首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Breast cancer is a serious threat to women's health, because multidrug resistance (MDR) has hampered treatment and prognosis. Nanodelivery of anticancer agents is a new technology to be exploited in the treatment of patients, because it bypasses multispecific drug efflux transporters such as P-glycoprotein (ABCB1), multidrug resistance protein-1 (MRP1, ABCC1) and breast cancer resistance protein (BCRP, ABCG2). Drugs can be delivered to tumor tissue by passive and active tumor targeting strategies, which may reduce or reverse drug resistance. This review will mainly focus on MDR-associated proteins, as well as various nanoparticle formulations developed to overcome MDR in breast cancer.  相似文献   

2.
3.
Multidrug resistance is a serious obstacle encountered in cancer treatment. Since drug resistance in human cancer is mainly associated with overexpression of the multidrug resistance gene 1 (MDR1), the promoter of the human MDR1 gene may be a target for multidrug resistance reversion drug screening. In the present study, HEK293T cells were transfected with pGL3 reporter plasmids containing the 2 kb of MDR1 promoter, and the transfected cells were used as models to screen for candidate multidrug resistance inhibitors from over 300 purified naturally occurring compounds extracted from plants and animals. Dioscin was found to have an inhibiting effect on MDR1 promoter activity. The resistant HepG2 cell line (HepG2/adriamycin) was used to validate the activity of multidrug resistance reversal by Dioscin. Results showed that Dioscin could decrease the resistance degree of HepG2/adriamycin cells, and significantly inhibit P-glycoprotein expression, as well as increase the accumulation of adriamycin in HepG2/adriamycin cells as measured by Flow Cytometric analysis. These results suggest that Dioscin is a potent multidrug resistance reversal agent and may be a potential adjunctive agent for tumor chemotherapy.  相似文献   

4.
Drug resistance involves multiple mechanisms. Multidrug resistance (MDR) is the leading cause of treatment failure in cancer therapy. Elevated levels of MDR proteins [members of the ATP-binding cassette (ABC) transporter family] increase cellular efflux and decrease the effectiveness of chemotherapeutic agents. As a salvage approach to overcome drug resistance, inhibitors of MDR proteins have been developed, but have had limited success mainly due to undesired toxicities. Nuclear receptors (NRs), including pregnane X receptor (PXR), regulate the expression of proteins (including MDR proteins) involved in drug metabolism and drug clearance, suggesting that it is possible to overcome drug resistance by regulating NR. This review discusses the progress in the development of MDR inhibitors, with a focus on MDR1 inhibitors. Recent development of PXR antagonists to pharmacologically modulate PXR is also reviewed. The review proposes that selectively preventing the elevation of MDR levels by regulating NRs rather than non-selectively inhibiting the MDR activity by using MDR inhibitors can be a less toxic approach to overcome drug resistance during cancer therapy.  相似文献   

5.
A major problem with anti-cancer drug treatment is the development of acquired multidrug resistance (MDR) of the tumor cells. Verotoxin-1 (VT-1) exerts its cytotoxicity by targeting the globotriaosylceramide membrane receptor (Gb3), a glycolipid associated with multidrug resistance. Gb3 is overexpressed in many human tumors and tumor cell lines with inherent or acquired MDR. Gb3 is co-expressed and interplays with the membrane efflux transporter P-gp encoded by the MDR1 gene. P-gp could act as a lipid flippase and stimulate Gb3 induction when tumor cells are exposed to cancer chemotherapy. Recent work has shown that apoptosis and inherent or acquired multidrug resistance in Gb3-expressing tumors could be affected by VT-1 holotoxin, a sub-toxic concentration of the holotoxin concomitant with chemotherapy or its Gb3-binding B-subunit coupled to cytotoxic or immunomodulatory drug, as well as chemical manipulation of Gb3 expression. The interplay between Gb3 and P-gp thus gives a possible physiological approach to augment the chemotherapeutic effect in multidrug resistant tumors.  相似文献   

6.
肿瘤多药耐药是肿瘤治愈的主要障碍之一。肿瘤细胞对抗癌药物诱导的凋亡的耐受是多药耐药形成的重要原因。蛋白酶体抑制剂可选择性地促进肿瘤细胞凋亡,逆转多药耐药。蛋白酶体被认为是肿瘤治疗的新靶点。  相似文献   

7.
《Drug delivery》2013,20(8):363-370
Overexpression of drug efflux pump P-gp is one of the major reasons to cause multidrug resistance (MDR). To overcome P-gp mediated MDR, modulators, so called P-gp inhibitors, can be used to block efflux pump activity. Elacridar is one of the most potent P-gp inhibitors, which can cause irreversible and total P-gp blockage. Elacridar, among with other P-gp inhibitors, can be used in combination with anticancer drugs to enhance the effectiveness of chemotherapy against resistant tumor cells. On the other hand, P-gp is presented in normal tissues, thus non-selective blockage of P-gp can cause undesired side effects. Therefore, it is important to deliver P-gp inhibitor only to the tumor cells (along with anticancer drug) and limit its distribution in the body. In this study, we have developed PEG-PE-based long-circulating ca. 15?nm micelles co-loaded with elacridar and paclitaxel, and investigated their ability to overcome paclitaxel resistance in two cancer cell lines. Vitamin E, a common solubility enhancer for PEG-PE micelles, was found to have a negative effect on both particle size and encapsulation efficiencies. The human MDR1 gene-transfected and thus paclitaxel-resistant MDCKII-MDR1 P-gp overexpressing cells were used for cytotoxicity evaluation. Even though PEG-PE based micelles itself have a potential to enhance the cytotoxicity of paclitaxel, elacridar/paclitaxel-co-loaded micelles demonstrated the highest cytotoxicity compared to both free and micellar paclitaxel. The obtained results suggest that co-loading of paclitaxel and elacridar into micellar drug carriers results in promising preparations capable of overcoming paclitaxel resistance.  相似文献   

8.
Chemotherapy is one of the three most common treatment modalities for cancer. However, its efficacy is limited by multidrug resistant cancer cells. Drug metabolizing enzymes (DMEs) and efflux transporters promote the metabolism, elimination, and detoxification of chemotherapeutic agents. Consequently, elevated levels of DMEs and efflux transporters reduce the therapeutic effectiveness of chemotherapeutics and, often, lead to treatment failure. Nuclear receptors, especially pregnane X receptor (PXR, NR1I2) and constitutive androstane activated receptor (CAR, NR1I3), are increasingly recognized for their role in xenobiotic metabolism and clearance as well as their role in the development of multidrug resistance (MDR) during chemotherapy. Promiscuous xenobiotic receptors, including PXR and CAR, govern the inducible expressions of a broad spectrum of target genes that encode phase I DMEs, phase II DMEs, and efflux transporters. Recent studies conducted by a number of groups, including ours, have revealed that PXR and CAR play pivotal roles in the development of MDR in various human carcinomas, including prostate, colon, ovarian, and esophageal squamous cell carcinomas. Accordingly, PXR/CAR expression levels and/or activation statuses may predict prognosis and identify the risk of drug resistance in patients subjected to chemotherapy. Further, PXR/CAR antagonists, when used in combination with existing chemotherapeutics that activate PXR/CAR, are feasible and promising options that could be utilized to overcome or, at least, attenuate MDR in cancer cells.  相似文献   

9.
The medicinal chemistry of multidrug resistance (MDR) reversing drugs   总被引:14,自引:0,他引:14  
Multidrug resistance (MDR) is a kind of resistance of cancer cells to multiple classes of chemotherapic drugs that can be structurally and mechanistically unrelated. Classical MDR regards altered membrane transport that results in lower cell concentrations of cytotoxic drug and is related to the over expression of a variety of proteins that act as ATP-dependent extrusion pumps. P-glycoprotein (Pgp) and multidrug resistance protein (MRP1) are the most important and widely studied members of the family that belongs to the ABC superfamily of transporters. It is apparent that, besides their role in cancer cell resistance, these proteins have multiple physiological functions as well, since they are expressed also in many important non-tumoural tissues and are largely present in prokaryotic organisms. A number of drugs have been identified which are able to reverse the effects of Pgp, MRPI and sister proteins, on multidrug resistance. The first MDR modulators discovered and studied in clinical trials were endowed with definite pharmacological actions so that the doses required to overcome MDR were associated with unacceptably high side effects. As a consequence, much attention has been focused on developing more potent and selective modulators with proper potency, selectivity and pharmacokinetics that can be used at lower doses. Several novel MDR reversing agents (also known as chemosensitisers) are currently undergoing clinical evaluation for the treatment of resistant tumours. This review is concerned with the medicinal chemistry of MDR reversers, with particular attention to the drugs that are presently in development.  相似文献   

10.
Multidrug resistance in cancer chemotherapy   总被引:2,自引:0,他引:2  
Resistance to chemotherapy is the single most important reason for treatment failure in cancer patients. Over the past 15 years, we have gained significant insight into one of the mechanisms responsible for this process: multidrug resistance (MDR). Far from being a phenomenon limited to the laboratory, multidrug resistance has been identified in a wide variety of newly diagnosed and recurrent human tumors. A number of compounds can block p-glycoprotein and overcome MDRin vitro andin vivo. Current strategies to block MDR are discussed in this review. Future research in this area will focus on the identification of more selective and potent MDR reversing agents and the development of entirely new approaches to overcoming multidrug resistance such as monoclonal antibodies, immunotoxins, and gene therapy.  相似文献   

11.
匡正  秦超  杨磊  尹莉芳  韩晓鹏 《药学研究》2022,41(10):667-672,696
多药耐药性是肿瘤治疗的重要障碍。靶向性、协同载药能力等功能使纳米制剂成为克服肿瘤多药耐药的理想载体。本文首先介绍了多药耐药性的主要产生机制,然后着重介绍了基于抑制外排、诱导细胞程序性死亡的多功能纳米制剂,用于逆转肿瘤多药耐药性的研究进展,以期为耐药性肿瘤治疗提供思路和方法。  相似文献   

12.
《Biochemical pharmacology》2014,88(4):611-624
Neuroblastoma, a malignancy of neuroectoderrmal origin, accounts for 15% of childhood cancer deaths. Despite advances in understanding the biology, it remains one of the most difficult paediatric cancers to treat. A major obstacle in the effective treatment of neuroblastoma is the development of multidrug resistance (MDR). There is thus a compelling demand for new treatment strategies for this cancer that can bypass such resistance mechanisms. The pyrrolo-1,5-benzoxazepine (PBOX) compounds are a series of novel microtubule-targeting agents that potently induce apoptosis in various cancer cell lines, ex vivo patient samples and in vivo cancer models. In this study we examined the ability of two members, PBOX-6 and -15, to exhibit anti-cancer effects in a panel of drug sensitive and MDR neuroblastoma cell lines. The PBOX compounds potently reduced the viability of all neuroblastoma cells examined and exhibited a lower fold resistance in MDR cells when compared to standard chemotherapeutics. In addition, the PBOX compounds synergistically enhanced apoptosis induced by etoposide, carboplatin and doxorubicin. Exposure of drug sensitive and resistant cell lines to PBOX-6/carboplatin induced cleavage of Bcl-2, a downregulation of Mcl-1 and a concomitant increase in Bak. Furthermore, activation of caspase-3, -8 and -9 was demonstrated. Finally, gene silencing of Mcl-1 by siRNA was shown to sensitise both drug sensitive and multidrug resistant cells to carboplatin-induced apoptosis demonstrating the importance of Mcl-1 downregulation in the apoptotic pathway mediated by the PBOX compounds in neuroblastoma. In conclusion, our findings indicate the potential of the PBOX compounds in enhancing chemosensitivity in neuroblastoma.  相似文献   

13.
Pharmacological strategies for overcoming multidrug resistance   总被引:7,自引:0,他引:7  
  相似文献   

14.
多药耐药(MDR)是肿瘤化疗失败的主要原因之一。MDR的产生主要由ATP结合盒(ABC)转运蛋白超家族的跨膜蛋白所引起,其中P-糖蛋白及其编码基因mdr1的过表达是MDR产生的最主要机制。研究MDR的产生机制,寻找诱发mdr1表达的诱因并阻断其表达,是克服肿瘤多药耐药性行之有效的方法。近来研究发现,孕烷X受体(PXR)可介导mdr1的表达,活化的PXR诱导MDR1的表达。因此,特异性地阻断PXR的活化可抑制mdr1的表达,从而克服多药耐药性。现已发现多种物质可作为PXR抑制剂或拮抗剂。本文即对核受体PXR与MDR、PXR抑制剂及拮抗剂的研究现状做一介绍,以期为克服肿瘤多药耐药提供参考。  相似文献   

15.
16.
Recently, we have introduced [tris(1,10-phenanthroline)lanthanum(III)] trithiocyanate (KP772, FFC24) as a new lanthanum compound which has promising anticancer properties in vivo and in vitro. Aim of this study was to investigate the impact of ABC transporter-mediated multidrug resistance (MDR) on the anticancer activity of KP772. Here, we demonstrate that all MDR cell models investigated, overexpressing ABCB1 (P-glycoprotein), ABCC1 (multidrug resistance protein 1), or ABCG2 (breast cancer resistance protein) either due to drug selection or gene transfection, were significantly hypersensitive against KP772. Using ABCB1-overexpressing KBC-1 cells as MDR model, KP772 hypersensitivity was demonstrated to be based on stronger apoptosis induction and/or cell cycle arrest at unaltered cellular drug accumulation. KP772 did neither stimulate ABCB1 ATPase activity nor alter rhodamine 123 accumulation arguing against a direct interaction with ABCB1. Accordingly, several drug resistance modulators did not sensitize but rather protect MDR cells against KP772-induced cytotoxicity. Moreover, long-term KP772 treatment of KBC-1 cells at subtoxic concentrations led within 20 passages to a complete loss of drug resistance based on blocked MDR1 gene expression. When exposing parental KB-3-1 cells to subtoxic, stepwise increasing KP772 concentrations, we observed, in contrast to several other metallo-drugs, no acquisition of KP772 resistance. Summarizing, our data demonstrate that KP772 is hyperactive in MDR cells and might have chemosensitizing properties by blocking ABCB1 expression. Together with the disability of tumor cells to acquire KP772 resistance, our data suggest that KP772 should be especially active against notoriously drug-resistant tumor types and as second line treatment after standard chemotherapy failure.  相似文献   

17.
18.
The acquisition of multidrug resistance poses a serious problem in chemotherapy, and new types of transporters have been actively sought to overcome it. In the present study, poly(ethylene glycol)-conjugated (PEGylated) multi-walled carbon nanotubes (MWCNTs) were prepared and explored as drug carrier to overcome multidrug resistance. The prepared PEGylated MWCNTs penetrated into mammalian cells without damage plasma membrane, and its accumulation did not affect cell proliferation and cell cycle distribution. More importantly, PEGylated MWCNTs accumulated in the multidrug-resistant cancer cells as efficient as in the sensitive cancer cells. Intracellular translocation of PEGylated MWCNTs was visualized in both multidrug-resistant HepG2-DR cells and sensitive HepG2 cells, as judged by both fluorescent and transmission electron microscopy. PEGylated MWCNTs targeted cancer cells efficiently and multidrug-resistant cells failed to remove the intracellular MWCNTs. However, if used in combination with drugs without conjugation, PEGylated MWCNTs prompted drug efflux in MDR cells by stimulating the ATPase activity of P-glycoprotein. This study suggests that PEGylated MWCNTs can be developed as an efficient drug carrier to conjugate drugs for overcoming multidrug resistance in cancer chemotherapy.  相似文献   

19.
Previous studies have shown that calcium channel blockers can overcome, at least partially, multidrug resistance (MDR). This study was undertaken to attempt to determine the mechanisms whereby these agents bring about this effect. Their influence on the uptake and retention of several cancer drugs and on the toxic actions of these compounds was assessed employing MDR cell lines from several species. The wild-type drug sensitive parent cells proved to be more susceptible than the multidrug resistant variants to the effects of calcium channel blockers on cancer drug accumulation. This was shown for verapamil, nifedipine and the calmodulin inhibitor trifluoperazine acting on human, mouse and Chinese hamster ovary (CHO) cell lines. The enhancement of drug accumulation by calcium antagonists was similar to that caused by non-ionic detergents. Furthermore, verapamil was unable to alter 45Ca2+ accumulation in sensitive or resistant cells, suggesting that these agents act in a calcium-independent manner. Verapamil accumulation in multidrug resistant cells was reduced compared to sensitive cells. In spite of this reduced accumulation, however, verapamil alone was much more toxic to multidrug resistant cells than to the sensitive cells. This suggests that calcium channel blockers are specifically toxic to MDR cells by virtue of an interaction with the MDR cell surface distinct from that involved in promoting cellular accumulation.  相似文献   

20.
Multidrug resistance (MDR), the principal mechanism by which many cancers develop resistance to chemotherapy, is one of the major obstacles to the successful clinical treatment of various types of cancer. Several key regulators are responsible for mediating MDR, a process that renders chemotherapeutic drugs ineffective in the internal organelles of target cells. A nanoparticulate drug delivery system (DDS) is a potentially promising tool for circumventing such MDR, which can be achieved by targeting tumor cells themselves or tumor endothelial cells that support the survival of MDR cancer cells. The present article discusses key factors that are responsible for MDR in cancer cells, with a specific focus on the application of DDS to overcome MDR via the use of chemotherapy or macromolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号