cortex, cerebellum, and striatum, using a modification of the McCarthy-DeVellis (J Cell Bio 85:890, 1980) method. The cultures consist of 99% type 1 polygonal astrocytes, which divide more slowly than cells from newborn animals. One day after preparing the cultures, 90% of the cells are glial fibrillary acidic protein (GFAP)-positive and 80% are vimentin-positive by immunohistochemical staining, suggesting that they are present de novo and not derived from precursor cells. The astrocytes from adult brain respond to an elevation of intracellular cyclic AMP, following treatment with forskolin, by becoming more stellate in shape and putting out fine ramified processes. They contain the same amount of GFAP per mg protein, measured by immunoblot, as cells from newborn animals. These cultures thus offer the possibility of comparing the biochemical properties of astrocytes derived from adult animals with those from newborn animals, or with cultures of reactive astrocytes isolated from lesioned brain.  相似文献   

13.
Metallothionein-I (MT-I) was expressed in neonatal rat primary astrocyte cultures and an astrocytoma cell line by pGFAP-MT-I plasmid transfection under the control of the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter. Following transient transfection of the pGFAP-MT-I plasmid, MT-I mRNA and MT-I protein levels were determined by northern blot and immunoprecipitation analyses, respectively. The ability of cells over-expressing MT-I to withstand acute methylmercury (MeHg) treatment was measured by the release of preloaded Na251CrO4, an indicator of membrane integrity. Transfection with the pGFAP-MT-I plasmid led to increased mRNA (2. 5-fold in astrocytes and 7.4-fold in astrocytomas) and MT-I protein (2.4-fold in astrocytes and 4.0-fold in astrocytomas) levels compared with their respective controls. Increased expression of MT-I was associated with attenuated release of Na251CrO4 upon MeHg (5 microM) treatment. These results demonstrate that MT-I can be highly expressed both in primary astrocyte cultures and astrocytomas by pGFAP-MT-I plasmid transfection, and lend credence to the hypothesis that increased expression of MT-I affords protection against the cytotoxic effects of MeHg. Taken together, the data suggest that MT offer effective cellular adaptation to MeHg cytotoxicity.  相似文献   

14.
15.
目的 研究细胞外三磷酸腺苷(ATP)对大鼠脊髓损伤后胶质纤维酸性蛋白(GFAF)表达和运动功能恢复的影响.方法 健康成年Wistar大鼠66只按照随机数字表法取6只作为正常对照组,余60只制作成脊髓打击伤动物模型,并再按照随机数字表法分为两组:ATP组(A组,给予ATP注射)和对照组(B组,给予等量生理盐水注射),每组30只大鼠.伤后1、3、7、14和28 d取材,应用免疫组织化学方法观察GFAP的表达,采用计算机图像分析系统进行半定量分析;并用改良的Tarlov评分观察大鼠脊髓损伤后运动功能的恢复情况.结果 大鼠脊髓损伤后GFAP的表达呈进行性升高,损伤后14 d达高峰;在损伤后7、14和28 d,A组大鼠GFAP的表达明显强于B组;脊髓损伤后14 d和28 d,A组大鼠改良的Tarlov评分明显大于B组;以上差异均有统计学意义(P<0.05).结论 细胞外ATP能促进大鼠损伤脊髓表达GFAP,并有助于大鼠脊髓损伤后运动功能的恢复.  相似文献   

16.
Transgenic mice expressing a defined microbial antigen from central nervous system (CNS) cell type-specific promoters can be utilized to investigate the consequences of induction of peripheral immune responses to foreign antigens produced by different CNS cell types. Immunization of mice expressing β-galactosidase (β-gal) in astrocytes with this protein resulted in antigen-dependent infiltration of the CNS by mononuclear cells, principally CD4+ T lymphocytes and monocyte/macrophages. The perivascular and intraparenchymal infiltrates, which were located predominantly in the hippocampal formation and cerebellum, the areas of highest β-gal expression, were associated with astrocytosis, microgliosis, and a generalized increase in blood-brain barrier permeability. The resemblance of these pathological changes to aspects of human immune inflammatory CNS disorders e.g. multiple sclerosis, suggests that an initiating step in the process by which such complex diseases are produced could be the induction of peripheral immune responses to antigens expressed in astrocytes.  相似文献   

17.
Since clusterin (CLU) production in reactive astrocytes may be neuroprotective, we examined its distribution in AIDS brains where brain injury and reactive astrocytosis are common. The relative area and number of CLU-positive astrocytes, as well as their percent total of all white matter glia, significantly increased in AIDS brains with and without HIV encephalitis (P<0.05). Proliferation markers were absent. In contrast, the relative area and number of GFAP-positive astrocytes and their percent of all white matter glia, increased in some cases but the mean increases were not significant. Clusterin is sensitive marker of glial reactivity in AIDS brains and its enhanced expression was not dependent on increases in GFAP.  相似文献   

18.
目的回顾性分析坐骨神经及其分支损害的病因及电生理表现。方法结合70例患者病因,分析腓神经和胫神经传导速度及健、患侧胫骨前肌、腓肠肌针电极肌电图表现。结果外伤导致的有36例(51%),其次是肌肉注射,占20例(29%),外科手术并发5例(7%),不明原因9例(13%)。单纯腓神经损害25例,单纯胫神经损害13例,坐骨神经损害32例。结论外伤是本组坐骨神经及其分支损伤的主要原因,电生理检测对确定受损神经、损害性质、损害程度及评价预后有重要价值。  相似文献   

19.
Astroglia in CNS injury.   总被引:28,自引:0,他引:28  
The astroglial response to CNS injury is considered in the context of neuron-glial relationships. Although previous models suggested that astroglial cells present in "scars" impede axon regrowth owing to irreversible changes in the glial cell following injury, recent in vivo and in vitro studies indicate that astroglial cells exhibit considerable plasticity, elevating expression of the glial filament protein and altering expression of properties which support axons, including extracellular matrix components and cell surface adhesion systems. Both in vivo and in vitro studies on neuron-glia interactions in different brain regions suggest that glia express region-specific properties, including ion channels, neurotransmitter uptake and receptor systems, and cell surface adhesion systems. Together these findings suggest that a more detailed analysis of glial response to injury in different brain regions will lead to an appreciation of the diversity of the astroglial response to injury, and its regulation by neuron-glia relationships.  相似文献   

20.
The neuronal isoform of nitric oxide synthase (nNOS), a NADPH-dependent diaphorase, is considered to play a role in motoneuron death induced by sciatic nerve transection in neonatal rats. Neuronal loss in these circumstances has been correlated with nitric oxide (NO) production and NADPH-diaphorase positivity in motoneurons after axotomy. In the present study we looked for a possible protective effect of melatonin, an antioxidant agent and inhibitor of nNOS, on spinal motoneurons after axonal injury. Neonatal Wistar rats (P2) were submitted to sciatic nerve transection and allowed to survive to P7. Melatonin at doses of 1, 5, 10, 50 and 100 mg/kg was given subcutaneously before and at intervals after the surgery. Controls operated in the same way received dilution vehicle or no treatment. The animals were killed by perfusion of fixative and the spinal cord was examined in serial paraffin sections. The motoneurons of the sciatic pool were counted in the axotomized and contralateral sides. Immunohistochemistry for nNOS and glial fibrillary acidic protein was used to evaluate nNOS expression in the axotomized cells and the astrocytic response. We found that melatonin at doses of 1-50 mg/kg decreased neuronal death. Astrocytic hypertrophy in melatonin treated animals was less intense. There were no differences in nNOS expression between treated and control rats, and surviving motoneurons of the sciatic pool did not express the enzyme, suggesting that nNOS may not be involved in neuronal death or survival in these experimental conditions. Possible mechanisms of melatonin neuroprotection, which was equally effective at doses of 1-50 mg/kg, are discussed. Doses of 50 and 100 mg/kg caused failure to thrive, seizures or death. The fact that neuroprotective doses were far smaller than toxic ones should encourage testing of melatonin in neurologic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号