共查询到20条相似文献,搜索用时 15 毫秒
1.
Acousticolateral systems were examined by means of the horseradish peroxidase tracing method in a teleost (Sebastiscus marmoratus). The torus semicircularis projected bilaterally to the optic tectum, nucleus ventromedialis thalami of Schnitzlein ('62), and reticular formation; contralaterally to the torus semicircularis; and ipsilaterally to the nucleus preglomerulosus of Schnitzlein ('62) and the inferior olive. No topographic organization was detected between the torus semicircularis and the nucleus preglomerulosus. Ipsilateral inputs to the torus were from dorsal telencephalic areas (pars centralis, Dc; pars dorsalis, Dd; and the dorsal part of pars medialis, dDm) and the optic tectum. Contralateral inputs to the torus were from the torus semicircularis, a caudal part of the cerebellum, and a portion of the trigeminal complex. The torus also received bilateral input from the nucleus ventromedialis thalami, nucleus of lemniscus lateralis, nucleus medialis, anterior octaval nucleus, descending octaval nucleus, and the reticular formation. Retrogradely labeled cells in the octaval nuclei were seen predominantly subsequent to HRP injections in the medial torus, while cells in the nucleus medialis were retrogradely labeled following injections into the lateral torus. HRP injections into the nucleus preglomerulosus labeled cells in the superficial region of the torus, while injections into the nucleus ventromedialis thalami labeled cells in the deep region. The nucleus preglomerulosus received inputs bilaterally from the nucleus of the lemniscus lateralis and reticular formation and ipsilaterally from the dorsal telencephalic areas (Dc, Dd, and dDm) and the torus semicircularis. In turn the nucleus preglomerulosus projected to Dd and Dm. Fibers arising in the nucleus ventromedialis thalami ended in Dc, Dd, Dm, and area ventralis pars supracommissuralis (Vs). Homology between the nucleus preglomerulosus and the central thalamic nucleus in amphibians, the nucleus reuniens in reptiles, the nucleus ovoidalis in birds, and the medial geniculate body in mammals is discussed. 相似文献
2.
3.
S M Echteler 《The Journal of comparative neurology》1984,230(4):536-551
Central auditory pathways were traced in Japanese carp, Cyprinus carpio, using electrophysiological mapping and HRP tract-tracing methods. Multiunit recordings made from the carp torus semicircularis, the major midbrain area for processing octavolateralis information, revealed a mediolateral segregation of auditory and lateral line sensory modalities. Iontophoretic injections of HRP were made into the medial torus to trace afferent and efferent projections of the carp auditory midbrain. Following unilateral HRP injections into the medial torus, retrogradely labeled neurons were observed within six nuclei of the carp medulla. Two octaval nuclei, the anterior octavus nucleus and descending octavus nucleus, contained HRP-filled neurons. Labeled neurons were also observed within the ipsilateral superior olive, scattered among fibers of both lateral lemnisci, and bilaterally within the medullary reticular formation. In addition, bilateral retrograde cell labeling was found within a group of Purkinje-like cells located adjacent to the IVth ventricle, just rostral to the level of the VIIIth nerve. Few labeled neurons were found within the nucleus medialis, a principal target for lateral line afferents within the medulla. At midbrain levels, retrogradely labeled neurons were observed within the contralateral torus semicircularis and the ipsilateral optic tectum. Three forebrain nuclei project to the carp auditory midbrain. Within the diencephalon, descending projections originate from the anterior tuberal nucleus, bilaterally, and from the ipsilateral central posterior thalamic nucleus. The ipsilateral caudal telencephalon also projects to the carp auditory midbrain via large multipolar neurons within area dorsalis pars centralis. Anterograde labeling of fibers and terminals revealed efferent projections of the carp auditory midbrain to the following targets: the ipsilateral superior olive, the ipsilateral medullary reticular formation, the deep layers of the optic tectum, the contralateral torus semicircularis, the anterior tuberal nucleus, and the central posterior thalamic nucleus. These results, together with recent studies of lateral line pathways in teleosts (Finger, '80, '82a), demonstrate that central auditory and lateral line pathways are anatomically distinct in the carp, at least from medullary to diencephalic levels. Furthermore, there are striking similarities in the organization of the central auditory pathways of the carp and those of amphibians and land vertebrates. 相似文献
4.
Yang CY Xue HG Yoshimoto M Ito H Yamamoto N Ozawa H 《The Journal of comparative neurology》2007,501(4):582-607
Fiber connections of the corpus glomerulosum pars rotunda (GR) in a teleost, tilapia Oreochromis niloticus, were studied by biotinylated dextran amine injections into the GR and inferior lobe. After tracer injections into the GR, major groups of labeled somata were found bilaterally in the cortical nucleus and ipsilaterally in the nucleus intermedius. Numerous labeled terminals were found ipsilaterally in the central nucleus, nucleus of lateral recess, and diffuse nucleus (NDLI) of the inferior lobe. Some other connections were also elucidated in the present study, although these were less abundant. Notably, efferent projections to the inferior lobe were not evenly distributed within each lobar nucleus. Labeled terminals were confined to the cell body zone of central nucleus and the outer cell-sparse layer of the nucleus of lateral recess. The rostrolateral portion of NDLI and ventrolateral portion of middle to caudal NDLI received few GR fibers, the rostromedial portion of NDLI a moderate density of fibers, and the rest of the nucleus numerous fibers. These different portions of the NDLI, to some extent, also differed in other afferent and efferent connections, suggesting regional specialization of the nucleus. Furthermore, restricted injections to the lobar nuclei suggest different efferent projections of the component cells of the GR: large and small cells. The large cells project only to the central nucleus, whereas the small cells project to the NDLI and nucleus of lateral recess. Therefore, the two types of GR cells appear to constitute parallel pathways from the pretectum to the inferior lobe. 相似文献
5.
The topographical distribution of the cortical afferent connections to the different subdivisions of the motor cortex (MC) was studied in adult cats. The retrograde axonal transport of horseradish peroxidase technique was used. Small single injections of the enzyme were made in the entire MC, including the hidden regions in the depth of the sulcus cruciatus. The areal location and density of the subsequent thalamic neuronal labeling were evaluated in each case. Comparison of the results obtained in the various cases shows that the following: (1) The ventral anterior-ventral lateral complex is the principal thalamic source of afferents to the MC. (2) The ventral medial, dorsal medial, the different components of the posterior thalamic group (lateral, medial, and ventral posteroinferior and suprageniculate nuclei), and the intralaminar, lateral anterior, lateral intermediate, lateral medial, and anteromedial thalamic nuclei are also thalamic sites in which neural projections to the MC arise. (3) The thalamocortical projections to the MC are sequentially organized. The connections arising from the lateral part of the thalamus end in the region of area 4 that is situated medially in the superior lip of the sulcus cruciatus and in the posterior sigmoid gyrus. The projections originating in the most medial thalamic regions terminate in that region of area 6a beta which is located in the medial part of the inferior lip of the cruciate sulcus, and in the anterior sigmoid gyrus. Moreover, the ventral thalamic areas send connections to the most anteriorly located zones of the MC, while the most dorsal thalamic ones project to the most posteriorly located parts of the MC. (4) This shift in the thalamocortical connections is not restrained by cytoarchitectonic boundaries, either in the thalamus or in the cortex. (5) The populations of thalamocortical cells which project to neighboring MC subdivisions exhibit consistent overlapping among themselves. (6) These findings suggest, moreover, that the basal ganglia and the cerebellar projections to the MC through the thalamus are arranged in a number of parallel pathways, which may occasionally overlap. 相似文献
6.
7.
Cerebellar, medullary and spinal afferent connections of the paramedian reticular nucleus in the cat
The topographic organization of afferent projections from the deep cerebellar nuclei, medulla oblongata and spinal cord to the paramedian reticular nucleus (PRN) of the cat was studied using the horseradish peroxidase (HRP) method of retrograde labelling. Discrete placements of HRP within each of the dorsal (dPRN) and ventral (vPRN) regions of the PRN showed some segregation of input. The deep cerebellar nuclei project in a predominantly contralateral fashion upon the PRN. A small but significant ipsilateral fastigial afferent component is also present. The fastigial and dentate nuclei contribute the majority of fibers to the dPRN whereas the interposed nucleus provides very little. The vPRN receives a relatively uniform input from all 3 cerebellar nuclei. Both lateral vestibular nuclei contribute the majority of fibers from the vestibular nuclear complex largely from their dorsal division. Additional input arises from bilateral medial and inferior vestibular nuclei. The vPRN receives relatively more fibers from the inferior vestibular nuclei than does the dPRN while inputs from the medial vestibular nuclei are comparably sparse. The PRN receives bilateral projections from the nucleus intercalatus (of Staderini). A significant projection to the contralateral PRN occurs from the ventrolateral subnucleus of the solitary complex and its immediate vicinity. Additional sources of medullary afferent input include the lateral, gigantocellular and magnocellular tegmental fields, the contralateral PRN and the raphe nuclei. Sites of origin of spinal afferents to the dPRN are bilaterally distributed mainly within Rexed's laminae VII and VIII of the cervical cord whereas those to the vPRN are confined largely to the medial portion of the contralateral lamina VI in the C1 segment. A few labelled cells are found in the thoracolumbar cord with those to the vPRN being more caudal. These data provide the neuroanatomical substrate for a better understanding of the functional role of the PRN in mediating cardiovascular responses appropriate to postural changes. 相似文献
8.
The pallium of hagfishes (myxinoids) is unique: It consists of a superficial “cortical” mantle of gray matter which is subdivided into several layers and fields, but it is not clear whether or how these subdivisions can be compared to those of other craniates, i.e., lampreys and gnathostomes. The pallium of hagfishes receives extensive secondary olfactory projections (Wicht and Northcutt [1993] J. Comp. Neurol. 337:529–542), but there are no experimental data on its nonolfactory connections. We therefore investigated the pallial and dorsal thalamic connections of the Pacific hagfish. Injections of tracers into the pallium labeled many cells bilaterally in the olfactory bulbs. Other pallial afferents arise from the contralateral pallium, the dorsal thalamic nuclei, the preoptic region, and the posterior tubercular nuclei. Descending pallial efferents reach the preoptic region, the dorsal thalamus, and the mesencephalic tectum but not the motor or premotor centers of the brainstem. Injections of tracers into the dorsal thalamus confirmed the presence of reciprocal thalamopallial connections. In addition, these injections revealed that there is no “preferred” pallial target for the ascending thalamic fibers; instead, ascending thalamic and secondary olfactory projections overlap throughout the pallium. The mesencephalic tectum and tegmentum, which receive afferents from a variety of sensory sources, are interconnected with the dorsal thalamus; thus, ascending nonolfactory sensory information may reach myxinoid pallia via a tectal-thalamic-telencephalic route. A comparative analysis of pallial organization reveals that the subdivisions of the pallium in gnathostomes (i.e., medial, dorsal, and lateral pallia) cannot be recognized with certainty in hagfishes. J. Comp. Neurol. 395:245–260, 1998. © 1998 Wiley-Liss, Inc. 相似文献
9.
Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of the nucleus: biotinylated dextran amine study 总被引:2,自引:0,他引:2
The nucleus accumbens (Acb) of the rat has been divided immunohistochemically into shell and core, and further, it was subdivided into several portions in relation to functional significance. In this report, the efferent projection of each subdivision of the Acb was examined using biotinylated dextran amine as an anterograde tracer. In rostral Acb, the dorsomedial shell mainly projected to the dorsomedial ventral pallidum (VP), lateral hypothalamus (LH) and substantia nigra pars compacta (SNc), while the ventromedial shell projected to the ventromedial VP, lateral preoptic area, LH and ventral tegmental area (VTA). The dorsal core of rostral Acb projected to the caudate putamen, dorsolateral VP, globus pallidus (GP), LH, and substantia nigra pars reticulata (SNr). In the middle to caudal Acb, the dorsomedial shell mainly projected to the dorsomedial VP, LH and VTA, the ventromedial shell projected to the ventromedial VP, substantia innominata, VTA, SNc and retrorubral area, and the ventrolateral shell projected to the ventrolateral VP and SNc. Furthermore, the ventromedial shell projected to the parabrachial nucleus (PB). The dorsomedial core projected to the dorsal VP, LH, SNc and SNr, and the ventral and lateral core sent axons to the dorsolateral VP, GP and SNc. From the point of view of projection patterns, shell and core are distinct throughout the rostro-caudal extent of the Acb. The ventrolateral shell at the caudal Acb was clearly differentiated. A direct projection from the ventromedial shell of the Acb to PB was also recognised. 相似文献
10.
Hypothalamic descending projections to the medullary ventral surface were studied autoradiographically in the rat. A small amount of [3H]leucine was injected unilaterally into various parts of the hypothalamus by air pressure. Abundant and characteristic terminal labelings were observed bilaterally in the nucleus raphe pallidus, the ventral surface of the pyramidal tract and the nucleus interfascicularis hypoglossi, after injections into the dorsal posterior hypothalamic area caudal to the paraventricular hypothalamic nucleus. Conspicuous, but less numerous labelings were observed in the nucleus raphe obscurus and the ipsilateral raphe magnus. After an injection of [3H]leucine into the hypothalamus and injections of horseradish peroxidase (HRP) into the spinal cord in the same animal, silver grains were densely distributed around HRP-labeled neurons in the nucleus raphe pallidus including the nucleus interfascicularis hypoglossi. The present results suggest that the dorsal posterior hypothalamic area projects directly to the spinal-projecting neurons of the nucleus raphe pallidus. 相似文献
11.
The present study aimed to determine whether beta-endorphin immunoreactivity (bEP-ir) in the neurones of the nucleus lateralis tuberis (NLT) is linked to the seasonal cycle and shows correlation with the number of luteinising hormone (LH) cells in the pituitary gland and ovaries in the teleost, Cirrhinus mrigala. Although LH cells were moderately immunostained during the resting phase (December to January), the morphological profile suggested increased synthetic and secretory activity during the preparatory (February to April) and prespawning (May to June) phases. However, LH immunoreactivity was greatly reduced (P < 0.001) in the spawning (July to August) phase, suggesting massive discharge of the hormone; this pool was partly replenished in the postspawning (September to November) phase. The ovaries grew rapidly in the preparatory and prespawning phases; maximal size was attained during spawning, when ovulation occurred. Thereafter, the ovaries regressed. The NLT of C. mrigala is divisible into the pars lateralis (NLTl) and medialis (NLTm). During the postspawning and resting phases, bEP-ir was readily detectable in the NLTm as well as NLTl neurones. However, a steady reduction in the immunoreactivity was observed in the NLTm neurones during the preparatory through spawning phases (P < 0.001), suggesting a negative correlation with the LH cells-ovary axis. Thus, the inhibitory influence of beta-endorphin on the gonadotrophin-releasing hormone (GnRH)-LH axis appears to be attenuated during the preparatory through spawning phases. This may be necessary for the rapid stimulation of the axis culminating in spawning. Neurones of the NLTl also showed a gradual reduction in bEP-ir during the preparatory and prespawning phases (P < 0.01) and may therefore play a similar role. However, significant augmentation of the immunoreactivity was noticed in these neurones during the spawning phase (P < 0.001), the physiological significance of which is unknown. Although the present study demonstrated a temporal correlation between the beta-endorphin in the NLT, LH cells and the ovary, we suggest that the peptide in the NLTl and NLTm may show functional duality during the spawning phase. 相似文献
12.
Topographical organization of the projections from the reticular thalamic nucleus to the intralaminar and medial thalamic nuclei in the cat 总被引:1,自引:0,他引:1
J L Velayos J Jiménez-Castellanos F Reinoso-Suárez 《The Journal of comparative neurology》1989,279(3):457-469
The topography of the projections from the reticular nucleus of the thalamus (RT) to the intralaminar and medial thalamic nuclei were studied in the cat by the method of retrograde transport of horseradish peroxidase (HRP). Single small injections of the enzyme were made in the different intralaminar nuclei--mediodorsal, ventromedial, midline, and habenular--and in anterior group nuclei. The location and density of the neuronal labeling in the different parts of the RT were studied in each case. Our results show that 1) after injections located in all the nuclei here studied, a consistent number of labeled neurons were found in the RT, except for the injections in the lateral habenula and the anterior thalamic nuclear complex, both of which did not label neurons in the RT. 2) Among the other thalamic nuclei here studied, the most medially situated receive less numerous RT projections than those most laterally located. 3) Injections in all the nuclei studied gave rise to a cellular labeling in the anterior sectors of the RT, except for the anterior nuclear group and the lateral habenula. The projections from the rostral pole of the RT were topographically mediolaterally organized. 4) The anterodorsal part of the pregeniculate sector of the RT projects upon the large-celled part of the lateral central nucleus and to a lesser extent upon the paracentral, centromedian, and ventromedial nuclei, the anterior part of the lateral central nucleus, and the lateral band of the mediodorsal nucleus. The posterodorsal part of the RT pregeniculate sector only projects to the large-celled part of the lateral central nucleus. The dorsal portion of the posteroventral part of the RT pregeniculate sector also projects upon the large-celled part of the lateral central nucleus; its ventral portion projects to the ventromedial nucleus, the posterior part of the paracentral nucleus, the lateral band of the mediodorsal nucleus, and the centromedian nucleus. 5) The infrageniculate sector of the RT projects to the posterior part of the ventromedial nucleus. A weaker projection to the large-celled part of the lateral central nucleus, the centromedian nucleus, and the lateral band of the mediodorsal nucleus was also observed. 6) The ventral lateral geniculate nucleus projects upon the large-celled part of the lateral central nucleus, the lateral band of the mediodorsal nucleus, and the ventromedial nucleus. All these findings suggest an important modulatory action of the RT on the activity of the thalamic nuclei considered here. 相似文献
13.
On the afferent projections from some meso-diencephalic nuclei to n. raphe magnus of the rat 总被引:1,自引:0,他引:1
Emiko Senba Hiroshi Takagi Sadao Shiosaka Masahiro Sakanaka Shinobu Inagaki Kenichi Takatsuki Masaya Tohyama 《Brain research》1981,211(2):387-392
Afferent sources from meso-diencephalon to n. raphe magnus (RM) were examined by the HRP method. Following HRP injection into RM, HRP-labeled cell clusters occurred in: (1) n.linealis rostralis; (2) ventrocaudal part of n.parafascicularis; (3) zona incerta; and (4) midbrain reticular formation. As a rule, the axons from (1) and (4) mainly terminate within RM, while those from (2) and (3) seem to project to the inferior olive (IO) as well as RM. The functional significance of these nuclei is briefly discussed. 相似文献
14.
M C Levin P E Sawchenko P R Howe S R Bloom J M Polak 《The Journal of comparative neurology》1987,261(4):562-582
Immunohistochemical and axonal transport techniques were used to characterize the origin and distribution of galanin-immunoreactive inputs to the paraventricular (PVH) and supraoptic (SO) nuclei of the hypothalamus in the rat. In the parvicellular division of the PVH, the most prominent inputs were confined to the anterior and periventricular parts of the nucleus rostrally and the dorsal and ventral medial subdivisions caudally; the galaninergic inputs to the magnocellular division of PVH and SO were very sparse and were preferentially distributed to regions containing predominantly oxytocinergic neurons. A combined retrograde transport-immunohistochemical method was employed to identify sources of these projections. Galanin immunoreactivity was found to coexist with dopamine-beta-hydroxylase (DBH) immunoreactivity in subsets of retrogradely labeled neurons of the A1 and A6 (locus coeruleus) catecholamine cell groups; no evidence was adduced for the presence of galanin in adrenergic (i.e., phenylethanolamine-N-methyltransferase-positive) neurons that project to the PVH. Apart from minor contributions from the mesencephalic raphe nuclei, no other brainstem cell groups contributed to the galaninergic innervation of the PVH. In the forebrain, the most prominent grouping of doubly labeled cells was centered in the rostral part of the dorsomedial nucleus of the hypothalamus (DMH), though significant numbers were also found in the lateral hypothalamic area, the arcuate nucleus, and the medial preoptic area. In experiments designed to define the subnuclear specificity of some galanin-containing inputs to the PVH, iontophoretic deposits of the anterogradely transported plant lectin, Phaseolus vulgaris-leucoagglutinin (PHA-L), were placed in the A1 and A6 cell groups and in the DMH. Sections through the PVH were prepared so as to allow colocalization of anterogradely transported PHA-L and galanin immunoreactivity in individual fibers and varicosities. Consistent with the retrograde transport data, the greatest degree of galanin-PHA-L correspondence was seen after lectin deposits in the DMH, and over 80% of the doubly labeled varicosities were confined to the anterior, periventricular, and medial parvicellular subdivisions of the nucleus. The galanin-containing projection from the locus coeruleus was most circumscribed, with the vast majority of doubly labeled varicosities confined to the periventricular and adjoining aspects of the anterior and medial parvicellular subdivisions.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
15.
The anterior pretectal nucleus has been described as part of the visual pretectal complex. However, several electrophysiological and behavioural studies showed that this area is involved in somatosensory modulation, more specifically, antinociception. The efferents of the anterior pretectal nucleus have not been identified taking into account the different function of this nucleus in relation to the rest of the pretectal complex. In the study herein described, a sensitive anterograde tracer Phaseolus vulgaris leucoagglutinin was used to trace the mesencephalic and diencephalic efferents of the anterior pretectal nucleus in the rat. The majority of the connections were ipsilateral. Fibres with varicosities were observed in discrete areas of the thalamus (central lateral, posterior complex), hypothalamus (lateral, posterior and ventromedial), zona incerta, parvocellular red nucleus, intermediate and deep layers of the superior colliculus, central grey, deep mesencephalon, pontine parabrachial region, and pontine nuclei. Fibres en passant were detected in the medial lemniscus, from the level of the injection site to rostral medullary levels. Some labelled axons were seen coursing to the contralateral side through the posterior commissure and the decussation of the superior cerebellar peduncle. These results show that the anterior pretectal nucleus projects principally to areas involved in somatosensory and motor control in a manner that permits sensory modulation at higher and lower levels of the brain. These connections may explain the antinociceptive and antiaversive effects of stimulating the anterior pretectal nucleus in freely moving animals. 相似文献
16.
The migration and ultimate domain invasion of postmitotic lateral reticular nucleus (LRN) neurons were followed in embryonic day 15-20 (E15-E20) rat embryos, by using a horseradish peroxidase (HRP) in vitro axonal tracing method. All of the LRN axons elongate and neuronal somata migrate via the subpial or marginal migratory stream (mms), circumnavigating the ventrolateral aspect of the medulla at the glial endfeet level. They reach the ventral midline at E16, bypass it, and begin to settle in their final territory at E17. At E18 the LRN anlage is fully formed, and at E19-E20 its cells have finished their migration and are rapidly differentiating. Comparison of these sequential steps with their counterparts in the development of the inferior olive (ION) and external cuneatus (ECN) brings to light the essential role of the neuroepithelial cells of the interolivary commissure (the "floor plate"). This zone is likely to act as 1) a chemoattractant for the growth cones of the LRN, ION, and ECN, and 2) a decision-making center, which instructs the somata of these neurons to cross the midline or not, ultimately governing the crossed or uncrossed pattern of their projection to their common target, the cerebellum. Finally, the ontogeny of the LRN and ECN provides a most surprising example, even unique in the central nervous system, of long-distance, neurophilic migration that conveys neuronal cell bodies contralaterally to the side on which they proliferate. 相似文献
17.
J Carlsen 《The Journal of comparative neurology》1988,273(4):513-526
Glutamate decarboxylase (GAD) immunohistochemistry was employed at the light and electron microscopic levels to localize GABAergic structures in the basolateral amygdaloid nucleus (BL). The GAD-immunoreactive (GAD-IR) staining pattern consisted of punctate structures and a morphologically diverse group of GAD-IR neurons. At the electron microscopic level many of these punctate structures were found to make symmetrical synaptic contacts with cell bodies as well as distal parts of unlabeled, presumably projection and nonprojection, neurons. In addition, GAD-immunoreactive neurons were identified in the BL, and they had the ultrastructural characteristics of local circuit or intrinsic neurons and were not retrogradely labeled with HRP following ventral striatal injections. Some of these GAD-immunoreactive neurons were contacted by GABAergic boutons, forming symmetrical synaptic contacts. GABAergic innervation of amygdaloid projection neurons in the BL was identified by combining GAD immunohistochemistry with Golgi impregnation and retrograde tracing of horseradish peroxidase (HRP) following injections of the tracer in the olfactory-tubercle-related parts of the ventral striatum. Amygdalostriatal projection neurons in the BL were observed to be in continuity with neurons in the piriform cortex which project to the ventral striatum. The results provide direct evidence for the presence of GAD-IR boutons in the BL making synaptic contacts with identified amygdalostriatal projection neurons. The present study provides direct anatomical evidence for the physiological observation that GABA exhibits a powerful regulation of the amygdaloid projection neurons in the BL and lends further support to the concept of a corticallike functional organization of the basolateral amygdala. 相似文献
18.
The synaptic organization of afferents to the parafascicular nucleus (Pf) of the thalamus was studied in rats. In the Pf, three types of axon terminals were identified: the first type was a small terminal with round synaptic vesicles forming an asymmetric synapse, the second type was a large terminal with round synaptic vesicles forming an asymmetric synapse, and the third type was a terminal with pleomorphic vesicles forming a symmetric synapse. They were named SR, LR and P boutons, respectively. In order to determine the origin of these axon terminals, biotinylated dextran amine (BDA) was injected into the main afferent sources of the Pf, the superior colliculus (SC) and the pedunculopontine tegmental nucleus (PPN). Axon terminals from the SC were both SR and LR boutons which made synaptic contacts with somata and dendrites. PPN afferents were SR boutons, which made synaptic contacts with somata and smaller dendrites. Double-labeled electron microscopic studies, in which a retrograde tracer (wheat germ agglutinin conjugated to horseradish peroxidase: WGA-HRP) was injected into the striatum and an anterograde tracer (BDA) into the SC revealed that SC afferent terminals made synapses directly with Pf neurons that projected to the striatum. Another experiment was performed to find out whether two different afferents converged onto a single Pf neuron. To address this question, two different tracers were injected into the SC and PPN in a rat. Electron microscopically, both afferent terminals from the SC and PPN made synaptic contacts with the same dendrite. Our results prove that a single neuron of the rat Pf received convergent projections from two different sources. 相似文献
19.
Intramedullary connections of the rostral nucleus of the solitary tract in the hamster 总被引:7,自引:0,他引:7
The rostral nucleus of the solitary tract (NST) figures prominently in the gustatory system, giving rise to ascending taste pathways that are well documented. Less is known of the local connections of the rostral NST with sites in the medulla. This study defines the intramedullary connections of the rostral NST in the hamster. Small iontophoretic injections of horseradish peroxidase (HRP), confined to the rostral NST, resulted in Golgi-like filling of axons that exited the NST or that interconnected cytoarchitectonic subdivisions within the NST complex. The NST efferent axons terminated sparsely in the trigeminal, facial and hypoglossal motor nuclei, but axons and endings were heavily distributed in the parvicellular reticular formation ventral to the NST. HRP injections centered in this part of the reticular formation resulted in heavy projections to the orofacial motor nuclei. Intranuclear connections, labelled after NST injections, linked NST subdivisions that receive primary afferent taste inputs to subdivisions involved in (1) projections to the preoromotor reticular formation, (2) projections to swallowing motor neurons, (3) activation of preganglionic parasympathetic neurons, and (4) general viscerosensation. In general, the connections defined in the present study provide anatomical details about the substrate for gustatory-motor and gustatory-visceral interactions. 相似文献
20.
The afferent and efferent connections of the nucleus submedius (Sm) in the medial thalamus of the rat were examined. Injections of wheat-germ agglutinin conjugated horseradish peroxidase (WGA-HRP) into the Sm resulted in dense terminal labeling in the middle layers of the ipsilateral ventrolateral orbital cortex (VLO). Less dense labeling was also observed in the superficial and deep layers of VLO and in the medial part of the lateral orbital cortex (LO) and in the contralateral VLO. Retrogradely labeled neurons were observed primarily in the deep layers of VLO and the dorsal peduncular cortex (DP). Labeled neurons were also observed bilaterally, in the nucleus of the horizontal limb of the diagonal band, the lateral hypothalamus, the thalamic reticular nucleus (Rt), medial parabrachial nucleus (MPB), and the laterodorsal tegmental nucleus (LDT). Many labeled neurons were also observed in the trigeminal brain-stem complex. Injections of Fluoro-Gold (FG) into Sm resulted in a very similar distribution of retrogradely labeled neurons. Injections of WGA-HRP and FG in the orbital cortex confirmed the ipsilateral Sm projection to VLO and suggested that the middle and deep layers of VLO receive a specific ipsilateral projection from the dorsal Sm and that the superficial layers receive a projection primarily from the ventral Sm. Injections of WGA-HRP into the lateral hypothalamus, LDT, and MPB confirmed the retrograde labeling findings; the lateral hypothalamus was found to send a projection to the medial Sm, the LDT region to the ventromedial Sm and the MPB to the medial and dorsal Sm. These findings confirm and extend the results of previous studies in cat and rat indicating that Sm has a major and specific reciprocal connection with VLO. This finding, in conjunction with previous studies showing direct spinal and trigeminal inputs and the existence of nociceptive neurons in Sm and VLO, provides further support for a role of Sm in nociception. 相似文献