首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intact lymphocytes from patients with cystic fibrosis (CF) produce significantly (P less than 0.001) less adenosine 3':5' cyclic monophosphate (cAMP) than normal lymphocytes in response to isoproterenol (10(-8)-10(-4) M), although the basal cAMP content and the response to prostaglandin E1 are normal. Obligate heterozygotes for CF have significantly (P less than 0.005) reduced cAMP response to isoproterenol as well, suggesting a genetic component in the beta adrenergic deficiency in CF. The number of beta adrenergic receptors, as determined by equilibrium binding of [3H]dihydroalprenolol to lymphocyte particulates, is the same in normal lymphocytes (969 +/- 165 receptors/cell) and lymphocytes from patients with CF (1,333 +/- 263 receptors/cell). Binding properties of the receptor for both antagonist and agonist, as assessed by KD for dihydroalprenolol and Ki for (-)-isoproterenol, are also normal in the CF lymphocytes. Similarly, in granulocytes from patients with CF, the cAMP response to isoproterenol (10(-8)-10(-4) M) is significantly reduced compared with healthy controls (P less than 0.03), as is the response of granulocytes from obligate heterozygotes (P less than 0.05). Again, the basal cAMP levels and the response to prostaglandin E1 are normal. The number of beta adrenergic receptors, as determined by equilibrium binding of [3H]dihydroalprenolol to granulocyte particulates, was the same in normal (1,462 +/- 249 receptors/cell) and CF (1,621 +/- 221 receptors/cell) preparations. Binding properties of the receptor for both agonist and antagonist, as assessed by KD for dihydroalprenolol and Ki for isoproterenol, are normal in CF granulocyte particulates. The lymphocyte and granulocyte beta adrenergic defect in CF cannot be explained by abnormalities of the beta adrenergic receptor or of adenylate cyclase itself. Receptor-cyclase coupling is the most likely site of the heritable beta adrenergic defect in CF.  相似文献   

2.
Parotid acinar cells, prepared from pharmacologically sympathectomized adult rats (reserpine, 0.1 mg/kg/day for 1 week), display decreased responsiveness to beta adrenergic stimulation in vitro compared to cells from control and surgically sympathectomized rats. Both methods of denervation increase amylase content (amylase activity per microgram of DNA). Percent release of amylase activity and percent release of CCl3COOH-precipitable [14C]leucine were used as indicators of protein secretion. Exposure of cells from pharmacologically sympathectomized rats to the beta adrenergic agonist, isoproterenol, resulted in a marked reduction in receptor-coupled secretion (67% and 75% relative to controls, respectively). 8-Bromo-cyclic AMP, like isoproterenol, was unable to surmount this reserpine-induced inhibition of stimulated secretion, suggesting that an alteration in receptor-adenylate cyclase coupling is not responsible for the observed secretion defect. Cells prepared from surgically sympathectomized rats displayed modest decreases in stimulated secretion when the same secretory markers were monitored (30% and 25% relative to controls, respectively). The number of beta adrenoreceptors [( 3H]dihydroalprenolol binding sites) increased (35%), with no change in binding affinity, in membrane preparations from reserpine-treated rats. Thus, the observed inhibition of beta adrenergic agonist-induced secretion is not likely the result of alterations in beta adrenergic receptor characteristics. Short-term (1 week) surgical denervation had no effect on the number of beta adrenergic receptor sites; however, an increase in ligand binding affinity was noted. The decrease in the apparent Kd (30%) was not the result of a shift in receptor subtype as determined by competition studies with specific beta-1 (atenolol) and beta-2 (ICI 118,551) receptor antagonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Repeated administration of reserpine to 3-month-old rats produced dose-related increases in [3H]dihydroalprenolol (DHA) binding in pineal gland, cerebral cortex and cerebellum. Reserpine increased DHA binding by increasing the density of beta adrenergic receptors. Brain tissue from 24-month-old rats, however, had an impaired ability to increase receptor density in response to reserpine treatment, even in the pineal gland where the concentration of reserpine was nearly 7 times that found in the glands of young rats given the same dose on the basis of body weight. Repeated administration of desmethylimipramine decreased DHA binding in pineal glands by about 50% and in cerebral cortices by about 25%, but did not alter DHA binding in the cerebellum. The magnitude of these changes was similar in the 3- and 24-month-old rats, although the concentration of desmethylimipramine in the pineal glands and cerebral cortices of the aged rats was significantly higher than that of the young animals. The results indicate that the reserpine-induced decrease in noradrenergic input causes a compensatory increase in beta adrenergic receptor density in rat brain. They suggest further that although aged rats can decrease receptor density in response to increased adrenergic input, they have an impaired ability to increase beta adrenergic receptor density in response to decreased adrenergic input. This finding may explain the decreased density of beta adrenergic receptor found in aged rat brain.  相似文献   

4.
beta-Adrenergic receptors in mononuclear leukocyte preparations were assessed with (-)[(3)H]-dihydroalprenolol binding studies during the infusion of adrenergic agonists into normal human subjects. During the infusion of isoproterenol into seven subjects, mean (+/-SE) (-)[(3)H]dihydroalprenolol binding increased from 25+/-3 fmol/mg protein to 47+/-8 fmol/mg protein (P < 0.02) at 0.5 h and 40+/-3 fmol/mg protein (P < 0.01) at 1 h and decreased to 12+/-1 fmol/mg protein (P < 0.01) at 4-6 h. During the infusion of epinephrine into three subjects, mean (-)[(3)H]dihydroalprenolol binding increased from 32+/-3 to 63+/-3 fmol/mg protein (P < 0.01) at 0.5-1 h. By Scatchard plot analysis, these changes were attributable to changes in the number of available binding sites rather than changes in binding affinity. The observed changes in the number of (-)[(3)H]dihydroalprenolol binding sites were not paralleled by changes in total mononuclear cell counts or in T lymphocyte, B lymphocyte, and monocyte distributions. Thus, we conclude that adrenergic agonists modulate the number of available beta-adrenergic receptors on circulating mononuclear cells in a biphasic manner, with an early increment and a late decrement, in man. Further, the finding that the increase in pulse rate in response to a "pulse" infusion of isoproterenol was significantly greater after 0.5-1 h of agonist infusion suggests that the observed early agonist-induced increment in beta-adrenergic receptor number on circulating cells is paralleled by increments in extra-vascular beta-adrenergic receptor sensitivity.  相似文献   

5.
Cystic fibrosis (CF), a genetic disease characterized by abnormalities of exocrine gland and mucociliary function, has recently been shown to be associated with abnormal adrenergic and cholinergic physiologic responses in addition to decreased beta adrenergic-induced cyclic AMP generation in human leukocytes. In this study we have attempted to elucidate the nature of this hyporesponsiveness by assessing beta adrenergic receptor number and affinity (KD) in the intact neutrophil using the antagonist ligand [3H] dihydroalprenolol and cyclic AMP responses to isoproterenol in addition to histamine, and prostaglandin E1 in CF subjects, CF obligate heterozygotes (CFH), and normal control subjects. CF patients had significantly less (p less than 0.025) cyclic AMP stimulation above basals levels with isoproterenol (0.1 microM to 0.1 mM), compared with control values, but no consistent differences between groups were noted with histamine or PGE1. CF neutrophils had significantly fewer (p less than 0.005) beta adrenergic receptors per neutrophil (398.0 +/- 54.2 vs. 819.4 +/- 67.2) compared with control neutrophils, but the KD (0.740 +/- 0.11 vs. 0.630 +/- 0.05 nM) did not differ significantly (p greater than 0.05). There was no correlation between clinical severity and either cyclic AMP generation or dihydroalprenolol binding (r = 0.27 and 0.24, respectively, p greater than 0.05). The CFH group had approximately 50% of the cyclic AMP stimulation compared with controls, but the number (909.8 +/- 89.3) and KD (0.710 +/- 0.09 nM) of their beta adrenergic receptors were indistinguishable from control subjects. These findings suggest "down regulation" of the beta receptor in the CF patient. The cause of this remains unknown. Although the etiology of the decreased cyclic AMP responses in CFH was not due to decreased beta adrenergic receptors as assessed by antagonist ligand binding, further studies inthe CFH group to include agonist binding, receptor-adenylate cyclase coupling, intrinsic adenylate cyclase activity, and catecholamine metabolism may help determine the basic cause of beta adrenergic hyperesposiveness in both CFH and CF.  相似文献   

6.
We have tested the beta adrenergic receptor theory of bronchial asthma by determining the number and affinity of binding sites of the beta adrenergic radioligand [(3)H]dihydroalprenolol (DHA) and the activity of adenylate cyclase in broken cell preparations of polymorphonuclear leukocytes (PMN). We studied 31 control subjects (group 1), 30 asthmatics receiving no systemic adrenergic medication (group 2), and 17 asthmatics receiving adrenergic agonists systemically (group 3). Control subjects and asthmatics taking no adrenergic drugs bound similar amounts of DHA at 0.5 nM and 30 nM DHA and had about 900 binding sites per PMN. In contrast, asthmatics receiving adrenergic agonists had a >70% decrease in their number of DHA binding sites per PMN (254+/-57). In a subset of our three groups of subjects (eight from group 1, six from group 2, and five from group 3) we measured DHA binding at several DHA concentrations and found similar values (0.4-0.7 nM) for the dissociation constant of DHA among these subjects.In further studies we examined the interaction of the agonist (-)-isoproterenol with beta adrenergic receptors in 8 normal subjects and 10 asthmatics not receiving adrenergic medication. We tested the ability of isoproterenol to compete for DHA binding sites and to stimulate adenylate cyclase in sonicates prepared from PMN and examined under identical conditions. The dissociation constants for the competition of isoproterenol for DHA binding sites in normal and asthmatic subjects were virtually identical ( approximately 1.0 muM). In addition, the (activation constant) values for stimulation of adenylate cyclase were similar (0.16-0.19 muM) in the two groups of subjects.Thus, these data suggest that asthma per se is not associated with alteration in either the number or affinity of beta adrenergic receptors in PMN. Our findings indicate that previous reports of abnormal beta adrenergic receptor function in asthmatic patients may in part be explained by prior treatment of such patients with adrenergic agonists. Because the asthmatics who received adrenergic agonists in our study tended to be more ill and to receive additional medication compared to subjects in group 2, we cannot rule out unequivocally that severe asthma may be associated with decreased binding to beta adrenergic receptors. Nevertheless, we conclude that beta adrenergic receptors on PMN from asthmatics are relatively normal unless such patients are treated with adrenergic agonists.  相似文献   

7.
The receptor alterations involved in catecholamine-induced desensitization of adenylate cyclase in human neutrophils have been investigated as has the ability of hydrocortisone to modify such alterations. Incubation of human neutrophils with isoproterenol for 3 h in vitro resulted in an 86% reduction in the ability of isoproterenol to stimulate cyclic AMP accumulation in the cells. Two types of receptor alterations were documented. There was a 40% reduction in the number of beta adrenergic receptors (42 vs. 25 fmol/mg protein, P < 0.005) present after desensitization as assessed by [3H]dihydroalprenolol ([3H]DHA) binding. In addition the receptors appeared to be relatively uncoupled from adenylate cyclase. This uncoupling was assessed by examining the ability of the agonist isoproterenol to stabilize a high-affinity form of the receptor, detected by computer modelling of competition curves for [3H]DHA binding. Desensitized receptors were characterized by rightward-shifted agonist competition curves. When hydrocortisone was added to the desensitizing incubations (combined treatment) there was a statistically significant attenuation in the desensitization process as assessed by the ability of isoproterenol to increase cyclic AMP levels in the cells. Although combined treatment did not prevent the decline in receptor number, it did attenuate the uncoupling of the receptors. Combined treatment resulted in competition curves intermediate between the control and the rightward-shifted desensitization curves. Prednisolone was similar to hydrocortisone in attenuating isoproterenol-induced uncoupling. Thus, steroids appeared to attenuate agonist-induced desensitization of the beta adrenergic receptor-adenylate cyclase system by dampening the ability of agonists to uncouple receptors without modifying their ability to promote down-regulation of beta adrenergic receptors.  相似文献   

8.
Alteration of sensitivity to the inotropic responses to isoproterenol and acetylcholine (ACh) and of saturation constants for the specific binding of [3H]dihydroalprenolol and [3H]quinuclidinyl benzilate to particulate fractions were investigated in rat hearts chronically treated with isoproterenol. The EC50 value for the inotropic response to isoproterenol in the atria of rats injected i.p. with isoproterenol (0.01 or 0.1 mg/kg) twice a day for 10 days, was 9.0-fold higher than in controls. Isoproterenol (0.17 mg/kg i.p.)-induced stimulation of cardiac ornithine decarboxylase activity was significantly (P less than .05) attenuated in atria from animals of the treated groups. Scatchard analysis of specific binding of [3H]dihydroalprenolol revealed that repeated isoproterenol injection produced a significant decrease in the maximum number of binding sites (Bmax), but not in the dissociation constant (KD) for this antagonist. In comparison to the isoproterenol-induced changes in beta adrenergic positive inotropic response, repeated treatment with isoproterenol decreased 2-fold the EC50 value for the negative inotropic response to ACh in isolated atria. Scatchard analysis of specific [3H]quinuclidinyl benzilate binding, however, indicated a significant (P less than .01) decrease in Bmax. Repeated isoproterenol injections also elicited a significant increase in cardiac weight. It is suggested that repeated administration of isoproterenol induces a decrease in density of beta adrenergic receptors which may in part underlie a cardiac hyposensitivity to isoproterenol and an increase in the number of muscarinic ACh receptors and inotropic responsiveness to ACh.  相似文献   

9.
We have investigated alterations in beta adrenergic receptor binding sites of rat reticulocytes occurring in animals rendered hypothyroid by thyroidectomy. Beta adrenergic receptor interactions were assessed by measuring the number of (-)[3H]-dihydroalprenolol binding sites and the ability of an agonist to compete for occupancy of the receptors. The number of receptors was significantly reduced in cells from the hypothyroid animals. In addition, there were significant agonist-specific alterations in binding. Using computer assisted curve fitting techniques, it was found that the ability of (-)isoproterenol to stabilize a high affinity guanine nucleotide sensitive "coupled" form of the receptor was impaired. Reticulocytes from hypothyroid animals have, in addition, a reduction in the concentration of the nucleotide regulatory protein as assessed by the number of 42,000 Mr substrates for cholera toxin catalyzed ADP ribosylation. These alterations are associated with reductions in catecholamine and NaF stimulated adenylate cyclase activity. Diminished coupling of beta adrenergic receptors with other regulatory components of the adenylate cyclase system represents a mechanism by which altered thyroid states modulate beta adrenergic receptor function and beta adrenergic responsiveness of tissues.  相似文献   

10.
We have demonstrated previously a postnatal peak for the beta adrenergic receptor in the heart and detected the appearance of a beta adrenergic receptor before an (-)-isoproterenol inducible increase in heart rate. The present study examined 1) agonist displaceable [3H] dihydroalprenolol (DHA) binding in the neonatal and adult mouse heart and 2) adenylate cyclase in fetal, neonatal and adult mouse heart. 3[H]DHA binding displaceable by (-)-isoproterenol gave a similar Ki from 1 day neonate through adult. Similar to the result found for antagonist displacement binding, there was a dramatic increase in the agonist displaceable [3H] DHA binding postnatally. The maximum was achieved in 2 weeks and then gradually declined to adult level. Cyclase activity (basal, (-)-isoproterenol- and NaF- stimulated) paralleled beta adrenergic receptor increases before birth. However, no early postnatal peak was present. In the 13 day fetal mouse heart, there is no (-)-isoproterenol increase in heart rate, but beta adrenergic receptor (13 +/- 4% of adult) and (-)-isoproterenol-stimulated adenylate cyclase activity (15 +/- 5% of adult) are present. It is concluded that 1) no significant difference exists between the agonist and antagonist displaceable [3H] DHA binding during development, 2) adenylate cyclase activity increases significantly during the last third of pregnancy in parallel with the beta adrenergic receptor, 3) both the beta adrenergic receptor and adenylate cyclase activity can be detected before the heart rate responses and 4) total adenylate cyclase activity does not increase in parallel with the early postnatal beta adrenergic receptor peak.  相似文献   

11.
In the present investigation, experiments were performed in order to determine whether antidepressants are capable of inducing regionally specific adaptation of beta adrenergic and 5-hydroxytryptamine2 (5-HT2) receptors after chronic administration or when combined with the forced swim test. The drugs tested were imipramine, amitriptyline, pargyline and nomifensine. The regional pattern of beta adrenergic or 5-HT2 receptor binding changes induced after chronic treatment with these antidepressants was not uniform. All of the drugs reduced [3H]dihydroalprenolol binding to cortical membranes after chronic treatment but only two, imipramine and pargyline, did so in hippocampus. All of the antidepressants reduced cortical, but not hippocampal, beta adrenergic receptor binding after 2 days of treatment, indicating that the rate of antidepressant-induced neural adaptation is regionally specific. All of the drugs, except nomifensine, induced down regulation of both cortical and hippocampal 5-HT2 receptors after chronic treatment, as measured by [3H]ketanserin binding. The forced swim test accelerated the reduction of [3H] dihydroalprenolol binding in hippocampus induced by imipramine and pargyline while producing no further effect on cortical beta adrenergic receptors. The down-regulation of hippocampal, but not cortical 5-HT2 receptors by imipramine and pargyline was also facilitated in rats processed in the forced swim test. These results provide further support for the view that the forced swim antidepressant drug screen may be of heuristic value as a model of the adaptive neural mechanisms that accompany chronic antidepressant drug treatment. Furthermore, these data provide evidence that multiple neural mechanisms may be involved in the adaptive changes after antidepressant drug treatment.  相似文献   

12.
The inotropic and chronotropic responses of the guinea-pig right atrium to several pharmacologic agents were measured after acute (0.1 mg/kg/day x 1) and chronic (0.1 mg/kg/day x 7) reserpine administration. A small increase in the sensitivity of the pacemaker to isoproterenol occurred after acute reserpine treatment which was followed by a much greater change in sensitivity to the beta agonist when pretreatment was extended for 7 days. Chronotropic responsiveness to calcium, histamine and pilocarpine was not altered by reserpine pretreatment. The acute administration of reserpine resulted in a slight inotropic supersensitivity of paced right atria to isoproterenol, calcium and histamine. Pretreatment for 7 days produced an additional increase in inotropic sensitivity to isoproterenol but did not affect contractile responses to the other agents. The catecholamine-specific nature of the supersensitivity induced by chronic reserpine treatment suggested that a change in the number and/or affinity of beta adrenergic receptors was involved. The radiolabeled beta adrenoceptor antagonist [125]iodohydroxybenzylpindolol (I-HYP) was used to test this hypothesis. Preliminary experiments revealed the presence of a single class of noninteracting (nH = 0.99), high affinity (Kd = 100 pM) binding sites which exhibited stereospecificity and saturability (47.2 fmol/mg of protein). The agonist potency series for the inhibition of I-HYP binding was identical to the series for mediating mechanical responses. Taken collectively this information suggests that the high affinity I-HYP binding site in the guinea-pig right atrium represents the beta adrenergic receptor. As determined by Scatchard analyses, neither acute (1-day) nor chronic (7-day) low-dose (0.1 mg/kg/day) reserpine administration altered the number or affinity of I-HYP binding sites. It is concluded that changes in beta receptor characteristics are not responsible for reserpine-induced supersensitivity in this tissue.  相似文献   

13.
In vitro incubation of mononuclear leukocytes (MNL) with catecholamines desensitizes beta adrenergic receptors, meaning isoproterenol-stimulated cyclic AMP accumulation decreases. This desensitization is accompanied by two patterns of receptor changes: first, reduction of surface receptors (defined as binding of [3H]dihydroalprenolol inhibited by 1 microM CGP 12177 [4-3-tertiarybutylamino-2-hydroxypropoxy)-benzimidazole- 2-on-hydrochloride]) without any change in the total number of [3H] dihydroalprenolol binding sites inhibited by 1 microM propranolol (receptor redistribution); then reduction of the total number of receptors (receptor down-regulation). In the present study we investigated receptor redistribution and down-regulation under physiological conditions by raising endogenous catecholamines in the rat by stress. In young rats a single immobilization stress induced MNL beta adrenergic receptor redistribution: the number of surface receptors was reduced by about 50% but the total number remained the same. Receptor redistribution was prevented completely in rats pretreated with beta-blocking nadolol. Repeated stress down-regulated the MNL beta adrenergic receptors as shown by a reduction in the total number of sites. We also investigated the regulation of beta adrenergic receptors in three age-groups. After 60 min of immobilization stress the number of MNL surface receptors was reduced in young (4-month-old) rats but not in mature (12-month-old) or aged (26-month-old) rats. Using an alternative stress procedure, after single or repeated open-field sessions, we found receptor redistribution and down-regulation, respectively, in young rats. None of these adaptive receptor response was observed in 26-month-old rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effects of chronic administration of the tricyclic antidepressant agent desmethylimipramine (DMI) on brain adrenergic and serotonergic receptor binding processes were studied. We examined the kinetic properties of alpha adrenergic, beta adrenergic and serotonergic receptor binding sites in cortical and subcortical brain regions of rats treated chronically for various time periods with DMI(6 mg/kg i.p. daily). After 1 week of daily injections, beta receptor binding density in the cortex was significantly decreased. The reduced density of the cortical beta receptors was evident throughout a 12-week administration period. It was not until after 6 weeks of DMI administration that a significant reduction in the subcortical beta receptors was evident. Compared to saline-injected controls, chronic DMI administration lowered [3H]dihydroalprenolol binding in the hippocampus but not in the striatum. After 12 weeks of DMI we detected no differences in alpha adrenergic binding characteristics in the cortex or subcortical forebrain using [3H]dihydroergocryptine as the binding ligand. There was no consistent alteration in the cortical serotonin receptor densities throughout the 12 weeks of DMI administration, and DMI had no effect on the serotonergic binding characteristics in the subcortical forebrain region. We conclude that chronic DMI administration selectively decreases the density of beta adrenergic receptors in rat brain.  相似文献   

15.
We studied the alterations in myocardial beta-adrenergic receptor-adenylate cyclase activity and muscarinic receptor density in a canine model of left ventricular (LV) failure. LV failure was characterized by a doubling of LV weight/body weight ratio (3.3 +/- 0.1 to 6.9 +/- 0.4 g/kg) and an elevation of LV end-diastolic pressure, 32 +/- 4.5 mmHg, compared with 7.7 +/- 0.6 mmHg in normal dogs. Despite a 44% increase in receptor density as measured by antagonist binding studies with [3H]dihydroalprenolol, there was a twofold decrease in receptor affinity, i.e., an increase in the dissociation constant (Kd) (5.6 +/- 0.7 to 12 +/- 1.6 nM) in heart failure. Agonist displacement of [3H]dihydroalprenolol binding with isoproterenol in the presence and absence of 5'-guanylylimidodiphosphate [Gpp(NH)p] demonstrated a striking loss of high affinity binding sites in heart failure (51 +/- 16 to 11 +/- 5%). Beta-Adrenergic receptor-mediated stimulation of adenylate cyclase and maximal stimulation with Gpp(NH)p or sodium fluoride was reduced in heart failure. There was a concomitant marked, P less than 0.01, reduction in muscarinic receptor density (242 +/- 19 vs. 111 +/- 20 fmol/mg). Thus, while muscarinic receptor density fell, beta-adrenergic receptor density actually increased in LV failure. However, a larger portion of the beta-adrenergic receptors are not functionally coupled to the GTP-stimulatory protein (Ns), as evidenced by a decrease in the fraction of receptors that bind agonist with high affinity.  相似文献   

16.
Experimental myocardial ischemia produced in dogs by proximal left anterior descending coronary artery ligation is accompanied by relatively rapid (1 h) increases in the number of (-) [3H]dihydroalprenolol binding sites without changing their dissociation constants in ischemic left ventricular tissue. The changes, persist for at least 8 h and are accompanied by marked decreases in myocardial tissue ischemic region norepinephrine content. In contrast, in the same canine model 1 h of proximal left anterior descending coronary artery ligation did not result in a significant change in the number of [3H]quinuclidynl benzilate binding sites of their dissociation constants. However, the number of [3H]quinuclidynl benzilate binding sites (muscarinic cholinergic receptors) are 50--70% greater than (-) [3H]dihydroalprenolol binding sites (beta adrenergic receptors) in canine left ventricular tissue. Thus, the data suggest that proximal left anterior descending coronary artery occlusion for 1 h significantly increases the number of beta adrenergic receptors in ischemic left ventricular tissue without changing the number of muscarinic cholinergic receptors. Whether the ischemia-produced increase in cardiac beta-receptor content is causally related to increased cyclic AMP levels that develop in ischemic tissue and/or an etiologic factor in arrhythmias originating from ischemic myocardial tissue will have to be determined in additional studies.  相似文献   

17.
The effects of prolonged in vivo infusion of isoproterenol (400 micrograms/kg/hr) or norepinephrine (200 micrograms/kg/hr) from a minipump on the physiological reactivity and binding properties of cardiac beta and alpha-1 adrenoceptors were tested in rats. Infusion of either catecholamine significantly reduced the in vitro inotropic and chronotropic potency of isoproterenol in isolated left and right atria, respectively; desensitization was near maximal as early as after 2 hr of infusion. No significant change in the density of [3H]dihydroalprenolol-labeled beta receptors was evident at this time point in either atrial or ventricular tissue, although isoproterenol did decrease binding site density after 7 days of infusion. There was no change in the binding affinity or physiological blocking potency of dihydroalprenolol after isoproterenol infusion. The inotropic potency of phenylephrine in the presence of dihydroalprenolol was unaffected by infusion of either isoproterenol or norepinephrine and methoxamine failed to increase right atrial rate either in control or in isoproterenol-infused rats. There was also no change in the density and affinity of [3H]prazosin binding sites after isoproterenol infusion. These results indicate selective desensitization of cardiac beta receptors without changes in alpha-1 receptors by prolonged in vivo stimulation with catecholamines. This reaction pattern is different from the well documented effects of hypothyroidism, which include decreased sensitivity of cardiac beta and increased sensitivity of cardiac alpha-1 receptor-mediated responses in rats. Thus, the mechanisms responsible for altered receptor function in the two conditions appear to be different.  相似文献   

18.
Recently, we reported that chronic administration of several antidepressants of different classes produced larger reductions in numbers of serotonin2 (5-HT2) receptors in rat brain labeled by [3H[spiroperidol than in beta adrenergic receptors. In the present study, we examine detailed properties of 5-HT2 receptor regulation by chronic treatment with amitriptyline. Chronic but not acute treatment with the tricyclic antidepressant amitriptyline reduces binding to 5-HT2 receptors by [3H]spiroperidol and beta adrenergic receptor binding of [3H]dihydroalprenolol in brain membranes. The decrease is time-dependent, gradually reversible and represents a change in the number of binding sites with no alteration in drug affinities for 5-HT2 receptors. The effect can be observed at daily doses of 2.5 mg/kg, similar to clinically effective doses in humans. At all doses and time intervals, the decrease in 5-HT2 receptors is more marked than the concurrent change in total beta adrenergic receptor binding. The properties of 5-HT2 receptor reduction after chronic antidepressant treatment indicate that this alteration could be associated with therapeutic response.  相似文献   

19.
The ontogeny, circadian rhythm and sex differences of adrenergic receptors were studied in a crude particulate fraction prepared from rat lung. The density of alpha-2 adrenergic receptors ([3H]yohimbine binding sites) decreased rapidly with age from 304 fmol/mg of protein on the 1st day to 123 fmol/mg after the 1st week and then to an undetectable level at 5 weeks of age. Alpha-1 adrenergic receptors ([3H]prazosin binding) showed a moderate variation in density, with the greatest density at the 3rd week of age (311 fmol/mg). The density at birth (194 fmol/mg) was higher than the adult (126 fmol/mg). Beta adrenergic receptors ([3H]dihydroalprenolol binding) demonstrated changes in density with a sharp rise in the 3rd week (to 813 fmol/mg from 315 fmol/mg at birth), which was maintained through the 10th week. Unlike receptor densities, the affinity constants were not significantly altered during postnatal development. Alpha-1 and beta receptors in the adult rat lung did not show any significant changes in their densities or their affinities in the two other physiological variables studied (circadian rhythm and sex). During postnatal development, the highest concentration of norepinephrine in the rat lung is reported to be at about 3 weeks of age, which correlates with the changes in both alpha-1 and beta adrenergic receptors, but not alpha-2 receptors. The presence of alpha-2 receptors in the lungs of young, but not mature animals, may suggest an important developmental role, which is not yet understood.  相似文献   

20.
To study potential cardiac receptor alterations during the development of spontaneous hypertension, specific binding of [3H]-2-N(2,6-dimethoxyphenoxyethyl)amino-methyl-1,4-benzodioxane, (-)-[3H]dihydroalprenolol and (-)-[3H]quinuclidinyl benzilate in ventricles of Wistar Kyoto rats (WKY), spontaneously hypertensive rats (SHR) and stroke-prone SHR (SHRSP) at different ages was determined. The Kd and maximal binding for specific binding of [3H]-2-N(2,6-dimethoxyphenoxyethyl)amino-methyl-1,4-benzodioxane and (-)-[3H]dihydroalprenolol in ventricular homogenates of SHR and SHRSP at prehypertensive ages were similar to those of age-matched WKY. With the development of spontaneous hypertension in SHR and SHRSP, there was a significant decrease in the maximal binding for both ligands without a change in Kd. The decrease in maximal binding in SHR and SHRSP at 10 weeks of age was 29 to 38%, compared with age-matched WKY. There was no difference in ventricular (-)-[3H]quinuclidinyl benzilate binding between WKY and SHRSP. Hofstee analysis of the inhibition of ventricular (-)-[3H]dihydroalprenolol binding by practolol demonstrated a specific 51% decrease in ventricular beta-1 receptor density in 10-week-old SHRSP. In addition, the inotropic response to isoproterenol in isolated papillary muscles from SHRSP was significantly smaller than that in WKY. Thus, it is concluded that during the development of spontaneous hypertension in SHR and SHRSP, there is a specific loss in number of cardiac alpha and beta-1 adrenoceptors with a consequently reduced responsiveness of isolated papillary muscles to isoproterenol in SHRSP. These results are compatible with the reported increase in sympathetic outflow to the cardiovascular system in spontaneous hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号