首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Thirteen hybridoma strains producing monoclonal antibodies (Mabs) to Ebola virus were prepared by fusion of NS-O mouse myeloma cells with splenocytes of BALB/c mice immunized with purified and inactivated Ebola virus (Mayinga strain). Mabs directed against viral proteins were selected and tested by ELISA. Protein specificity of 13 Mabs was determined by immunoblotting with SDS-PAGE proteins of Ebola virus. Of these, 11 hybridoma Mabs reacted with 116 kDa protein (NP) and 2 with Ebola virus VP35. Antigenic cross-reactivity between Ebola and Marburg viruses was examined in ELISA and immunoblotting with polyclonal and monoclonal antibodies. In ELISA, polyclonal antibodies of immune sera to Ebola or Marburg viruses reacted with heterologous filoviruses, and two anti-NP Ebola antibodies (Mabs 7E1 and 6G8) cross-reacted with both viruses. Target proteins for cross-reactivity, Ebola NP (116 kDa) and Marburg NP (96 kDa), and VP35 of both filoviruses were detected by immunoblotting with polyclonal and monoclonal antibodies (6G8) to Ebola virus.  相似文献   

3.
4.
马尔堡、埃博拉病毒双重荧光定量PCR检测方法的建立   总被引:1,自引:0,他引:1  
目的 建立一种快速、敏感、特异的双重实时荧光定量PCR方法,可同时检测马尔堡病毒和埃博拉病毒.方法 通过序列比对挑选出两种病毒基因组中高度保守的序列,分别设计引物及Taqman探针,两条探针分别标记FAM和Texas Red荧光报告基因,建立双重实时荧光定量PCR反应体系.结果 双重荧光定量PCR方法检测两种病毒阳性标准品的灵敏度分别为30.5拷贝/μl和28.6拷贝/μl,通过检测日本脑炎病毒、黄热病毒、登革热病毒无交叉反应,有较好的灵敏度和特异性.结论 建立了马尔堡、埃博拉病毒双重荧光定量PCR检测方法,实现了两种病毒同时实时定量检测,在传染病防控领域有较好的应用前景.  相似文献   

5.
Two overlapping cDNA clones corresponding to the 5' region of the Lassa virus S genome RNA were isolated and their nucleotide sequences determined. Similar to Pichinde and lymphocytic choriomeningitis viruses (LCMV), Lassa virus has an ambisense S RNA. The precursor to the viral glycoproteins (GPC) is encoded in viral RNA sequence originating at position 56 and terminating at position 1529 from the 5' terminus of the S RNA. A short, noncoding, intergenic region capable of forming a hairpin structure separates the termination codons of the nucleoprotein (N) and GPC genes. Hydropathic analysis of the GPC gene product of Lassa virus indicates the presence of hydrophobic domains near the amino and carboxy termini as previously noted in the corresponding proteins of Pichinde and LCM viruses. A comparison of the nucleotide sequences on the 3' termini of the viral and viral-complimentary S RNA species of Lassa, LCM, and Pichinde viruses reveals slight sequence differences that may possibly be involved in the regulation of RNA synthesis and gene expression.  相似文献   

6.
Filoviruses (Ebola and Marburg viruses) are among the deadliest viruses known to mankind, with mortality rates nearing 90%. These pathogens are highly infectious through contact with infected body fluids and can be easily aerosolized. Additionally, there are currently no licensed vaccines available to prevent filovirus outbreaks. Their high mortality rates and infectious capabilities when aerosolized and the lack of licensed vaccines available to prevent such infectious make Ebola and Marburg viruses serious bioterrorism threats, placing them both on the category A list of bioterrorism agents. Here we describe a panfilovirus vaccine based on a complex adenovirus (CAdVax) technology that expresses multiple antigens from five different filoviruses de novo. Vaccination of nonhuman primates demonstrated 100% protection against infection by two species of Ebola virus and three Marburg virus subtypes, each administered at 1,000 times the lethal dose. This study indicates the feasibility of vaccination against all current filovirus threats in the event of natural hemorrhagic fever outbreak or biological attack.  相似文献   

7.
The entire genomic RNA of the Gulu (Uganda 2000) strain of Ebola virus was sequenced and compared to the genomes of other filoviruses. This data represents the first comprehensive genetic analysis for a representative isolate of the Sudan species of Ebola virus. The genome organization of the Sudan species is nearly identical to that of the Zaire species, but the presence of a gene overlap (between GP and VP30 genes) and a longer trailer sequence distinguish it from that of the Reston species. As has been observed with other filoviruses, stemloop structures were predicted to form at the 5' end of Ebola Sudan mRNA molecules, and the genomic RNA termini showed a high degree of sequence complimentarity. Comparisons of the amino acid sequences of encoded gene products shows that there is a comparable level of identity or similarity between Ebola virus species, with Sudan and Zaire actually showing a slightly closer relationship to the Reston species than to one another. These comparisons also indicated that the VP24 is the most conserved Ebola virus protein (followed closely by the VP40 and L proteins), while the GP is the least conserved gene product. The most divergent regions were seen in the C-terminus of GP1 (mucin-like region) and within the C-terminal third of the nucleoprotein sequence.  相似文献   

8.
Thermodynamic modeling of Ebola viral RNA predicts the formation of RNA stem-loop structures at the 3' and 5' termini and panhandle structures between the termini of the genomic (or antigenomic) RNAs. Sequence analysis showed a high degree of identity among Ebola Zaire, Sudan, Reston, and Cote d'Ivoire subtype viruses in their 3' and 5' termini (18 nucleotides in length) and within a second region (internal by approximately 20 nucleotides). While base pairing of the two conserved regions could lead to the formation of the base of the putative stem-loop or panhandle structures, the intervening sequence variation altered the predictions for the rest of the structures. Using an in vivo minigenome replication system, we engineered mutations designed to disrupt potential base pairing in the viral RNA termini. Analysis of these variants by screening for enhanced green fluorescent protein reporter expression and by quantitation of minigenomic RNA levels demonstrated that the upper portions of the putative panhandle and 3' genomic structures can be destabilized without affecting virus replication.  相似文献   

9.
Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with Co60 gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of CO60 radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. We found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.  相似文献   

10.
In October and November 2010, hospitals in northern Uganda reported patients with suspected hemorrhagic fevers. Initial tests for Ebola viruses, Marburg virus, Rift Valley fever virus, and Crimean Congo hemorrhagic fever virus were negative. Unbiased PCR amplification of total RNA extracted directly from patient sera and next generation sequencing resulted in detection of yellow fever virus and generation of 98% of the virus genome sequence. This finding demonstrated the utility of next generation sequencing and a metagenomic approach to identify an etiological agent and direct the response to a disease outbreak.  相似文献   

11.
Ebola and Marburg viruses are members of the family Filoviridae, which cause severe hemorrhagic fevers in humans. Filovirus outbreaks have been sporadic, with mortality rates currently ranging from 30 to 90%. Unfortunately, there is no efficacious human therapy or vaccine available to treat disease caused by either Ebola or Marburg virus infection. Expression of the filovirus matrix protein, VP40, is sufficient to drive spontaneous production and release of virus-like particles (VLPs) that resemble the distinctively filamentous infectious virions. The addition of other filovirus proteins, including virion proteins (VP)24, 30 and 35 and glycoprotein, increases the efficiency of VLP production and results in particles containing multiple filovirus antigens. Vaccination with Ebola or Marburg VLPs containing glycoprotein and VP40 completely protects rodents from lethal challenge with the homologous virus. These candidate vaccines are currently being tested for immunogenicity and efficacy in nonhuman primates. Furthermore, the Ebola and Marburg VLPs are being used as a surrogate model to further understand the filovirus life cycle, with the goal of developing rationally designed vaccines and therapeutics. Thus, in addition to their use as a vaccine, VLPs are currently being used as tools to learn lessons about filovirus pathogenesis, immunology, replication and assembly requirements.  相似文献   

12.
Wu CY  Lo CF  Huang CJ  Yu HT  Wang CH 《Virology》2002,294(2):312-323
Perina nuda picorna-like virus (PnPV) is an insect-infecting RNA virus with morphological and physicochemical characters similar to the Picornaviridae. In this article, we determine the complete genome sequence and analyze the gene organization of PnPV. The genome of PnPV consists of 9476 nucleotides (nts) excluding the poly(A) tail and contains a single large open reading frame (ORF) of 8958 nts (2986 codons) flanked by 473 and 45 nt noncoding regions on the 5' and 3' ends, respectively. Northern blotting did not detect the presence of any subgenomic RNA. The PnPV genome codes for four structural proteins (CP1-4), and determination of their N-terminal sequences by Edman degradation, showed that all four are located in the 5' region of the genome. The 3' part of the PnPV genome contains the consensus sequence motifs for picornavirus RNA helicase, cysteine protease, and RNA-dependent RNA polymerase (RdRp) in that order from the 5' to the 3' end. In all of these characters, the genome organization of PnPV resembles the mammalian picornaviruses and two other insect picorna-like viruses, infectious flacherie virus (IFV) of the silkworm and Sacbrood virus (SBV) of the honeybee. In a phylogenetic tree based on the eight conserved domains in the RdRp sequence, PnPV formed a separate cluster with IFV and SBV, which suggests that these three insect picorna-like viruses might constitute a novel group of insect-infecting RNA viruses.  相似文献   

13.
Yechiel Becker 《Virus genes》1996,13(3):189-201
The primary amino acid sequences of the proteins coded by Marburg and Ebola-Zaire filoviruses were studied by computer programs to search for putative proteolytic cleavages which yield nonapeptides with motifs of binding to known HLA class I haplotypes. The computer analyses predicted that numerous nonapeptides with motifs to bind HLA class I A68 and A2 haplotypes were detected. A few nonapeptides with motifs HLA class I A24, B8, B27 and B35 were predicted in Marburg virus proteins. A similar finding is reported for Ebola-Zaire viral proteins (the viral polymerase was not studied). The search for antigenic domains that may induce the humoral immune response in the viral glycoproteins was based on computer analyses of the physical properties and antigenicity predictions of amino acids in certain domains of the primary amino acid sequences. Twelve putative antigenic domains were detected in Marburg virus glycoprotein and 11 putative antigenic domains in Ebola-Zaire virus glycoprotein. Despite the marked differences in the primary amino acid sequences in the putative antigenic domains of the two viral glycoproteins, 8 antigenic domains were found to have similar locations in the viral glycoproteins of the two viruses. Each pair of antigenic domains resemble each other in the physical properties of the amino acids that are different. These computer analyses may provide an approach to developing synthetic peptides capable of induction of both the cellular and humoral responses to protect against infection with Marburg or Ebola viruses.  相似文献   

14.
Filoviruses belong to the order of negative-stranded non-segmented RNA viruses and are classified into two genera, Ebola and Marburg viruses. They have a characteristic filamentous shape, which is largely determined by the matrix protein VP40. Although VP40 is the main driving force for assembly and budding from the host cell, the production of infectious virus involves an intricate interplay between all viral structural proteins in addition to cellular factors, e.g., those that normally function in multi-vesicular body biogenesis. As a consequence, assembly and budding steps are defined to specific cellular compartments, and the recent progress in understanding how the different components are assembled into stable enveloped virus particles is reviewed.  相似文献   

15.
Bats have been identified as a natural reservoir for an increasing number of emerging zoonotic viruses, such as Hendra virus, Nipah virus, Ebola virus, Marburg virus, rabies and other lyssaviruses. Recently, a large number of viruses closely related to members of the genus Coronavirus have been associated with severe acute respiratory syndrome (SARS) and detected in bat species. In this study, samples were collected from 106 live bats of seven different bat species from 27 different locations in Slovenia. Coronaviruses were detected by RT-PCR in 14 out of 36 horseshoe bat (Rhinolophus hipposideros) fecal samples, with 38.8% virus prevalence. Sequence analysis of a 405-nucleotide region of the highly conserved RNA polymerase gene (pol) showed that all coronaviruses detected in this study are genetically closely related, with 99.5–100% nucleotide identity, and belong to group 2 of the coronaviruses. The most closely related virus sequence in GenBank was SARS bat isolate Rp3/2004 (DQ071615) within the SARS-like CoV cluster, sharing 85% nucleotide identity and 95.6% amino acid identity. The potential risk of a new group of bat coronaviruses as a reservoir for human infections is highly suspected, and further molecular epidemiologic studies of these bat coronaviruses are needed.  相似文献   

16.
R F Allison  M Janda  P Ahlquist 《Virology》1989,172(1):321-330
The genomic sequence of cowpea chlorotic mottle virus (CCMV) was completed by sequencing biologically active cDNA clones of CCMV RNA2 (2774 bases) and RNA3 (2173 bases). While only the central core of the encoded 94-kDa CCMV 2a protein contains features conserved among known and putative RNA replication proteins from many viruses, both flanking regions of CCMV 2a show substantial similarity to the corresponding protein of the related brome mosaic virus (BMV). The 3a proteins of CCMV and BMV, implicated as contributors to the distinct host specificities of the two viruses, show lower levels of conservation but are still discernibly related throughout. Major differences occur in the organization of noncoding sequences in CCMV and BMV RNA3. With respect to an otherwise similar region preceding the BMV 3a gene, the CCMV RNA3 5' noncoding sequence contains a clearly bounded 111-base insertion that must reflect a sequence rearrangement in evolution of at least one of the two viruses. The presence of a subgenomic promoter-like sequence near the end of the novel CCMV sequence makes the organization of genes in CCMV RNA3 reminiscent of the 3' end of tobacco mosaic virus RNA, suggesting that CCMV or its 3a gene might have been derived from an ancestor with fewer genomic RNAs. Sequence similarities between the CCMV and BMV RNA3 intercistronic regions include the subgenomic mRNA promoter and an oligo(A), but not an intercistronic segment required for BMV RNA3 amplification, implying that replication signals on the two RNA3s may be organized quite differently.  相似文献   

17.
18.
An investigation was conducted between 1994 and 1997 in forested areas of the Central African Republic (CAR) to determine the seroprevalence of IgG antibodies against several haemorrhagic fever viruses present in the region. Sera were obtained from 1762 individuals in two groups (Pygmy and Bantu locuted populations) living in 4 forested areas in the south of the country. Sera were tested for IgG antibodies against Ebola, Marburg, Rift Valley fever (RVF), Yellow fever (YF) and Hantaviruses by enzyme immunoassay (EIA), and against Lassa virus by immunofluorescent assay. The prevalence of IgG antibodies was 5.9% for Ebola, 2% for Marburg, 6.9% pour RVF, 6.5% for YF, 2% for Hantaan. No antibodies were detected against Lassa, Seoul, Puumala and Thottapalayam viruses. No IgM antibodies were detected against RVF and YF viruses. The distribution of antibodies appears to be related to tropical rain forest areas. This study indicates that several haemorrhagic fever viruses are endemic in forested areas of the CAR and could emerge due to environmental modification.  相似文献   

19.
Marburg and Ebola viruses cause severe hemorrhagic fever in humans and nonhuman primates. Currently, there are no effective treatments and no licensed vaccines; although a number of vaccine platforms have proven successful in animal models. The ideal filovirus vaccine candidate should be able to provide rapid protection following a single immunization, have the potential to work postexposure and be cross-reactive or multivalent against all Marburg virus strains and all relevant Ebola virus species and strains. Currently, there are multiple platforms that have provided prophylactic protection in nonhuman primates, including DNA, recombinant adenovirus serotype 5, recombinant human parainfluenza virus 3 and virus-like particles. In addition, a single platform, recombinant vesicular stomatitis virus, has demonstrated both prophylactic and postexposure protection in nonhuman primates. These results demonstrate that achieving a vaccine that is protective against filoviruses is possible; the challenge now is to prove its safety and efficacy in order to obtain a vaccine that is ready for human use.  相似文献   

20.
P Calain  M C Monroe  S T Nichol 《Virology》1999,262(1):114-128
Ebola virus (Zaire subtype) is associated with high mortality disease outbreaks that commonly involve human to human transmission. Surviving patients can show evidence of prolonged virus persistence. The potential for Ebola virus to generate defective interfering (DI) particles and establish persistent infections in tissue culture was investigated. It was found that serial undiluted virus passages quickly resulted in production of an evolving population of virus minireplicons possessing both deletion and copyback type DI genome rearrangements. The tenth undiluted virus passage resulted in the establishment of virus persistently infected cell lines. Following one or two crises, these cells were stably maintained for several months with continuous shedding of infectious virus. An analysis of the estimated genome lengths of a selected set of the Ebola virus minireplicons and standard filoviruses revealed no obvious genome length rule, such as "the rule of six" found for the phylogenetically related Paramyxovirinae subfamily viruses. Minimal promoters for Ebola virus replication were found to be contained within 156 and 177 nucleotide regions of the genomic and antigenomic RNA 3' termini, respectively, based on the length of authentic termini retained in the naturally occurring minireplicons analyzed. In addition, using UV-irradiated preparations of virus released from persistently infected cells, it was demonstrated that Ebola virus DI particles could potentially be used as natural minireplicons to assay standard virus support functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号