首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural polysaccharides are attractive compounds with which to build scaffolds for bone and cartilage tissue engineering. Here we tested two non-standard ones, HE800 and GY785, for the two-dimensional (2-D) and three-dimensional (3-D) culture of osteoblasts (MC3T3-E1) and chondrocytes (C28/I2). These two glycosaminoglycan-like marine exopolysaccharides were incorporated into an injectable silylated hydroxypropylmethylcellulose-based hydrogel (Si-HPMC) that has already shown its suitability for bone and cartilage tissue engineering. Results showed that, similarly to hyaluronic acid (HA) (the control), HE800 and GY785 significantly improved the mechanical properties of the Si-HPMC hydrogel and induced the attachment of MC3T3-E1 and C28/I2 cells when these were cultured on top of the scaffolds. Si-HPMC hydrogel containing 0.67% HE800 exhibited the highest compressive modulus (11kPa) and allowed the best cell dispersion, especially of MC3T3-E1 cells. However, these cells did not survive when cultured in 3-D within hydrogels containing HE800, in contrast to C28/I2 cells. The latter proliferated in the microenvironment or concentrically depending on the nature of the hydrogel. Among all the constructs tested the Si-HPMC hydrogels containing 0.34% HE800 or 0.67% GY785 or 0.67% HA presented the most interesting features for cartilage tissue engineering applications, since they offered the highest compressive modulus (9.5-11kPa) while supporting the proliferation of chondrocytes.  相似文献   

2.
Tissue engineering strategies, based on developing three-dimensional scaffolds capable of transferring autologous chondrogenic cells, holds promise for the restoration of damaged cartilage. In this study, the authors aimed at determining whether a recently developed silanized hydroxypropyl methylcellulose (Si-HPMC) hydrogel can be a suitable scaffold for human nasal chondrocytes (HNC)-based cartilage engineering. Methyltetrazolium salt assay and cell counting experiments first revealed that Si-HPMC enabled the proliferation of HNC. Cell tracker green staining further demonstrated that HNC were able to form nodular structures in this three-dimensional scaffold. HNC phenotype was then assessed by RT-PCR analysis of type II collagen and aggrecan expression as well as alcian blue staining of extracellular matrix. Our data indicated that Si-HPMC allowed the maintenance and the recovery of a chondrocytic phenotype. The ability of constructs HNC/Si-HPMC to form a cartilaginous tissue in vivo was finally investigated after 3 weeks of implantation in subcutaneous pockets of nude mice. Histological examination of the engineered constructs revealed the formation of a cartilage-like tissue with an extracellular matrix containing glycosaminoglycans and type II collagen. The whole of these results demonstrate that Si-HPMC hydrogel associated to HNC is a convenient approach for cartilage tissue engineering.  相似文献   

3.
Tissue engineering of an elastic cartilage graft that meets the criterion for both structural and functional integration into host tissue, as well as allowing for a clinically tolerable immune response, is a challenging endeavour. Conventional scaffold technologies have limitations in their ability to design and fabricate complex-shaped matrix architectures of structural and mechanical equivalence to elastic cartilage found in the body. We attempted to investigate the potential of conventionally isolated and passaged chondrocytes (2D environment) when seeded and cultured in combination with a biomimetic hydrogel in a mechanically stable and biomimetic composite matrix to form elastic cartilage within ectopic implantation sites. In vitro cultured scaffold/hydrogel/chondrocytes constructs showed islets of cartilage and mineralized tissue formation within the cell-seeded specimens in both pig and rabbit models. Specimens with no cells seeded showed only vascularized fibrous tissue ingrowth. These studies demonstrated the potential of such scaffold/hydrogel/cell constructs to support chondrogenesis in vivo. However, it also showed that even mechanically stable scaffolds do not allow regeneration of a large mass of structural and functional cartilage within a matrix architecture seeded with 2D passaged chondrocytes in combination with a cell biomimetic carrier. Hence, future experiments will be designed to evaluate an initial 3D culture of chondrocytes, effect on cell phenotype and their subsequent culture within biomimetic 3D scaffold/cell constructs.  相似文献   

4.
We developed an injectable hydrogel system to evaluate the effect of hydrogel stiffness on chondrocyte cellular functions in a three-dimensional (3D) environment and its subsequent influence on ectopic cartilage formation and early-stage osteochondral defect repair in a rabbit model. The hydrogels, composed of gelatin-hydroxyphenylpropionic acid (Gtn-HPA) conjugate, were formed using oxidative coupling of HPA moieties catalyzed by hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The storage modulus (G′) of the hydrogels, which was tunable by changing the H2O2 and Gtn-HPA concentrations, ranged from 570 Pa to 2750 Pa. It was found that the cellular functions of chondrocytes encapsulated in hydrogels, including cell proliferation, biosynthesis of collagen and sulfated glycosaminoglycans (sGAG), as well as gene expression of type I (Col-I) and type II collagen (Col-II), were strongly affected by the stiffness of the hydrogels. Of note, chondrocytes cultured within the Gtn-HPA hydrogel of medium stiffness (G′ = 1000 Pa) produced highest level of sGAG production, as well as highest ratio of Col-II to Col-I gene expression among the Gtn-HPA hydrogels of different stiffness. Consistent with the results from in vitro and in vivo ectopic cartilage formation, osteochondral defect repair in a rabbit model showed stiffness-dependent tissue repair, with defects implanted with chondrocytes in hydrogels of medium stiffness having markedly more hyaline cartilage formation, smoother surface and better integration with adjacent cartilage, compared to defects treated with hydrogels of low or high stiffness. These results suggest that the tunable stiffness of Gtn-HPA hydrogels modulates chondrocyte cellular functions, and has a dramatic impact on cartilage tissue histogenesis and repair.  相似文献   

5.
Thermoreversible hydrogel scaffolds for articular cartilage engineering   总被引:2,自引:0,他引:2  
Articular cartilage has limited potential for repair. Current clinical treatments for articular cartilage damage often result in fibrocartilage and are associated with joint pain and stiffness. To address these concerns, researchers have turned to the engineering of cartilage grafts. Tissue engineering, an emerging field for the functional restoration of articular cartilage and other tissues, is based on the utilization of morphogens, scaffolds, and responding progenitor/stem cells. Because articular cartilage is a water-laden tissue and contains within its matrix hydrophilic proteoglycans, an engineered cartilage graft may be based on synthetic hydrogels to mimic these properties. To this end, we have developed a polymer system based on the hydrophilic copolymer poly(propylene fumarate-co-ethylene glycol) [P(PF-co-EG)]. Solutions of this polymer are liquid below 25 degrees C and gel above 35 degrees C, allowing an aqueous solution containing cells at room temperature to form a hydrogel with encapsulated cells at physiological body temperature. The objective of this work was to determine the effects of the hydrogel components on the phenotype of encapsulated chondrocytes. Bovine articular chondrocytes were used as an experimental model. Results demonstrated that the components required for hydrogel fabrication did not significantly reduce the proteoglycan synthesis of chondrocytes, a phenotypic marker of chondrocyte function. In addition, chondrocyte viability, proteoglycan synthesis, and type II collagen synthesis within P(PF-co-EG) hydrogels were investigated. The addition of bone morphogenetic protein-7 increased chondrocyte proliferation with the P(PF-co-EG) hydrogels, but did not increase proteoglycan synthesis by the chondrocytes. These results indicate that the temperature-responsive P(PF-co-EG) hydrogels are suitable for chondrocyte delivery for articular cartilage repair.  相似文献   

6.
Kim M  Kim SE  Kang SS  Kim YH  Tae G 《Biomaterials》2011,32(31):7883-7896
Partial-thickness cartilage defects, with no subchondral bone injury, do not repair spontaneously, thus there is no clinically effective treatment for these lesions. Although the autologous chondrocyte transplantation (ACT) is one of the promising approaches for cartilage repair, it requires in vitro cell expansion to get sufficient cells, but chondrocytes lose their chondrogenic phenotype during expansion by monolayer culture, leading to de-differentiation. In this study, a heparin-based hydrogel was evaluated and optimized to induce cartilage regeneration with de-differentiated chondrocytes. First, re-differentiation of de-differentiated chondrocytes encapsulated in heparin-based hydrogels was characterized in vitro with various polymer concentrations (from 3 to 20 wt.%). Even under a normal cell culture condition (no growth factors or chondrogenic components), efficient re-differentiation of cells was observed with the optimum at 10 wt.% hydrogel, showing the complete re-differentiation within a week. Efficient re-differentiation and cartilage formation of de-differentiated cell/hydrogel construct were also confirmed in vivo by subcutaneous implantation on the back of nude mice. Finally, excellent cartilage regeneration and good integration with surrounding, similar to natural cartilage, was also observed by delivering de-differentiated chondrocytes using the heparin-based hydrogel in partial-thickness defects of rabbit knees whereas no healing was observed for the control defects. These results demonstrate that the heparin-based hydrogel is very efficient for re-differentiation of expanded chondrocytes and cartilage regeneration without using any exogenous inducing factors, thus it could serve as an injectable cell-carrier and scaffold for cartilage repair. Excellent chondrogenic nature of the heparin-based hydrogel might be associated with the hydrogel characteristic that can secure endogenous growth factors secreted from chondrocytes, which then can promote the chondrogenesis, as suggested by the detection of TGF-β1 in both in vitro and in vivo cell/hydrogel constructs.  相似文献   

7.
The present work evaluates a newly developed silated hydroxypropylmethylcellulose (Si-HPMC)-based hydrogel as a scaffold for 3D culture of osteogenic cells. The pH variation at room temperature catalyzes the reticulation and self-hardening of the viscous polymer solution into a gelatine state. We designed reticulation time, final consistency and pH in order to obtain an easy handling matrice, suitable for in vitro culture and in vivo injection. Three human osteogenic cell lines and normal human osteogenic (HOST) cells were cultured in 3D inside this Si-HPMC hydrogel. We show here that osteosarcoma cells proliferate as clonogenic spheroids and that HOST colonies survive for at least 3 weeks. Mineralization assay and gene expression analysis of osteoblastic markers and cytokines, indicate that all the cells cultured in 3D into this hydrogel, exhibited a more mature differentiation status than cells cultured in monolayer on plastic. This study demonstrates that this Si-HPMC hydrogel is well suited to support osteoblastic survival, proliferation and differentiation when used as a new scaffold for 3D culture and represents also a potential basis for an innovative bone repair material.  相似文献   

8.
In cartilage tissue engineering, hydrogel is widely used as the scaffold for hosting and culturing chondrocyte suspension during neo-tissue formation. In order to develop cultured chondrocytes into a functional cartilage equivalent, the hydrogel must provide an ideal microenvironment for the rapidly proliferating chondrocytes. At the same time, the essential functions of chondrocytes, such as the secretion of type II collagen and glycosaminoglycans, must be maintained. In these studies, we quantitatively characterize the mechanobiology underlying a newly discovered “edge flourish” phenomenon of cultured chondrocytes within a three-dimensional agarose hydrogel, which may ultimately nurture scaffold-free cartilaginous tissue regeneration. First, real-time microscopy was used to track the spatiotemporal distributions of chondrocytes at different focal planes. The chondrocytes were observed to exhibit abundant neo-tissue outgrowth and significant cartilaginous phenotype at the edge of the hydrogel compared to those inside the hydrogel bulk. Secondly, the hydrogel surface stresses induced by the encapsulated chondrocytes were characterized quantitatively in real time using the finite-element method. Finally, the real-time three-dimensional matrix deformations of agarose hydrogel under the influence of chondrocytes were measured using a multiple-particle tracking assay. Our results indicate that the mechanism of the “edge flourish” phenomenon is induced by the oriented outgrowth of chondrocytic isogenous groups located at the edge of hydrogel. These isogenous groups exhibit directed outgrowth towards the surface of the hydrogel and eventually generate substantial surface tension on the interface of hydrogel and medium. Ultimately, the encapsulated chondrocytes closest to the hydrogel/medium interface will spontaneously sprout out of the hydrogel and form a layer of rich proliferative and chondrocytic extracellular matrix secreting chondrocytes at the surface of the hydrogel.  相似文献   

9.
Recent advances in tissue engineering and regenerative medicine fields can offer alternative solutions to the existing techniques for cartilage repair. In this context, a variety of materials has been proposed, and the injectable hydrogels are among the most promising alternatives. The aim of this work is to explore the ability of poly(N-isopropylacrylamide)-g-methylcellulose (PNIPAAm-g-MC) thermoreversible hydrogel as a three-dimensional support for cell encapsulation toward the regeneration of articular cartilage through a tissue engineering approach. The PNIPAAm-g-MC copolymer was effectively obtained using ammonium-persulfate and N,N,N',N'-tetramethylethylenediamine as initiator as confirmed by Fourier transform infrared spectroscopy and (1) H NMR results. The copolymer showed to be temperature responsive, becoming a gel at temperatures above its lower critical solution temperature (~ 32 °C) while turning into a liquid below it. Results obtained from the MTS test showed that extracts of the hydrogel were clearly noncytotoxic to L929 fibroblast cells. ATDC5 cells, a murine chondrogenic cell line, were used as the in vitro model for this study; they were encapsulated at high cell density within the hydrogel and cultured for up to 28 days. PNIPAAm-g-MC did not affect the cell viability and proliferation, as indicated by both MTS and DNA assays. The results also revealed an increase in synthesis of glycosoaminoglycans within culture time measured by the dimethylmethylene blue quantification assay. These results suggest the viability of using PNIPAAm-g-MC thermoresponsive hydrogel as a three-dimensional scaffold for cartilage tissue engineering using minimal-invasive strategies.  相似文献   

10.
The purpose of this study was to compare the effect of different hydrogels on the production of tissue-engineered cartilage based on polyglycolic acid (PGA). Chondrocytes were isolated from adult sheep auricles. Alginate, Type I collagen, methylcellulose, and pluronic F127 hydrogels were evaluated, as were controls prepared without hydrogels. Proliferated chondrocytes were mixed with each hydrogel at 20 x 10(6) cells/mL and seeded onto PGA (1 x 1 x 0.2 cm, n = 60). The constructs were cultured with serum-free medium containing 5 ng/mL TGF-beta(2) and 5 ng/mL des(1-3)IGF-I in rotational bioreactors for up to 6 weeks. The cellular morphology, histology, and biochemistry were analyzed. Type I collagen, methylcellulose, and pluronic F127 displayed improved cartilage matrix deposition in terms of histology and biochemistry compared to alginate. It was not concluded that the combined seeding of chondrocytes and hydrogels on a PGA scaffold had significantly better effects than cell seeding without hydrogels. However, the histology and other useful findings in this ECM analyses suggested that Type I collagen and MC hydrogels were the best candidates for cartilage regeneration, because of their stimulation for chondrocyte proliferation in a three-dimensional culture as well as cartilage regeneration.  相似文献   

11.

Aim of the study

Nasal reconstruction remains a challenge for any surgeon. The surgical indications for nasal reconstruction after oncologic resection, trauma or as part of cosmetic rhinoplasty, are steadily increasing. The current attitude for reconstruction is the use of autologous cartilage grafts of various origins (septal, ear or rib) trying to restore a physiological anatomy but their quantity is limited. Thus, in order to produce an implantable cartilaginous model, we developed a study protocol involving human nasal chondrocytes, growth factors and a composite biomaterial and studied at the molecular, cellular and tissue level the phenotype of the chondrocytes cultured in this model.

Materials and methods

After extraction of chondrocytes and their amplification on plastic, the cells were cultured for 15 days either in monolayer or within an agarose hydrogel or a composite biomaterial (agarose/high density polyethylene: Medpor®) in the presence or not of a cocktail of soluble factors (BIT): bone morphogenetic protein-2 (BMP-2), insulin and triiodothyronine (T3). The quality of the chondrocyte phenotype was analyzed by PCR, western blotting and immunohistochemistry.

Results

During their amplification in monolayer, chondrocytes dedifferentiate. However, our results show that the BIT cocktail induces redifferentiation of chondrocytes cultured in agarose/Medpor with synthesis of mature chondrogenic markers. Thereby, chondrocytes associated with the agarose hydrogel will colonize Medpor and synthesize an extracellular matrix characteristic of nasal cartilage.

Conclusion

This nasal cartilage tissue engineering protocol provides the first interesting results for nasal reconstruction.  相似文献   

12.
Cartilage tissue engineering aims to repair damaged cartilage tissue in arthritic joints. As arthritic joints have significantly higher levels of pro-inflammatory cytokines (such as IL-1β and TNFα that cause cartilage destruction, it is critical to engineer stable cartilage in an inflammatory environment. Biomaterial scaffolds constitute an important component of the microenvironment for chondrocytes in engineered cartilage. However, it remains unclear how the scaffold material influences the response of chondrocytes seeded in these scaffolds under inflammatory stimuli. Here we have compared the responses of articular chondrocytes seeded within three different polymeric scaffolding materials (silk, collagen and polylactic acid (PLA)) to IL-1β and TNFα. These scaffolds have different physical characteristics and yielded significant differences in the expression of genes associated with cartilage matrix production and degradation, cell adhesion and cell death. The silk and collagen scaffolds released pro-inflammatory cytokines faster and had higher uptake water abilities than PLA scaffolds. Correspondingly, chondrocytes cultured in silk and collagen scaffolds maintained higher levels of cartilage matrix than those in PLA, suggesting that these biophysical properties of scaffolds may regulate gene expression and the response to inflammatory stimuli in chondrocytes. Based on this study we conclude that selecting the proper scaffold material will aid in the engineering of more stable cartilage tissues for cartilage repair, and that silk and collagen are better scaffolds in terms of supporting the stability of three-dimensional cartilage under inflammatory conditions.  相似文献   

13.
It is controversial whether a biomaterial itself, rather than addition of any exogenous growth factor, could induce mesenchymal stem cells (MSCs) to differentiate into chondrogenic lineage, further to regenerate cartilage. Previous studies have shown that collagen-based hydrogel could induce MSCs to differentiate into chondrocytes in vivo but the in vitro studies only have a few reports. The evidence that biomaterials could induce chondrogenesis is not adequate. In this study, we tried to address whether type I collagen hydrogel has chondro-inductive capability in vitro and how this scaffold induces MSCs to generate cartilage tissue without exogenous growth factors in the culture medium. We encapsulated neonatal rabbit bone marrow mesenchymal stem cells (BMSCs) in type I collagen hydrogel homogeneously or implanted cell aggregates in hydrogel, and cultured them in nonchondrogenic inductive media. After at least 28 days culture, cells in the homogeneous group were tending to chondrogenic differentiation while cell density was high, and cells in the aggregate group have almost gone through chondrogenesis and formed neo-cartilage tissue with abundant specific extracellular matrix (ECM) deposition. These results indicate collagen hydrogel has inherent inductivity for the chondrogenic differentiation of BMSCs, and the optimum specification and tissue formation were accompanied with local high cell density. This research suggests a feasible strategy to induce the chondro differentiation of BMSCs independent of exogenous growth factors, which may greatly contribute to clinical cartilage regeneration. ? 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A: 2717-2725, 2012.  相似文献   

14.
In this study we examined the potential of a novel thermoreversible gelation polymer (TGP) to act as a 3-D hydrogel scaffold and deliver both chondrocytes and growth factors. Chondrocytes obtained from bovine articular cartilage were studied as a suspension in TGP chilled to 4 degrees C, in the presence or absence of the growth factors IGF-1 and/or TGF beta2. The cold cell/aqueous suspensions were injected into a cylindrical mold and cultured at 37 degrees C for up to 16 weeks. Specimens obtained at 12 and 16 weeks were semitranslucent and elastic. The matrices surrounding the chondrocytes were histologically positive to Safranin-O staining and type II collagen staining. The glycosaminoglycan and hydroxyproline contents in the specimens increased as a function of time and because of the presence of growth factors; those cultured with growth factors produced significantly more of these substances than those cultured without. We have concluded that TGP has potential as a scaffold material in the generation of tissue-engineered cartilage in vitro.  相似文献   

15.
Injectable hydrogels have been studied for potential applications for articular cartilage regeneration. In this study, a thermosensitive chitosan–Pluronic (CP) hydrogel was designed as an injectable cell delivery carrier for cartilage regeneration. The CP conjugate was synthesized by grafting Pluronic onto chitosan using EDC/NHS chemistry. The sol–gel phase transition and mechanical properties of the CP hydrogel were examined by rheological experiments. The CP solution underwent a sol–gel transition around 25 °C at which the storage modulus (G′) approaches 104 Pa, highlighting the potential of this material as an injectable scaffold for cartilage regeneration. The CP hydrogel was formed rapidly by increasing the temperature. The morphology of the dried CP hydrogel was observed by scanning electron microscopy. In vitro cell culture was performed using bovine chondrocytes. The proliferation of bovine chondrocytes and the amount of synthesized glycosaminoglycan increased for 28 days. These results suggested that the CP hydrogel has potential as an injectable cell delivery carrier for cartilage regeneration and could serve as a new biomaterial for tissue engineering.  相似文献   

16.
17.
Deng Y  Zhao K  Zhang XF  Hu P  Chen GQ 《Biomaterials》2002,23(20):4049-4056
Polymer scaffold systems consisting of poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx)/polyhydroxybutyrate (PHB) (PHBHHx/PHB) were investigated for possible application as a matrix for the three-dimensional growth of chondrocyte culture. Blend polymers of PHBHHx/PHB were fabricated into three-dimensional porous scaffolds by the salt-leaching method. Chondrocytes isolated from rabbit articular cartilage (RAC) were seeded on the scaffolds and incubated over 28 days, with change of the culture medium every 4 days. PHB scaffold was taken as a control. Methylthiazol tetrazolium (MTT) (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltertra-zolium bromide) assay was used to quantitatively examine the proliferation of chondrocytes. Results showed that chondrocytes proliferated better on the PHBHHx/PHB scaffolds than on PHB one. The maximal cell densities were all observed after 7 days of incubation. As for the blend polymers, cells grew better on scaffolds consisting of PHBHHx/PHB in ratios of 2:1 and 1:2 than they did on PHBHHx/PHB of 1:1. Scanning electron microscopy (SEM) also showed that large quantities of chondrocytes grew initially on the surface of the scaffold. After 7 days, they further grew into the open pores of the blend polymer scaffolds. Morphologically, cells found on the surface of the scaffold exhibited a flat appearance and slowly form confluent cell multilayers starting from 14 to 28 days of the growth. In contrast, cells showed rounded morphology, formed aggregates and islets inside the scaffolds. In addition, chondrocytes proliferated on the scaffold and preserved their phenotype for up to 28 days.  相似文献   

18.
目的研究以聚乙烯醇(PVA)、生物活性玻璃(BG)及氯化锶为主要原料,制备的PVA水凝胶、PVA/生物活性玻璃水凝胶、掺锶复合PVA/生物活性玻璃水凝胶的可降解性能、离子释放性能和促软骨修复性能。方法PVA溶液与BG溶胶凝胶溶液在加热搅拌下生成PB水凝胶,PVA溶液与Sr-BG溶胶凝胶溶液加热搅拌生成PBSr水凝胶,将PB和PB-Sr水凝胶浸泡于磷酸盐缓冲液(PBS)中,研究其体外降解性能、离子释放性能和结构变化。在水凝胶上培养软骨细胞,经细胞增殖能力实验和细胞荧光染色观察细胞增殖情况。结果 PB和PB-Sr水凝胶在PBS溶液中逐渐降解,28 d后PB水凝胶降解率为25%,PB-Sr水凝胶降解率为16%,水凝胶表面均有羟基磷灰石形成。细胞实验结果显示培养7 d后PB-Sr水凝胶的OD值为0.76±0.04,PB水凝胶的OD值为0.52±0.02,均显著高于对照组,PVA水凝胶的OD值0.45±0.04,差异具有统计学意义(0.05)。结论该掺锶复合PVA/生物活性玻璃水凝胶具有良好的降解性能和离子释放性能,能有效促进软骨细胞增殖。  相似文献   

19.
Using immunohistochemical studies, C1q, C1s, C4 and C2 were detected in chondrocytes in normal human articular cartilage and macroscopically normal articular cartilage from the inferior surfaces of hip joints of patients with osteoarthritis. Using reverse-transcribed polymerase chain reaction (RT-PCR), mRNA for C1q, C1s, C4 and C2 was also detected in RNA extracted from articular cartilage. C1r, C3, C1-inhibitor, C4-binding protein and factor I were not detected by either technique. Articular chondrocytes cultured in vitro synthesized C1r, C1s, C4, C2, C3 and C1-inhibitor but not C1q, C4-binding protein or factor I, as assessed by enzyme-linked immunosorbent assay (ELISA) and Northern blot analysis. Thus cultured articular chondrocytes have a complement profile that is similar to that of cultured human fibroblasts rather than that of articular chondrocytes in vivo. Complement synthesis in cultured chondrocytes was modulated by the cytokines interleukin-1 beta (IL-1 beta), tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma), showing that cytokines can probably regulate complement synthesis in intact cartilage. The possible roles of local synthesis of complement components by chondrocytes in matrix turnover and the regulation chondrocyte function are discussed.  相似文献   

20.
Different cell- and biomaterial-based tissue engineering techniques are under investigation to restore damaged tissue. Strategies that use chondrogenic cells or tissues in combination with bioresorbable delivery materials are considered to be suitable to regenerate bio-artificial cartilage. Three-dimensional (3-D) cell embedding techniques can provide anchorage-independent cell growth and homogenous spatial cell arrangement, which play a key role in the maintenance of the characteristic phenotype and thus the formation of differentiated tissue. We developed a new injectable high water content (90%) hydrogel formulation with 5% sodium alginic acid and 5% gelatin as a temporary supportive intercellular matrix for 3-D cell culture. The objective was to determine whether the in vitro hydrogel culture of chondrocytes could preserve hyaline characteristics and thus could provide cartilage regeneration in vitro. Chondrocytes harvested from knee joints of skeletally mature sheep were cultured 3-D in hydrogel (7 x 10(6) cells/ml, 2.8-mul beads) for up to 10 weeks. Cell morphology and viability were evaluated with light microscopy, and proliferative activity was assessed with antibromodeoxyuridine immunofluorescence. Expression of collagens type I (COL1) and II (COL2), cartilage proteoglycans (PG) and hyaluronan synthases (HAS) were studied immunohistochemically. We observed that up to 36% of chondrocytes proliferated, while almost 100% presented a differentiated spheroidal phenotype. After an initial decrease at 2 weeks, cell density recovered to 85% of the initial absolute value at 10 weeks. Expression of hyaline matrix molecules resembled the in vivo pattern with increasing spatial deposition of PG and COL2. The proportion of PG-positive cells increased from initially 13 to 53% after 10 weeks, in contrast to consistently 100% COL2-positive cells. We conclude that 3-D hydrogel culture, even without mechanical stimulation or growth factor application, can keep chondrocytes in a differentiated state and provides a chondrogenic cell environment for in vitro cartilage regeneration for at least 10 weeks. Moreover, this hydrogel appears to be a suitable cell delivery material for subsequent in vivo implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号