首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of the c-Jun N-terminal (JNK) or stress-activated protein kinases (SAPK) is associated with a wide range of disparate cellular responses to extracellular stimuli, including either induction of or protection from apoptosis. This study investigates the effect of ischemia and reperfusion on JNK isoform activities using a reversible rabbit spinal cord ischemia model. High basal JNK activity, attributed to the p46 JNK1 isoform, was expressed in the CNS of untreated rabbits. JNK activity decreased in the lumbar spinal cord of rabbits occluded for 15-60 min. During reperfusion animals occluded for 15 min recovered neurological function and JNK activity returned to normal levels. In contrast animals occluded for 60 min remained permanently paraplegic and JNK activity was half the control activity after 18 h of reperfusion. In these animals proteolytic fragments of JNK1 and JNK3 were observed and protein levels, but not activity, of JNK isoforms increased in a detergent-insoluble fraction. Two novel c-Jun (and ATF-2) kinase activities increased during reperfusion of animals occluded for 60 min. An activity designated p46(slow) was similar in M(r) to a JNK2 isoform induced in these animals. A second 30-kDa activity associated with the detergent-insoluble fraction co-migrated with a JNK3 N-terminal fragment. The results show that JNK1 is active in the normal CNS and increased activity is not associated with durations of ischemia and reperfusion that induce cell death. However, specific JNK isoform activation may participate in the cell death pathways as increased activity of novel c-Jun (ATF-2) kinase activities was observed in paraplegic animals.  相似文献   

2.
Activation of the Fas receptor has been recently linked to apoptotic cell death after spinal cord injury (SCI). Although it is generally considered that Fas activation mediates apoptosis predominantly through the extrinsic pathway, we hypothesized that intrinsic mitochondrial signaling could be involved in the underlying mechanism of Fas-induced apoptosis after SCI. In the present study, we utilized the FejotaTM clip compression model of SCI at T5–6 in C57BL/6 Fas-deficient ( lpr ) and wild-type mice. Complementary studies were conducted using an in vitro model of trauma or a Fas-activating antibody to induce apoptosis in primary neuronal–glial mixed spinal cord cultures. After in vivo SCI, lpr mice, in comparison with wild-type mice, exhibited reduced numbers of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells at the lesion, reduced expression of truncation of Bid (tBid), apoptosis-inducing factor, activated caspase-9 and activated caspase-3, and increased expression of the antiapoptotic proteins Bcl-2 and Bcl-xL. After in vitro neurotrauma or the induction of Fas signaling by the Jo2 activating antibody, lpr spinal cord cultures showed an increased proportion of cells retaining mitochondrial membrane integrity and a reduction of tBid expression, caspase-9 and caspase-3 activation, and TUNEL-positive cells as compared to wild-type spinal cord cultures. The neutralization of Fas ligand (FasL) protected against traumatically induced or Fas-mediated caspase-3 activation and the loss of mitochondrial membrane potential and tBid expression in wild-type spinal cord cultures. However, in lpr spinal cord cultures, FasL neutralization had no protective effects. In summary, these data provide direct evidence for the induction of intrinsic mitochondrial signaling pathways following Fas activation after SCI.  相似文献   

3.
c-Jun N-terminal kinase (JNK) is an important stress-responsive kinase that is activated by various forms of brain insults. In this study, we have examined the role of JNK activation in neuronal cell death in a murine model of focal ischemia and reperfusion; furthermore, we investigated the mechanism of JNK in apoptosis signaling, focusing on the mitochondrial-signaling pathway. We show here that JNK activity was induced in the brain 0.5 to 24 h after ischemia. Systemic administration of SP600125, a small molecule JNK-specific inhibitor, diminished JNK activity after ischemia and dose-dependently reduced infarct volume. c-Jun N-terminal kinase inhibition also attenuated ischemia-induced expression of Bim, Hrk/DP5, and Fas, but not the expression of Bcl-2 or FasL. In strong support of a role for JNK in promoting the mitochondrial apoptosis-signaling pathway, JNK inhibition prevented ischemia-induced mitochondrial translocation of Bax and Bim, release of cytochrome c and Smac, and activation of caspase-9 and caspase-3. The potential mechanism by which JNK promoted Bax translocation after ischemia was further studied using coimmunoprecipitation, and the results revealed that JNK activation caused serine phosphorylation of 14-3-3, a cytoplasmic sequestration protein of Bax, leading to Bax disassociation from 14-3-3 and subsequent translocation to mitochondria. These results confirm the role of JNK as a critical cell death mediator in ischemic brain injury, and suggest that one of the mechanisms by which JNK triggers the mitochondrial apoptosis-signaling pathway is via promoting Bax and Bim translocation.  相似文献   

4.
Neuroprotection by recombinant thrombomodulin   总被引:3,自引:0,他引:3  
We examined whether recombinant human soluble thrombomodulin (rhs-TM) reduces compression trauma-induced spinal cord injury through protein C activation in rats. Administration of rhs-TM, either before or after the induction of spinal cord injury (SCI), markedly reduced the resulting motor disturbances. However, neither rhs-TM pretreated with an anti-rhs-TM monoclonal antibody (MAb) F2H5, which inhibits thrombin binding to rhs-TM, nor those pretreated with MAb R5G12, which selectively inhibits protein C activation by rhs-TM, prevented the motor disturbances. Intramedullary hemorrhages, observed 24 h after trauma, were significantly reduced in animals given rhs-TM. The increase in the tissue levels of tumor necrosis factor-alpha (TNF-alpha), TNF-alpha mRNA expression, and the accumulation of leukocytes in the damaged segment of the spinal cord were significantly inhibited in animals receiving rhs-TM, but these effects were not observed following administration of rhs-TM pretreated with MAb R5G12 or MAb F2H5. Leukocytopenia and activated protein C all produced effects similar to those of rhs-TM. These findings suggest that rhs-TM prevents compression trauma-induced SCI by inhibiting leukocyte accumulation by reducing the expression of TNF-alpha mRNA and such therapeutic effects of rhs-TM could be dependent on its protein C activation capacity. Findings further suggest that thrombomodulin can be implicated not only in the coagulation system but in regulation of the inflammatory response.  相似文献   

5.
We investigated whether 17β-estradiol (E2) treatment could prevent the apoptosis of neural cells after spinal cord injury (SCI) and cultured cortical cells through inhibition of JNK (c-Jun N-terminal kinase) phosphorylation. SCI-induced rats were randomly divided into three groups: control, E2-treated, and sham-treated. Five rats from each group were sacrificed at 2, 4, 6, 12, or 24 h postinjury. Apoptotic neural cells were assessed using the TUNEL method. JNK phosphorylation was detected with immunohistochemistry. Cultured cortical cells were pretreated with E2 and the specific JNK inhibitor SP600125 and then treated with glutamate-induced cytotoxicity in vitro. Neuron viability was determined with an methyl thiazolyl tetrazolium (MTT) assay, morphology of apoptotic cells was observed with 4',6-diamidino-2-phenylindole (DAPI) staining, and JNK phosphorylation was detected using Western blot analysis. Treatment with E2 reduced neuron apoptosis and inhibited JNK phosphorylation. Moreover, the number of apoptotic cells was correlated with JNK phosphorylation 24 h after the rats suffered the SCI. Pretreatment with E2 significantly maintained neural cell viability, attenuated apoptosis, and inhibited JNK phosphorylation induced by glutamate in vitro. These neuroprotective effects of E2 on neural cells were blocked by the co-administration of SP600125. Our results suggest that neuroprotection from E2 is partially mediated by the inhibition of JNK phosphorylation.  相似文献   

6.
The aims of this study were to clarify the mechanism of cell death by apoptosis in the spinal cord after traumatic injury, and to examine the role of the mitogen-activated protein kinase (MAPK) pathways in the transmission of apoptosis signals. The rat spinal cord, experimentally injured by extradural static weight-compression, was studied by hematoxylin and eosin staining, Nissl-staining, terminal deoxynucleotidyl transferase (TdT) mediated dUTP nick-end labeling (TUNEL) staining, and immunostaining using polyclonal antibodies against Apoptosis Signal-regulating Kinase 1 (ASK1), c-Jun N-terminal kinase (JNK), and p38 MAPK. TUNEL-positive cells were present at all stages studied until 7 days after injury, and percentage positivity for these cells was maximal at 3 days after injury. Electron microscopic analysis revealed the occurrence of apoptosis in both neuronal cells and glial cells. TUNEL-positive glial cells were stained by oligodendrocyte-specific maker. Expression of ASK1 was maximal at 24 h after injury in the gray matter and at 3 days after injury in the white matter. Following the expression of ASK1, activated forms of JNK and p38 were observed in apoptotic cells detected by the TUNEL method. Colocalization of ASK1 and activated JNK or activated p38 was observed in the same cell. These findings suggest the involvement of the stress-activated MAPK pathways including ASK1 in the transmission of apoptosis signals after spinal cord injury.  相似文献   

7.
The molecular events initiating apoptosis following traumatic spinal cord injury (SCI) remain poorly understood. Soon after injury, the spinal cord is exposed to numerous secondary insults, including elevated levels of glutamate, that contribute to cell dysfunction and death. In the present study, we attempted to mimic the actions of glutamate by subdural infusion of the selective glutamate receptor agonist, kainic acid, into the uninjured rat spinal cord. Immunohistochemical colocalization studies revealed that activated caspase-3 was present in ventral horn motor neurons at 24 hours, but not 4 hours or 96 hours, following kainic acid treatment. However, at no time point examined was there evidence of significant neuronal loss. Kainic acid resulted in caspase-3 activation in several glial cell populations at all time points examined, with the most pronounced effect occurring at 24 hours following infusion. In particular, caspase-3 activation was observed in a significant number of oligodendroglia in the dorsal and ventral funiculi, and there was a pronounced loss of oligodendroglia at 96 hours following treatment. The results of these experiments indicate a role for glutamate as a mediator of oligodendroglial apoptosis in traumatic SCI. In addition, understanding the apoptotic signaling events activated by glutamate will be important for developing therapies targeting this cell death process.  相似文献   

8.
E3 ubiquitin ligase SIAH1 is a protein associated with the onset of nontumorigenicy in revertant tumorigenic cell lines and with several apoptotic processes. However, its role in the injury of the central nervous system remains unknown. In this study, we performed acute spinal cord injury (SCI) in adult rats and investigated the protein expression and cellular localization of SIAH1 in the spinal cord. Western blot analysis revealed that SIAH1 was low expressed in normal spinal cord. It increased at 8 h after SCI, peaked at 1 day, remained for another 3 days, then declined to basal levels at 5 days after injury. Immunohistochemistry further confirmed that SIAH1 immunoactivity was expressed at low levels in gray and white matters in normal condition and increased after SCI. Double immunofluorescence staining showed that SIAH1 was coexpressed with NeuN (neuronal marker), CNPase (oligodendroglial marker), GFAP (astroglial marker), and CD11b (microglial marker) at 1 day post-injury and was also coexpressed with active caspase-3 in neurons and glial cells after injury. In addition, double immunofluorescence staining indicated that p-c-Jun NH2-kinase (JNK) coexpressed with SIAH1 in neurons and glial cells. Coimmunoprecipitation further showed that p-JNK and SIAH1 precipitated with each other in the damaged spinal cord. Taken together, these data suggest SIAH1 involvement in the injury response of the adult spinal cord of the rats.  相似文献   

9.
The signaling mechanisms underlying ischemia-induced nerve cell apoptosis are poorly understood. We investigated the effects of apoptosis-related signal transduction pathways following ischemic spinal cord injury, including extracellular signal-regulated kinase (ERK), serine-threonine protein kinase (Akt) and c-Jun N-terminal kinase (JNK) signaling pathways. We established a rat model of acute spinal cord injury by inserting a catheter balloon in the left subclavian artery for 25 minutes. Rat models exhibited notable hindlimb dysfunction. Apoptotic cells were abundant in the anterior horn and central canal of the spinal cord. The number of apoptotic neurons was highest 48 hours post injury. The expression of phosphorylated Akt (p-Akt) and phosphorylated ERK (p-ERK) increased immediately after reperfusion, peaked at 4 hours (p-Akt) or 2 hours (p-ERK), decreased at 12 hours, and then increased at 24 hours. Phosphorylated JNK expression reduced after reperfusion, increased at 12 hours to near normal levels, and then showed a downward trend at 24 hours. Pearson linear correlation analysis also demonstrated that the number of apoptotic cells negatively correlated with p-Akt expression. These findings suggest that activation of Akt may be a key contributing factor in the delay of neuronal apoptosis after spinal cord ischemia, particularly at the stage of reperfusion, and thus may be a target for neuronal protection and reduction of neuronal apoptosis after spinal cord injury.  相似文献   

10.
11.
Involvement of 5-lipoxygenase in spinal cord injury   总被引:4,自引:0,他引:4  
A traumatic spinal cord injury (SCI) induces a sequelae of events which conduce biochemical and cellular alterations. Here we compare the degree of spinal cord injury caused by the application of vascular clips, in mice lacking the 5-lipoxygenase and in the corresponding wild-type mice. Biochemical, immunohistochemical and functional studies revealed respectively an increase of neutrophils infiltration, of IL-1beta, TNF-alpha immunoreactivity, apoptosis (measured by Annexin-V staining) and loss of hind legs movement in SCI operated 5-LO wild-type mice. In contrast, the degree of (1) neutrophil infiltration at different time points, (2) cytokine expression (TNF-alpha and IL-1beta), (3) histological damage, (4) apoptosis, was markedly reduced in the tissues obtained from SCI operated 5-LO deficient mice and (5) the motor recovery was ameliorated.  相似文献   

12.
13.
The neurotrophin receptor (p75) activates the c-Jun N-terminal kinase (JNK) pathway. Activation of JNK and its substrate c-Jun can cause apoptosis. Here we evaluate the role of p75 in spinal motoneurons by comparing immunoreactivity for p75 and phosphorylated c-Jun (p-c-Jun), the production of JNK activation in axotomized motoneurons in postnatal day (PN)1, PN7, PN14 and adult rats. Intensive p-c-Jun was induced in axotomized motoneurons in PN1 and PN7. In PN14, p-c-Jun expression was sharply reduced after the same injury. The decreased expression of p-c-Jun at this age coincided with a developmental switch of re-expression of p75 in axotomized cells. In adult animals, no p-c-Jun but intensive p75 was detected in axotomized motoneurons. These results indicate differential expression or turnover of phosphorylation of c-Jun and p75 in immature versus mature spinal motoneurons in response to axonal injury. The non-co-occurrence of p75 and p-c-Jun in injured motoneurons indicated that p75 may not activate JNK pathway, suggesting that the p75 may not be involved in cell death in axotomized motoneurons.  相似文献   

14.
Activation of the c-Jun N-terminal kinase (JNK) pathway is suggested to be required for neuronal apoptosis. We investigated the role of JNK on phosphorylation of c-Jun, Bcl-2, and apoptotic translocation of cytochrome c (cyt c) in UV-induced apoptosis in human neuroblastoma SH-SY5Y cells. We confirm that UV irradiation induces both apoptosis and necrosis in SH-SY5Y cells and that phosphorylation of JNK at Thr183/Tyr185 in SH-SY5Y cells treated with UV is an early event preceding apoptosis. We also demonstrate that phosphorylation of c-Jun at Ser63 is an early event coinciding with JNK activation, and that the phosphorylation of c-Jun is partially prevented by the JNK inhibitor SP600125. Despite the use of SP600125, the amount of cyt c released into the cytoplasm is not diminished and SP600125 is also unable to decrease the extent of UV-induced apoptosis. These data support the hypothesis that in this system, UV-induced apoptosis is not dependent exclusively on JNK activation. Possible involvement of cyclin-dependent kinases (CDKs) in c-Jun phosphorylation at Ser63 was excluded by pretreating UV-irradiated SH-SY5Y cells with the CDK1/2/5 inhibitor roscovitine.  相似文献   

15.
Increasing evidence suggests that AMPA receptors (AMPARs) play a key role in mediating excitotoxic cell damage after acute spinal cord injury (SCI). However, the role of glial AMPARs in posttraumatic white matter injury requires further clarification. In the present study we examined the changes in AMPAR expression after SCI, the cellular distribution of these changes, and their association with apoptosis. Western blots revealed expression of GluR1, 3, and 4, but not GluR2, in spinal cord white matter. Immunohistochemistry was used to examine the distribution of AMPARs in spinal cord white matter. Quantification of AMPAR-expressing cells in spinal cord white matter indicated predominantly GluR3 expression in oligodendrocytes and predominantly GluR4 expression in astrocytes. A clip compression model of SCI was used to examine the changes in AMPAR expression in dorsal column white matter after injury. Quantitative analysis of GluR3 levels of expression indicated a significant decrease at 3 days postinjury compared to uninjured animals, followed by a recovery of expression by 2 weeks. GluR4 subunits followed a similar expression pattern. Gene message expression of GluR3 and GluR4 flip/flop mRNA splice variants exhibited a pattern of expression that correlated with protein expression. GluR3-expressing glia appeared to be more susceptible to apoptosis than GluR4-expressing cells. A large decline in GluR3-expressing oligodendrocytes suggests that this subunit may be associated with the induction of apoptosis in white matter glia, thus contributing to secondary injury mechanisms.  相似文献   

16.
4-hydroxynoneal (HNE), an end product of lipid peroxidation, induces apoptosis in many cell types, including neural cells. HNE toxicity is often accompanied by activation of the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) pathway. Here we have evaluated the hypothesis that the primary JNK associated with neurons, JNK3, contributes to HNE-induced neuronal apoptosis. First, we demonstrate that HNE induces caspase-dependent apoptosis in sympathetic neurons. Second, we show that HNE-induced c-Jun phosphorylation and c-jun induction are attenuated in JNK3-deficient neurons. Third, we show that HNE neurotoxicity is significantly inhibited by JNK3 deficiency. In summary, these results indicate that JNK3 plays a critical role in HNE-induced c-Jun activation and apoptosis in sympathetic neurons.  相似文献   

17.
Spinal N-methyl d-aspartate receptor (NMDAR) plays a pivotal role in nerve injury-induced central sensitization. Recent studies suggest that NMDAR also contributes to neuron-astrocyte signaling. c-Jun N-terminal kinase (JNK) is persistently and specifically activated (indicated by phosphorylation) in spinal cord astrocytes after nerve injury and thus it is considered as a dependable indicator of pain-related astrocytic activation. NMDAR-mediated JNK activation in spinal dorsal horn might be an important form of neuron-astrocyte signaling in neuropathic pain. In the present study, we observed that intrathecal injection of MK-801, a noncompetitive NMDA receptor antagonist, or Ro25-6981 and ifenprodil, which are selective antagonists of NR2B-containing NMDAR each significantly reduced nerve injury-induced JNK activation. Double immunostaining showed that NR2B was highly expressed in neurons, indicating the effect of NMDAR antagonists on JNK activation was indirect. We further observed that intrathecal injection of NMDA (twice a day for 3 days) significantly increased spinal JNK phosphorylation. Besides, NMDAR-related JNK activation could be blocked by a neuronal nitric oxide synthase (nNOS) selective inhibitor (7-nitroindazole sodium salt) but not by a nNOS sensitive guanylyl cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one). Finally, real-time RT-PCR and immunostaining showed that nerve injury-induced interleukin-1beta expression was dependent on astrocytic JNK activation. Treatments targeting NMDAR-nNOS pathway also influenced interleukin-1beta expression, which further confirmed our hypothesis. Taken together, our results suggest that neuronal NMDAR-nNOS pathway could activate astrocytic JNK pathway. Excitatory neuronal transmission initiates astrocytic activation-induced neuroinflammation in this way, which contributes to nerve injury-induced neuropathic pain.  相似文献   

18.
Endothelial nitric oxide synthase (eNOS) is a dynamic enzyme tightly controlled by co‐ and post‐translational lipid modifications, phosphorylation and regulated by protein–protein interactions. In this study we have pharmacologically modulated the activation of eNOS, at different post‐translational levels, to assess the role of eNOS‐derived NO and regulatory mechanisms in tissue damage associated with spinal cord injury (SCI). SC trauma was induced by the application of vascular clips (force of 24 g) to the dura via a four‐level T5–T8 laminectomy. SCI in mice resulted in severe trauma characterized by oedema, neutrophil infiltration, and production of inflammatory mediators, tissue damage and apoptosis. LY294002, an inhibitor of phosphatidylinositol 3‐kinase that initiates Akt‐catalysed phosphorylation of eNOS on Ser1179, was administered 1 h before the induction of SCI; 24 h after SCI sections were taken for histological examination and for biochemical studies. In this study we clearly demonstrated that pre‐treatment with LY294002 reversed the increased activation of eNOS and Akt observed following SCI, and developed a severe trauma characterized by oedema, tissue damage and apoptosis (measured by TUNEL staining, Bax, Bcl‐2 and Fas‐L expression). Histological damage also correlated with neutrophil infiltration, assessed as myeloperoxidase activity. Overall these results suggest that activation of the Akt pathway in SC tissue subject to SCI is a protective event, triggered in order to protect the injured tissue through a fine tuning of the endothelial NO pathway.  相似文献   

19.
In the spinal cord, neuron and glial cells actively interact and contribute to neurofunction. Surprisingly, both cell types have similar receptors, transporters and ion channels and also produce similar neurotransmitters and cytokines. The neuroanatomical and neurochemical similarities work synergistically to maintain physiological homeostasis in the normal spinal cord. However, in trauma or disease states, spinal glia become activated, dorsal horn neurons become hyperexcitable contributing to sensitized neuronal-glial circuits. The maladaptive spinal circuits directly affect synaptic excitability, including activation of intracellular downstream cascades that result in enhanced evoked and spontaneous activity in dorsal horn neurons with the result that abnormal pain syndromes develop. Recent literature reported that spinal cord injury produces glial activation in the dorsal horn; however, the majority of glial activation studies after SCI have focused on transient and/or acute time points, from a few hours to 1 month, and peri-lesion sites, a few millimeters rostral and caudal to the lesion site. In addition, thoracic spinal cord injury produces activation of astrocytes and microglia that contributes to dorsal horn neuronal hyperexcitability and central neuropathic pain in above-level, at-level and below-level segments remote from the lesion in the spinal cord. The cellular and molecular events of glial activation are not simple events, rather they are the consequence of a combination of several neurochemical and neurophysiological changes following SCI. The ionic imbalances, neuroinflammation and alterations of cell cycle proteins after SCI are predominant components for neuroanatomical and neurochemical changes that result in glial activation. More importantly, SCI induced release of glutamate, proinflammatory cytokines, ATP, reactive oxygen species (ROS) and neurotrophic factors trigger activation of postsynaptic neuron and glial cells via their own receptors and channels that, in turn, contribute to neuronal-neuronal and neuronal-glial interaction as well as microglia-astrocytic interactions. However, a systematic review of temporal and spatial glial activation following SCI has not been done. In this review, we describe time and regional dependence of glial activation and describe activation mechanisms in various SCI models in rats. These data are placed in the broader context of glial activation mechanisms and chronic pain states. Our work in the context of work by others in SCI models demonstrates that dysfunctional glia, a condition called "gliopathy", is a key contributor in the underlying cellular mechanisms contributing to neuropathic pain.  相似文献   

20.
Glucose-regulated protein (GRP) 94 is a member of the stress protein family, which is localized in the endoplasmic reticulum (ER). Spinal cord injury (SCI) induced ER stress that results in apoptosis. However, the role of GRP94 in injury of the central nervous system remains unknown. In this study, we performed SCI in adult rats and investigated acutely the protein expression and cellular localization of GRP94 in the spinal cord. Western blot analysis revealed that GRP94 was low in normal spinal cord. It rose at 6h after SCI, peaked at 1 day, remained for another 3 days, then declined to basal levels at 5 days after injury. Immunohistochemistry further confirmed that GRP94 immunoactivity was expressed at low levels in gray matter and white matter in normal condition and increased after SCI. Double immunofluorescence staining showed that GRP94 was co-expressed with NeuN (neuronal marker), and GFAP (astroglial marker). In addition, caspase-12, caspase-3 and phospho-c-Jun NH2-kinase (p-JNK) levels increased at 6h, peaked at 1day, and then gradually reduced to normal levels for 2 weeks after SCI by western blot analysis. Co-localization of GRP94/caspase-12 and GRP94/p-JNK was detected in neurons and glial cells. Taken together, these data suggest GRP94 involvement in the injury response of the adult spinal cord of the rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号