首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L‐3,4‐dihydroxyphenylalanine (L‐DOPA)‐induced dyskinesia (LID) is the most common complication of standard L‐DOPA therapy for Parkinson's disease experienced by most parkinsonian patients. LID is associated with disruption of dopaminergic homeostasis in basal ganglia following L‐DOPA administration. Norepinephrine (NE) is another important catecholaminergic neurotransmitter that is also believed to be involved in the pathogenesis of LID. This study compared NE release in the ipsilateral sensorimotor striatum of dyskinetic and nondyskinetic 6‐hydroxydopamine‐lesioned hemiparkinsonian rats treated chronically with L‐DOPA. After L‐DOPA injection, the time‐course curves of NE levels in the sensorimotor striatum were significantly different between dyskinetic and nondyskinetic rats. Several metabolic kinetic parameters of NE levels were also differentially expressed between the two groups. In comparison with nondyskinetic rats, the ΔCmax of NE was significantly higher in dyskinetic rats, whereas Tmax and t1/2 of NE were significantly shorter. Intrastriatal perfusion of NE into the lesioned sensorimotor striatum revealed a moderate dyskinesia in dyskinetic rats, which was similar to the dyskinetic behavior after L‐DOPA administration. The L‐DOPA‐related dyskinetic behavior was inhibited significantly by a further pretreatment of noradrenergic neurotoxin N‐?(2‐?chloroethyl)?‐?N‐?ethyl‐?2‐?bromobenzylamine or intrastriatal administration of the α2‐adrenoceptor antagonist idazoxan, accompanied by significant changes in metabolic kinetic parameters of NE in the sensorimotor striatum. The results provide evidence to support the correlation between abnormal NE neurotransmission and the induction of LID and suggest that the aberrant change of the quantitative and temporal releasing of NE in the sensorimotor striatum might play an important role in the pathogenesis of LID. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Effects of serotonin 5-HT1A agonist in advanced Parkinson's disease.   总被引:6,自引:0,他引:6  
Intermittent stimulation of striatal dopaminergic receptors seems to contribute to motor dysfunction in advanced Parkinson's disease (PD). With severe dopaminergic denervation, exogenous levodopa is largely decarboxylated to dopamine in serotonergic terminals. If 5-HT1A autoreceptors regulate dopamine as well as serotonin release, in parkinsonian patients inhibition of striatal serotonergic neuron firing might help maintain more physiological intrasynaptic dopamine concentrations and thus ameliorate motor fluctuations and dyskinesias. To evaluate this hypothesis, effects of a selective 5-HT1A agonist, sarizotan, given orally at 2 and 5 mg twice daily to 18 relatively advanced parkinsonian patients, were compared with baseline placebo function during a 3-week, double-blind, placebo-controlled, proof-of-concept study. Sarizotan alone or with intravenous levodopa had no effect on parkinsonian severity. But at safe and tolerable doses, sarizotan coadministration reduced levodopa-induced dyskinesias and prolonged its antiparkinsonian response (P < or = 0.05). Under the conditions of this study, our findings suggest that 5-HT1A receptor stimulation in levodopa-treated parkinsonian patients can modulate striatal dopaminergic function and that 5-HT1A agonists may be useful as levodopa adjuvants in the treatment of PD.  相似文献   

3.
4.
l ‐3,4‐Dihydroxyphenylalanine (l ‐DOPA) is the most effective treatment for Parkinson's disease (PD), but its use over a long period is marred by motors complications such as dyskinesia. We previously demonstrated that selective metabotropic glutamate 2/3 (mGlu2/3) receptor activation with LY‐354,740 alleviates dyskinesia in the 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐lesioned marmoset and the 6‐hydroxydopamine (6‐OHDA)‐lesioned rat. Here, we sought to determine the role played by selective mGlu2 activation in the anti‐dyskinetic effect of mGlu2/3 stimulation and have investigated the effect of the highly selective mGlu2 positive allosteric modulator LY‐487,379 at alleviating established, and preventing the development of, l ‐DOPA‐induced dyskinesia in the 6‐OHDA‐lesioned rat. First, dyskinetic 6‐OHDA‐lesioned rats were administered l ‐DOPA in combination with LY‐487,379 (0.1, 1 and 10 mg/kg) or vehicle, and the severity of dyskinesia was determined. Second, 6‐OHDA‐lesioned rats were administered LY‐487,379 (0.1 or 1 mg/kg), started concurrently with l ‐DOPA, once daily for 22 days, and dyskinesia severity was evaluated weekly for four consecutive weeks. We also assessed the effect of LY‐487,379 on l ‐DOPA anti‐parkinsonian effect. We found that acute challenges of LY‐487,379 0.1 mg/kg in combination with l ‐DOPA, significantly diminished dyskinesia severity, by ≈54% (p < .01), when compared to vehicle. Moreover, animals treated with l ‐DOPA/LY‐487,379 0.1 and 1 mg/kg during the dyskinesia induction phase exhibited milder dyskinesia, by ≈74% and ≈61%, respectively (both p < .01), when compared to l ‐DOPA/vehicle. LY‐487,379 did not impair l ‐DOPA anti‐parkinsonian activity. These results suggest that mGlu2 activation may be an effective and promising therapeutic strategy to alleviate the severity and prevent the development of dyskinesia.  相似文献   

5.
The pathological hallmark of Parkinson's disease is the degeneration of dopaminergic nigrostriatal neurons, leading to depletion of striatal dopamine. Recent neuroanatomical work has identified pathways for communication across striatal subdivisions, suggesting that the striatum provides a platform for integration of information across parallel corticostriatal circuits. The aim of this study was to investigate whether dopaminergic dysfunction in Parkinson's disease was associated with impairments in functional connectivity across striatal subdivisions, which could potentially reflect reduced integration across corticostriatal circuits. Utilizing resting‐state functional magnetic resonance imaging (fMRI), we analyzed functional connectivity in 39 patients with Parkinson's disease, both “on” and “off” their regular dopaminergic medications, along with 40 age‐matched healthy controls. Our results demonstrate widespread impairments in connectivity across subdivisions of the striatum in patients with Parkinson's disease in the “off” state. The administration of dopaminergic medication significantly improved connectivity across striatal subdivisions in Parkinson's disease, implicating dopaminergic deficits in the pathogenesis of impaired striatal interconnectivity. In addition, impaired striatal interconnectivity in the Parkinson's disease “off” state was associated with pathological decoupling of the striatum from the thalamic and sensorimotor (SM) networks. Specifically, we found that although the strength of striatal interconnectivity was positively correlated with both (i) the strength of internal thalamic connectivity, and (ii) the strength of internal SM connectivity, in both healthy controls and the Parkinson's disease “on” state, these relationships were absent in Parkinson's disease when in the “off” state. Taken together our findings emphasize the central role of dopamine in integrated striatal function and the pathological consequences of striatal dopamine denervation in Parkinson's disease. Hum Brain Mapp 36:1278–1291, 2015. © 2014 Wiley Periodicals, Inc .  相似文献   

6.
In Parkinson's disease (PD), dyskinesia develops following long‐term treatment with 3,4‐dihydroxyphenylalanine (L ‐dopa). Given the prominent role of the opioid system in basal ganglia function, nonselective opioid receptor antagonists have been tested for antidyskinetic efficacy in the clinic (naltrexone and naloxone), although without success. In the current study, ADL5510, a novel, orally active opioid antagonist with mu opioid receptor selectivity, was examined in L ‐dopa‐treated 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) macaques. Antidyskinetic effects were compared with those of naltrexone. Parkinsonian monkeys with established L ‐dopa‐induced dyskinesia (LID) received acute challenges with L ‐dopa (subcutaneously) in combination with either vehicle, ADL5510 (0.1, 1, 3 or 10 mg/kg by mouth), or naltrexone (1, 3, or 10 mg/kg subcutaneously). Following treatments, behavior was monitored for 6 hours. Parameters assessed were total activity, parkinsonism, and dyskinesia. ADL5510 (1, 3, and 10 mg/kg) reduced activity and LID (chorea and dystonia) without affecting the antiparkinsonian benefits of L ‐dopa. The antidyskinetic effect of ADL5510 showed a U‐shaped dose–response. It was inactive at 0.1 mg/kg, efficacious at 1 and 3 mg/kg (72% and 40% reductions, respectively), and then less effective at 10 mg/kg. The quality of ON time produced by L ‐dopa was improved, as indicated by a reduction in the percentage of ON time spent experiencing disabling dyskinesia (70% and 61% reductions with 1 and 3 mg/kg, respectively, compared with L ‐dopa). Naltrexone, in contrast, did not alleviate LID or affect the antiparkinsonian actions of L ‐dopa. Mu‐selective opioid antagonists have the potential to form the basis of novel antidyskinetic therapies for PD. © 2011 Movement Disorder Society  相似文献   

7.
In order to increase our understanding of Parkinson's disease pathophysiology, we studied the effects of intrastriatally administered selective dopamine receptor agonists on single units from the substantia nigra pars reticulata of 6-hydroxydopamine (6-OHDA)-lesioned rats with or without an additional subthalamic nucleus lesion. Nigral pars reticulata units of 6-OHDA-lesioned rats were classified into two types, showing regular and bursting discharge patterns, respectively ('non-burst' and 'burst' units). Non-burst and burst units showed distinct responses to intrastriatal quinpirole (the former were excited and burst units inhibited). Furthermore, subthalamic nucleus lesions significantly decreased the number of nigral units showing a spontaneous bursting pattern, and reduced the proportion of units that responded to quinpirole. In contrast, subthalamic lesions did not alter the proportion of nigral units that responded to SKF38393, although the lesions changed some response features, e.g. response type and magnitude. Burst analysis showed that quinpirole did not modify the discharge pattern of burst units, whereas SKF38393 produced a shift to regular firing in 62% of the burst units tested. In conjunction, our results support that: (i) the subthalamic nucleus has an important influence on output nuclei firing pattern; (ii) striatal D2 receptors have a strong influence on nigral firing rate, and a less relevant role in controlling firing pattern; (iii) burst and non-burst units differ in their response to selective stimulation of striatal dopamine receptors; (iv) the effects of striatal D2 receptors on nigral units are mainly, though not exclusively, mediated by the subthalamic nucleus; and (v) nigral responses to SKF38393 involve the subthalamic nucleus.  相似文献   

8.
Striatal dopamine (DA) and serotonin (5-HT) functions are altered following DA denervation. Previous research indicates that intrastriatal coadministration of D1 and 5-HT2 receptor agonists synergistically increase locomotor behavior in DA-depleted rats. In the present study, we examined whether striatal 5-HT2 mechanisms also account for supersensitive D1-mediated locomotor behavior following DA denervation. Adult male Sprague-Dawley rats were subjected to bilateral striatal cannulation and then received either intracerebroventricular (i.c.v.) or intrastriatal 6-hydroxydopamine (6-OHDA; 200 microg or 20 microg/side, respectively). After at least 3 weeks, i.c.v.-lesioned rats received intrastriatal infusions of the 5-HT2 receptor antagonist ritanserin (2.0 microg/side) or its vehicle (DMSO) followed by systemic SKF 82958, a D1 agonist (1.0 mg/kg, i.p.) and locomotor activity was monitored. In another experiment, intrastriatal sham and 6-OHDA-lesioned rats received bilateral intrastriatal infusions of ritanserin (2.0 microg/side) or its vehicle (DMSO) followed by intrastriatal infusions of SKF 82958 (5.0 microg/side) or vehicle (0.9% saline). Rats with DA loss demonstrated supersensitive locomotor responses to both systemic and intrastriatal SKF 82958. Ritanserin pretreatment blunted systemic SKF 82958-induced hyperlocomotion and returned intrastriatal D1-mediated hyperactivity to sham lesion levels. The results of this study suggest that striatal 5-HT2 receptors contribute to D1-mediated hyperkinesias resulting from DA loss and suggest a pharmacological target for the alleviation of dyskinesia that can develop with continued DA replacement therapy.  相似文献   

9.
Visual hallucinations are common in advanced Parkinson's disease (PD). The pathophysiology of visual hallucinations may involve enhanced serotonergic neurotransmission. The atypical antipsychotics clozapine and quetiapine, which have affinity for 5‐HT2A and 5‐HT1A receptors, are effective against visual hallucinations in PD. 5‐HT2A receptors are increased in ventral visual pathways in PD patients with visual hallucinations, and we hypothesized that 5‐HT1A receptors were also involved in visual hallucinations in PD. Autoradiographic binding using [3H]‐WAY‐100,635 and NAN‐190 was performed in brain sections from 6 PD patients with visual hallucinations, 6 PD patients without visual hallucinations, and 5 age‐matched controls. All PD subjects had been treated with L ‐dopa. Brain areas studied were the orbitofrontal, inferolateral temporal, and motor cortices, as well as the striatum, globus pallidus, substantia nigra, and thalamus. 5‐HT1A‐binding levels were dramatically increased in the ventral visual pathways of all PD patients compared with controls (0 vs 11 and 0 vs 100 nmol/mg, respectively; both P < .05). There was no significant difference in 5‐HT1A‐binding levels in PD patients with visual hallucinations compared with PD patients without visual hallucinations or with controls in any of the brain areas studied (P > .05). Gross abnormalities in 5‐HT1A levels in ventral visual areas occurred in all PD patients exposed to L ‐dopa. However, as there was no difference in 5‐HT1A‐binding levels between hallucinators and nonhallucinators, alterations in 5‐HT1A receptor levels may not contribute specifically to visual hallucinations in PD. However, the discrete anatomical distribution of rises to the ventral visual areas suggests some role in predisposing to visual hallucinations. © 2012 Movement Disorder Society  相似文献   

10.
To determine whether the adenosine A2A receptor might play a role in L-DOPA-induced dyskinesia in Parkinson's disease, we analyzed changes in the expression of A2A receptor mRNA in response to intermittent treatment with L-DOPA in rats with dopaminergic denervation by 6-hydroxydopamine (OHDA) infusion into the medial forebrain bundle. Intermittent treatment with L-DOPA increased A2A receptor mRNA levels in the dopamine-depleted striatum of 6-OHDA-lesioned rats exhibiting behavioral sensitization to L-DOPA. These results suggest that A2A receptor activation is associated with the development of motor complications induced by L-DOPA treatment.  相似文献   

11.
Aromatic L‐amino acid decarboxylase (AAAD) is an essential enzyme for the formation of catecholamines, indolamines, and trace amines. Moreover, it is a required enzyme for converting L‐DOPA to dopamine when treating patients with Parkinson's disease (PD). There is now substantial evidence that the activity of AAAD in striatum is regulated by activation and induction, and second messengers play a role. Enzyme activity can be modulated by drugs acting on a number of neurotransmitter receptors including dopamine (D1–4), glutamate (NMDA), serotonin (5‐HT1A, 5‐HT2A) and nicotinic acetylcholine receptors. Generally, antagonists enhance AAAD activity; while, agonists may diminish it. Enhancement of AAAD activity is functional, as the formation of dopamine from exogenous L‐DOPA mirrors activity. Following a lesion of nigrostriatal dopaminergic neurons, AAAD in striatum responds more robustly to pharmacological manipulations, and this is true for the decarboxylation of exogenous L‐DOPA as well. We review the evidence for parallel modulation of AAAD activity and L‐DOPA decarboxylation and propose that this knowledge can be exploited to optimize the formation of dopamine from exogenous L‐DOPA. This information can be used as a blue print for the design of novel L‐DOPA treatment adjuvants to benefit patients with PD.  相似文献   

12.
13.
Botulinum neurotoxin (BoNT) inhibits the release of acetylcholine from presynaptic vesicles through its proteinase activity cleaving the SNARE complex. Parkinson's disease (PD) is associated with locally increased cholinergic activity in the striatum. Therefore, the present study investigates the effect of unilateral intrastriatal BoNT‐A injection in naïve rats on striatal morphology; i.e., the total number of Nissl‐stained neurons and the volume of caudate‐putamen (CPu) were estimated. Furthermore, stainings for markers of gliosis (glial fibrillary acidic protein) and microglia (Iba1) were performed. In addition, the potential beneficial effects of a unilateral intrastriatal injection of BoNT‐A on motor activity in the rat model of hemi‐PD were evaluated. Hemi‐PD was induced by unilateral injection of 6‐hydroxydopamine (6‐OHDA) into the right medial forebrain bundle. Six weeks later, rats received an ipsilateral intrastriatal injection of BoNT‐A. Behaviorally, motor performance was tested. The total number of CPu neurons and the striatal volume were not significantly different between the BoNT‐A‐injected right and the intact left hemispheres of naïve rats. In hemi‐PD rats, intrastriatal BoNT‐A abolished apomorphine‐induced rotations, increased amphetamine‐induced rotations, and tended to improve left forelimb usage. Forced motor function in the accelerod test was not significantly changed by BoNT‐A, and open field activity was also unaltered compared with sham treatment. Thus, intrastriatal BoNT‐A affects spontaneous motor activity of hemi‐PD rats to a minor degree compared with drug‐induced motor function. In the future, tests assessing the cognitive and emotional performance should be performed to ascertain finally the potential therapeutic usefulness of intrastriatal BoNT‐A for PD. © 2013 Wiley Periodicals, Inc.  相似文献   

14.

Background

Levodopa (L-DOPA) is considered the most reliable drug for treating Parkinson's disease (PD) clinical symptoms. Regrettably, long-term L-DOPA therapy results in the emergence of drug-induced abnormal involuntary movements (AIMs) in most PD patients. The mechanisms underlying motor fluctuations and dyskinesia induced by L-DOPA (LID) are still perplexing.

Methods

Here, we first performed the analysis on the microarray data set (GSE55096) from the gene expression omnibus (GEO) repository and identified the differentially expressed genes (DEGs) using linear models for microarray analysis (Limma) R packages from the Bioconductor project. 12 genes (Nr4a2, Areg, Tinf2, Ptgs2, Pdlim1, Tes, Irf6, Tgfb1, Serpinb2, Lipg, Creb3l1, Lypd1) were found to be upregulated. Six genes were validated on quantitative polymerase chain reaction and subsequently, Amphiregulin (Areg) was selected (based on log2 fold change) for further experiments to unravel its involvement in LID. Areg LV_shRNA was used to knock down Areg to explore its therapeutic role in the LID model.

Results

Western blotting and immunofluorescence results show that AREG is significantly expressed in the LID group relative to the control. Dyskinetic movements in LID mice were alleviated by Areg knockdown, and the protein expression of delta FOSB, the commonly attributable protein in LID, was decreased. Moreover, Areg knockdown reduced the protein expression of P-ERK. In order to ascertain whether the inhibition of the ERK pathway (a common pathway known to mediate levodopa-induced dyskinesia) could also impede Areg, the animals were injected with an ERK inhibitor (PD98059). Afterward, the AIMs, AREG, and ERK protein expression were measured relative to the control group. A group treated with ERK inhibitor had a significant decrease of AREG and phosphorylated ERK protein expression relative to the control group.

Conclusion

Taken together, our results indicate unequivocal involvement of Areg in levodopa-induced dyskinesia, thus a target for therapy development.  相似文献   

15.
The serotonergic system has close interactions with the dopaminergic system and is strongly implicated in the pathophysiological mechanisms and therapeutic paradigms of Parkinson's disease (PD). This study aims to investigate regional changes in 5‐hydroxytryptamine (5‐HT) 2A receptors in the rat brain 3 weeks after unilateral medial forebrain bundle lesion by 6‐hydroxydopamine (6‐OHDA). 5‐HT 2A receptor distributions and alterations in the postmortem rat brain were detected by [3H]ketanserin‐binding autoradiography. In the 6‐OHDA‐induced Parkinson's rat model, nigrostriatal dopaminergic neuron loss significantly mediated the decreased [3H]ketanserin binding, predominantly in the agranular insular cortex (17.3%, P = 0.03), cingulate cortex (18.2%, P < 0.001), prefrontal cortex (8%, P = 0.043), primary somatosensory cortex (17.7%, P = 0.002), and caudate putamen (14.5%, P = 0.02) compared to controls while a profound reduction of tyrosine hydroxylase (TH) immunostaining in the striatum was also observed. Alterations in [3H]ketanserin binding in the examined brain areas may represent the specific regions that mediate cognitive dysfunctions via the serotonin system. The downregulation of 5‐HT2A receptor binding in this study also provides indirect evidence for plasticity in the serotonergic system in the rat brains. This study contributes to a better understanding of the critical roles of 5‐HT2A receptors in treating neurodegenerative disorders and implicates 5‐HT2A receptors as a novel therapeutic target in the treatment of PD. Synapse 64:224–230, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
17.
5-HT(1A) receptors have long been implicated in the pathogenesis and treatment of anxiety and depressive disorders. Recently, several lines of studies have revealed new insights into the therapeutic role of 5-HT(1A) receptors in treating schizophrenia and Parkinson's disease. Specifically, 5-HT(1A) receptors seem to be a promising target for alleviating antipsychotic-induced extrapyramidal side effects (EPS) and cognitive/affective disorders in schizophrenia. In the treatment of patients with Parkinson's disease, 5-HT(1A) agonists are expected to improve not only affective symptoms (e.g., anxiety and depression), but also the core parkinsonian symptoms as well as antiparkinsonian agents-induced side effects (e.g., L-DOPA-induced dyskinesia). Here, the therapeutic mechanisms mediated by 5-HT(1A) receptors in schizophrenia and Parkinson's disease are reviewed. This evidence should encourage discovery of new 5-HT(1A) ligands, which can resolve the unmet clinical needs in the current therapy.  相似文献   

18.
It has previously been demonstrated that 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] administration, whether in cell cultures or in vivo to rats, increases glial cell line-derived neurotrophic factor (GDNF) expression levels, suggesting that this hormone may have beneficial effects in neurodegenerative disorders. This study was carried out to explore the effects of 1,25(OH)(2)D(3) administration in a 6-OHDA-lesioned rat model of Parkinson's disease on GDNF and tyrosine hydroxylase (TH) expression in substantia nigra (SN) and striatum. Two groups of animals received 1,25(OH)(2)D(3) intraperitoneally, the first group 7 days before the unilateral injection of 6-OHDA into the medial forebrain bundle (MFB) and the second group 21 days (days 21-28) after the unilateral injection of 6-OHDA. Animals of both groups were sacrificed on day 28. In addition, two other groups received a unilateral injection of either saline or 6-OHDA into the MFB. Rats were killed, and the SN and striatum were then removed for GDNF and TH determination. Striatal GDNF protein expression was increased on the ipsilateral with respect to the contralateral side after 6-OHDA injection alone as well as in 1,25(OH)(2)D(3)-treated rats before or after 6-OHDA administration. As expected, 6-OHDA injection induced an ipsilateral decrease in TH-immunopositive neuronal cell bodies and axonal terminals in the SN and striatum. However, treatment with 1,25(OH)(2)D(3) before and after 6-OHDA injection partially restored TH expression in SN. These data suggest that 1,25(OH)(2)D(3) may help to prevent dopaminergic neuron damage.  相似文献   

19.
The rate of progression of Parkinson's disease (PD) is highly variable. Knowledge of factors associated with disease milestones and commonly used research outcome measures helps with patient counseling and guides the design and interpretation of clinical studies. The objective of the study was to identify prognostic factors for time to acquiring disability requiring dopaminergic therapy that are reproducible within 2 large prospectively followed cohorts. Potential prognostic factors were identified using data from the Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP) trial, and their reproducibility was examined using data from the Parkinson Research Examination of CEP‐1347 trial (PRECEPT). In multivariable analyses of the DATATOP cohort, higher baseline Unified Parkinson's Disease Rating Scale (UPDRS) scores, full‐time employment, a lesser smoking history, and onset on the left side were associated with a shorter time to disability requiring dopaminergic therapy. PRECEPT data confirmed the associations of higher baseline UPDRS scores and full‐time employment with shorter time to requiring treatment. Any clinical trial using the end point of time to disability requiring dopaminergic therapy should ensure that groups are well balanced with respect to baseline UPDRS scores and the proportion of subjects employed full time and should consider including these variables as covariates in the statistical model for primary analysis of treatment effects. We suspect that individuals employed full time may have a lower threshold for requiring dopaminergic therapy because of occupational demands. © 2011 Movement Disorder Society  相似文献   

20.
There is widespread evidence that dopamine is implicated in the regulation of reward and salience. However, it is less known how these processes interact with attention and recognition memory. To explore this question, we used the attentional boost test in patients with Parkinson's disease (PD) before and after the administration of dopaminergic medications. Participants performed a visual letter detection task (remembering rewarded target letters and ignoring distractor letters) while also viewing a series of photos of natural and urban scenes in the background of the letters. The aim of the game was to retrieve the target letter after each trial and to win as much virtual money as possible. The recognition of background scenes was not rewarded. We enrolled 26 drug‐naïve, newly diagnosed patients with PD and 25 healthy controls who were evaluated at baseline and follow‐up. Patients with PD received dopamine agonists (pramipexole, ropinirole, rotigotine) during the 12‐week follow‐up period. At baseline, we found intact attentional boost in patients with PD: they were able to recognize target‐associated scenes similarly to controls. At follow‐up, patients with PD outperformed controls for both target‐ and distractor‐associated scenes, but not when scenes were presented without letters. The alerting, orienting and executive components of attention were intact in PD. Enhanced attentional boost was replicated in a smaller group of patients with PD (n = 15) receiving l ‐3,4‐dihydroxyphenylalanine (L‐DOPA). These results suggest that dopaminergic medications facilitate attentional boost for background information regardless of whether the central task (letter detection) is rewarded or not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号