首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Apolipoprotein (apo) CIII plays an important role in the catabolism of triglyceride-rich lipoproteins as it is a potent inhibitor of lipoprotein lipase (LPL). A low LPL activity has been simultaneously associated with hypertriglyceridemia, low HDL cholesterol and with small LDL particles. AIM: To compare the effects of a 12-week treatment with micronized fenofibrate (200 mg) versus atorvastatin (10 mg) on apo CIII and lipoprotein-lipid levels including LDL size. METHOD: After a 4-week washout period, dyslipidemic patients were randomized to either micronized fenofibrate (n = 64) or atorvastatin (n = 72). RESULTS: Both fenofibrate and atorvastatin significantly decreased apo CIII levels by -0.03 +/- 0.03 versus -0.01 +/- 0.03 g/l respectively, and increased LDL size by 4.9 +/- 3.3 versus 1.8 +/- 2.9 A. Improvements in these parameters were significantly greater with fenofibrate (P < 0.0001). Significant relationships were found between changes in triglycerides and changes in apo CIII (r = 0.81 and r = 0.59, P < 0.0001) as well as between changes in LDL size and changes in apo CIII (r = -0.41 and r = -0.45, P < 0.001), in both fenofibrate and atorvastatin groups. respectively. CONCLUSION: The substantial reduction in apo CIII induced by micronized fenofibrate plays an important role in the greater effect of micronized fenofibrate than atorvastatin on plasma triglycerides and LDL size.  相似文献   

2.
BACKGROUND. Apolipoprotein (apo) CIII plays an important role in the catabolism of triglyceride-rich lipoproteins as it is a potent inhibitor of lipoprotein lipase (LPL). A low LPL activity has been simultaneously associated with hypertriglyceridemia, low HDL cholesterol and with small LDL particles.

AIM. To compare the effects of a 12-week treatment with micronized fenofibrate (200 mg) versus atorvastatin (10 mg) on apo CIII and lipoprotein-lipid levels including LDL size.

METHOD. After a 4-week washout period, dyslipidemic patients were randomized to either micronized fenofibrate (n = 64) or atorvastatin (n = 72).

RESULTS. Both fenofibrate and atorvastatin significantly decreased apo CIII levels by -0.03 ± 0.03 versus -0.01 ± 0.03 g/l respectively, and increased LDL size by 4.9 ± 3.3 versus 1.8 ± 2.9 Å. Improvements in these parameters were significantly greater with fenofibrate (P < 0.0001). Significant relationships were found between changes in triglycerides and changes in apo CIII (r = 0.81 and r = 0.59, P < 0.0001) as well as between changes in LDL size and changes in apo CIII (r = -0.41 and r = -0.45, P < 0.001), in both fenofibrate and atorvastatin groups. respectively.

CONCLUSION. The substantial reduction in apo CIII induced by micronized fenofibrate plays an important role in the greater effect of micronized fenofibrate than atorvastatin on plasma triglycerides and LDL size.  相似文献   

3.
BACKGROUND: Lipoprotein lipase (LPL) deficiency has been suggested as a cause of low HDL-cholesterol (HDL-C) plasma levels, by a mechanism that involves an enhanced catabolism of HDL apolipoprotein (apo) AI. To verify the role of 2 different LPL gene mutations on HDL metabolism, we studied the in vivo turnover of the apo AI and apo AII in heterozygous carriers of LPL deficiency. METHODS: Apo AI and AII kinetics were studied by a 10-h primed constant infusion of 5,5,5-2H3-leucine approach in 2 carriers, 1 man (patient 1) and 1 woman (patient 2), and 5 control subjects. The rates of HDL apolipoproteins production (PR) and catabolism (FCR) were estimated using a one-compartment model-based analysis. RESULTS: Both carriers had low HDL-C plasma levels and only patient 1 was hypertriglyceridemic. VLDL apo B was 4-times slower in patient 1 as compared to patient 2. The FCRs of apo AI in both carriers was within the range of the controls (0.200, 0.221 and 0.211+/-0.051 day(-1), respectively). Apo AII FCR in patient 1 was about 20% lower than the mean of the control group whereas being normal in patient 2. Apo AI PR in patient 1 (9.20 mg kg(-1) day(-1)) was below the lowest value in controls (range, 10.52-13.24 mg kg(-1) day(-1)) whereas in patient 2 it was normal. Apo AII PR in both patients was similar to controls. CONCLUSION: The heterozygous carriers of 2 different mutations in the LPL gene had different VLDL apo B FCR, and from normal to slightly low HDL apolipoprotein FCR and PR. These results disagree with the putative enhanced apo AI FCR in LPL deficient patients and suggest the need to reconsider the effects of LPL activity on HDL metabolism.  相似文献   

4.
Abstract. In order to gain further insight into the relationship between high-density lipoprotein (HDL) metabolism and plasma triglyceride transport, measurements were made of HDL cholesterol concentration, apoprotein (apo) AI and AII metabolism, very-low-density lipoprotein (VLDL) apo B metabolism, and heparin-elutable adipose tissue lipoprotein lipase (LPL) activity in seventeen subjects with a wide range of plasma triglyceride concentrations (0.8–25 mmol/l).
The fractional catabolic rate (FCR) of VLDL apo B was directly related to LPL activity ( r =+ 0.80), providing evidence that the activity of the enzyme in adipose tissue is a determinant of the rate of lipolysis of VLDL in man. HDL cholesterol concentration was a positive function of both VLDL apo B FCR ( r =+ 0.74) and LPL activity, a finding consistent with previous evidence for the origin of a proportion of HDL cholesterol from 'surface remnants' liberated during VLDL catabolism. The FCRs of both apo AI and apo AII were inversely related to VLDL apo B FCR (AI, r = - 0.52; AII, r = - 0.69) and to LPL activity. The synthetic rate of apo AII, but not that of apo AI, was positively correlated with VLDL apo B synthesis ( r =+ 0.71). Thus, the metabolism of the major proteins of HDL in man appears to be closely associated with VLDL metabolism.  相似文献   

5.
Background: Elevated plasma low-density lipoprotein cholesterol (LDL-C) concentrations are highly atherogenic, especially the small, dense LDL (sdLDL) species. Fenofibrate has been reported to shift the LDL profile by decreasing the sdLDL subfraction and increasing larger LDL subclasses. Atorvastatin, anantihyperlipidemic agent, has been reported to reduce plasma total cholesterol (TC) and triglyceride (TG) concentrations and thus could modify the LDL profile.Objective: The aim of this study was to compare the effects of fenofi brate and atorvastatin on standard lipid concentrations and the LDL profile.Methods: In this randomized, open-label, parallel-group study, men and women aged 18 to 79 years with type II primary dyslipidemia, defined as LDL-C ≥160 and TG 150 to 400 mg/dL, after a 4- to 6-week washout period while eating an appropriate diet, were randomized to receive either atorvastatin 10 mg once daily or fenofi-brate 200 mg once daily. Plasma lipid concentrations and cholesterol and apolipoprotein (apo) B (reflecting the LDL particle number) in each LDL subfraction prepared by ultracentrifiigation were determined at baseline and after 12 weeks of treatment. Tolerability was assessed using adverse events (AEs) obtained on laboratory analysis and vital sign measurement. Adherence was assessed by counting unused drug supplies.Results: A total of 165 patients (117 men, 48 women; mean [SD] age, 50.1 [10.7] years; mean TC concentration, 289 mg/dL) were randomized to receive atorvastatin (n = 81) or fenofibrate (n = 84). Compared with fenofibrate, atorvastatin was associated with a significantly greater mean (SD) percentage decrease in TC (27.0% [12.3%] vs 16.5% [12.9%]; P < 0.001), calculated LDL-C (35.4% [15.8%] vs 17.3% [17.2%]; P < 0.001), TC/high-density lipoprotein cholesterol (HDL-C) ratio (29.1% [16.3%] vs 22.9% [15.9%]; P = 0.001), and apoB (30.3% [12.7%] vs 19.6% [15.5%]; P < 0.001). Compared with atorvastatin, fenofibrate was associated with a significantly greater decrease in TG (37.2% [25.9%] vs 20.2% [27.3%]; P < 0.001) and a significantly greater increase in HDL-C concentration (10.4% [15.7%] vs 4.6% [12.1%]; P = 0.017). Fibrinogen concentration was significantly different between the 2 groups (P = 0.002); it was decreased with fenofibrate use (4.6% [23.7%]) and was increased with atorvastatin use (5.7% [23.5%]). Atorvastatin did not markedly affect the LDL distribution; it was associated with a homogeneous decrease in cholesterol and apoB concentrations in all subfractions, whereas fenofibrate was associated with a marked movement toward a normalized LDL profile, shifting the sdLDL subfractions toward larger and less atherogenic particles, particularly in those patients with baseline TG ≥200 mg/dL. No serious AEs related to the study treatments were reported. A total of 5 AEs were observed in 8 patients, including: abdominal pain, 3 patients (2 in the atorvastatin group and 1 in the fenofibrate group); abnormal liver function test results, 1 (fenofibrate); increased creatine Phosphokinase activity, 2 (atorvastatin); gastrointestinal disorders, 1 (fenofibrate); and vertigo, 1 (fenofibrate).Conclusion: In these dyslipidemic patients, fenofibrate treatment was associated with an improved LDL subfraction profile beyond reduction in LDL-C, particularly in patients with elevated TG concentration, whereas atorvastatin was associated with equally reduced concentrations of cholesterol and apoB in all LDL subfractions independent of TG concentrations.  相似文献   

6.
Apolipoprotein E (apo E)-deficient mice are severely hypercholesterolemic and develop advanced atheromas independent of diet. The C57BL/6 strain differs from most inbred strains by having lower HDL concentrations and a high risk of developing early atherosclerotic lesions when fed an atherogenic diet. The relative HDL deficiency and atherosclerosis susceptibility of the C57BL/6 strain are corrected with the expression of a human apolipoprotein AI (apo AI) transgene in this genetic background. To examine if increases in apo AI and HDL are also effective in minimizing apo E deficiency--induced atherosclerosis, we introduced the human apo AI transgene into the hypercholesterolemic apo E knockout background. Similar elevations of total plasma cholesterol occurred in both the apo E knockout and apo E knockout mice also expressing the human apo AI transgene. The latter animals, however, also showed a two- to threefold increase in HDL and a sixfold decrease in susceptibility to atherosclerosis. This study demonstrates that elevating the concentration of apo AI reduces atherosclerosis in apo E deficient-mice and suggests that elevation of apo AI and HDL may prove to be a useful approach for treating unrelated causes of heightened atherosclerosis susceptibility.  相似文献   

7.
Low HDL-cholesterol (HDL-C) levels may elevate atherosclerosis risk, and often associate with hypertriglyceridemia (HTG); however, the metabolic causes of low HDL-C levels with or without HTG are poorly understood. We studied the turnover of radioiodinated HDL apolipoproteins, apo A-I and apo A-II, in 15 human subjects with low HDL-C, six with normal plasma TG levels (group 1) and nine with high TG (group 2), and compared them to 13 control subjects with normal HDL-C and TG levels (group 3). The fractional catabolic rate (FCR) was equally elevated in groups 1 and 2 vs. group 3 for both apo A-I (0.313 +/- 0.052 and 0.323 +/- 0.063 vs. 0.245 +/- 0.043 pools/d, P = 0.003) and apo A-II (0.213 +/- 0.036 and 0.239 +/- 0.037 vs. 0.185 +/- 0.031 pools/d, P = 0.006). Thus, high FCR characterized low HDL-C regardless of the presence or absence of HTG. In contrast, transport rate (TR) of apo A-I did not differ significantly among the groups and the apo A-II TR differed only between groups 2 and 3 (2.15 +/- 0.57, 2.50 +/- 0.39, and 1.83 +/- 0.48 mg/kg per d for groups 1 to 3, respectively, P = 0.016). Several HDL-related factors were similar in groups 1 and 2 but differed in group 3, as with FCR, including the ratio of lipoprotein lipase to hepatic lipase activity (LPL/HL) in post-heparin plasma, the ratio of the HDL-C to apo A-I plus apo A-II levels, and the percent of tracer in the d greater than 1.21 fraction. In linear regression analysis HDL-C levels correlated inversely with the FCR of apo A-I and apo A-II (r = -0.74, P less than 0.0001 for both). Major correlates of FCR were HDL-C/apo A-I + apo A-II, LPL/HL, and plasma TG levels. We hypothesize that lipase activity and plasma TG affect HDL composition which modulates FCR, which in turn regulates HDL-C. Thus, HTG is only one of several factors which may contribute to elevated FCR and low HDL-C. Given the relationship of altered HDL composition with high FCR and low HDL-C levels, factors affecting HDL composition may increase atherosclerosis susceptibility.  相似文献   

8.
Background: Raised triglycerides (TG), decreased high‐density lipoprotein cholesterol (HDL‐C) levels and a predominance of small dense low density lipoproteins (sdLDL) are characteristics of the metabolic syndrome (MetS). Objective: To compare the effect of high‐dose rosuvastatin monotherapy with moderate dosing combined with fenofibrate or ω‐3 fatty acids on the lipoprotein subfraction profile in patients with mixed dyslipidaemia and MetS. Methods: We previously randomised patients with low‐density lipoprotein cholesterol (LDL‐C) > 160 and TG > 200 mg/dl to rosuvastatin monotherapy 40 mg/day (R group, n = 30) or rosuvastatin 10 mg/day combined with fenofibrate 200 mg/day (RF group, n = 30) or ω‐3 fatty acids 2 g/day (Rω group, n = 30). In the present study, only patients with MetS were included (24, 23 and 24 in the R, RF and Rω groups respectively). At baseline and after 12 weeks of treatment, the lipoprotein subfraction profile was determined by polyacrylamide 3% gel electrophoresis. Results: The mean LDL size was significantly increased in all groups. This change was more prominent with RF than with other treatments in parallel with its greater hypotriglyceridemic capacity (p < 0.05 compared with R and Rω). A decrease in insulin resistance by RF was also noted. Only RF significantly raised HDL‐C levels (by 7.7%, p < 0.05) by increasing the cholesterol of small HDL particles. The cholesterol of larger HDL subclasses was significantly increased by R and Rω. Conclusions: All regimens increased mean LDL size; RF was the most effective. A differential effect of treatments was noted on the HDL subfraction profile.  相似文献   

9.
The aim of this study was to investigate the effects of a high‐cholesterol diet in the presence and absence of statin on Cu‐Zn‐superoxide dismutase (Cu,Zn‐SOD), malondialdehyde (MDA), protein carbonyl (PCO), and nitric oxide (NO) of blood and heart tissue, the antioxidant activity of serum paraoxonase‐1 (PON‐1), and on the blood lipid profile of rabbits. The animals were divided into four groups each of which included 10 rabbits. Rabbits in group 1 received a regular rabbit chow diet (normal diet) for 8 weeks; those in group 2 received atorvastatin (0.3 mg atorvastatin per day/kg body weight) for 8 weeks; those in group 3 received high‐cholesterol diet for 8 weeks; and those in group 4 received high‐cholesterol diet for 4 weeks, a high‐cholesterol diet + atorvastatin (0.3 mg atorvastatin per day/kg body weight) for 8 weeks. The parameters were measured by spectrophotometric methods. As expected, the atherogenic diet caused a pronounced increase in lipid profile (not HDL) parameters. Rabbits in group 3 showed higher PCO, MDA, and NO levels in circulating and heart tissue compared to the rabbits in group 1. Atorvastatin has prevented or limited LDL oxidation and has showed constitutively beneficial effects in group 4. Increased LDL‐C, PCO, MDA, and NO levels leading to decreasing PON‐1 activity thus create a predisposition to atherogenesis in this model. But atorvastatin administration partly ameliorated oxidative damage in heart injury of hypercholesterolemic rabbits. Atorvastatin which functions as a potent antioxidant agent may inhibit this LDL‐C oxidation by increasing PON‐1 activity in atherogenesis.  相似文献   

10.
Plasma levels of HDL apo A-I are reduced in individuals with low HDL cholesterol (HDL-C) concentrations as a result of increased fractional catabolic rates (FCRs). To determine the basis for the high apo A-I FCRs, seven subjects with low HDL-C levels (31.0 +/- 4.3 mg/dl) were compared with three subjects with high HDL-C levels (72.0 +/- 4.5 mg/dl). Each subject received autologous HDL that was labeled directly by the iodine-monochloride method (whole-labeled) and autologous HDL that was labeled by exchange with homologous radiolabeled apo A-I (exchange-labeled). Blood was obtained for 2 wk, specific activities determined, and FCRs (d-1 +/- SD) estimated. In every subject, whether in the low or high HDL-C group, the exchange-labeled FCR was greater than the whole-labeled FCR. The exchange-labeled FCR was higher in the low HDL-C group (0.339 +/- 0.043) versus the high HDL-C group (0.234 +/- 0.047; P < 0.009). The whole-labeled FCR was also greater in the low HDL-C group (0.239 +/- 0.023) versus the high HDL-C group (0.161 +/- 0.064; P < 0.02). In addition, in both low and high HDL groups ultracentrifugation resulted in more radioactivity in d > 1.210 (as percentage of total plasma counts per minute) with the exchange-labeled tracer than with the whole-labeled tracer (12.55 +/- 4.95% vs. 1.02 +/- 0.38%; P < 0.003). With both HDL tracers, more radioactivity was found in d > 1.210 in the low versus the high HDL-C groups. When apo A-I catabolism was studied by perfusing isolated rabbit kidneys with whole-labeled HDL, there was twice as much accumulation (cpm/g cortex) of HDL apo A-I isolated from subjects with low HDL-C than from subjects with high HDL-C (P < 0.0025). Finally, HDL that had been isolated from subjects with high levels of HDL-C was triglyceride enriched and exposed to partially purified lipases before perfusion through kidneys. Threefold more apo A-I from modified HDL accumulated in the cortex compared with the unmodified preparation (P < 0.007). The results of these in vivo and ex vivo studies indicate that individuals with low HDL-C levels have more loosely bound, easily exchanged apo A-I and that this exchangeable apo A-I is more readily cleared by the kidney.  相似文献   

11.
Postprandial triglyceride (TG) levels are easy to measure and are associated with future cardiovascular risk. The aim of this study was to compare the effects of statin monotherapy and low-dose statin/ezetimibe on lipid parameters including fasting and postprandial TG. After a 4-week dietary run-in period, 78 patients with combined hyperlipidemia were randomized into 1 of 2 treatment groups for 8 weeks: atorvastatin 20 mg or atorvastatin/ezetimibe 5 mg/5 mg. An oral fat load test was performed before and after the drug-treatment period. The low-dose combination had a tendency to decrease fasting TG more than atorvastatin monotherapy. The combination regimen showed a greater reduction in postprandial TG (-13% ± 42% and -34% ± 30%, in the atorvastatin and combination groups, respectively, P = .03) and total cholesterol (TC; P = .03). The changes in low-density lipoprotein-cholesterol (LDL-C) and high-density lipoprotein-cholesterol (HDL-C) were not different between the 2 groups. The reduction in apo B/A1 was greater in the combination group (-32% ± 19% and -42% ± 13%, in the atorvastatin and combination groups, respectively, P = .02). In conclusion, these results demonstrated a potential beneficial effect of low-dose atorvastatin/ezetimibe combination treatment on postprandial TG control after comparable LDL-C lowering in patients with combined hyperlipidemia.  相似文献   

12.
BACKGROUND: Different high-density lipoprotein (HDL) subclasses have distinct but interrelated metabolic functions. HDL directly influences the atherogenic process, and changes in HDL subclasses distribution may be related to the incidence and prevalence of atherosclerosis. Lipoprotein lipase (LPL) is an important enzyme for hydrolysis of triglyceride-rich lipoproteins, and its activity is positively correlated with the plasma HDL cholesterol level. LPL gene HindIII polymorphism has been found associated with variations in lipid levels, but the impact on HDL subclasses distribution is less clearly established. METHODS: The relative apolipoprotein (apo) A-I contents (% apoA-I) of plasma HDL subclasses were determined by two-dimensional gel electrophoresis coupled with immunodetection and LPL gene HindIII polymorphism was assayed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 173 hyperlipidemic and 155 normolipidemic subjects. RESULTS: The frequencies of 495TT genotype and allele T were the highest both in the hyperlipidemic and control groups. Compared with the control group, the frequency of 495TT genotype was higher, while the frequencies of 495TG and 495GG genotypes were significantly lower (P<0.05) in the hyperlipidemic group. Two-dimensional gel electrophoresis and immunodetection showed that HDL subclasses distribution was altered in hyperlipidemia, and had a general shift toward smaller size. Compared with the control group, the hyperlipidemic group had significantly higher relative apoA-I contents of prebeta1-HDL, prebeta2-HDL, HDL3b and HDL3a (P<0.05) and lower HDL2a and HDL2b levels (P<0.001). In the hyperlipidemic group, allele T carriers' frequency was higher than that in the control group (P<0.05), and the genotype of 495TT showed higher levels of plasma TG, apoB100, TG/HDL-C ratio, relative apoA-I contents of prebeta1-HDL, HDL3b and lower HDL2a, HDL2b compared with that of the 495GG genotype subgroup (P<0.05). In the control group, the genotype of 495TT had higher plasma TG, HDL3c and lower HDL2a compared with that of 495GG subgroup (P<0.05). CONCLUSIONS: The 495TT genotype of LPL gene HindIII polymorphism was associated with changes of HDL subclasses distribution in Chinese population with hyperlipidemia. The particle size of HDL shifted toward smaller, which, in turn, indicated that RCT might be weakened and HDL maturation might be abnormal in hyperlipidemic subjects with 495TT genotype.  相似文献   

13.
Several types of transgenic mice were used to study the influence of hypertriglyceridemia and cholesteryl ester transfer protein (CETP) expression on high density lipoprotein (HDL) levels, particle sizes, and metabolism. The presence of the CETP transgene in hypertriglyceridemic human apo CIII transgenic mice lowered HDL-cholesterol (HDL-C) 48% and apolipoprotein (apo) A-I 40%, decreased HDL size (particle diameter from 9.8 to 8.8 nm), increased HDL cholesterol ester (CE) fractional catabolic rate (FCR) 65% with a small decrease in HDL CE transport rate (TR) and increased apo A-I FCR 15% and decreased apo A-I TR 29%. The presence of the CETP transgene in hypertriglyceridemic mice with human-like HDL, human apo A-I apo CIII transgenic mice, lowered HDL-C 61% and apo A-I 45%, caused a dramatic diminution of HDL particle size (particle diameters from 10.3 and 9.1 to 7.6 nm), increased HDL CE FCR by 107% without affecting HDL CE TR, and increased apo A-I FCR 35% and decreased apo A-I TR 48%. Moreover, unexpectedly, hypertriglyceridemia alone in the absence of CETP was also found to cause lower HDL-C and apo A-I levels primarily by decreasing TRs. Decreased apo A-I TR was confirmed by an in vivo labeling study and found to be associated with a decrease in intestinal but not hepatic apo A-I mRNA levels. In summary, the introduction of the human apo A-I, apo CIII, and CETP genes into transgenic mice produced a high-triglyceride, low-HDL-C lipoprotein phenotype. Human apo A-I gene overexpression caused a diminution of mouse apo A-I and a change from monodisperse to polydisperse HDL. Human apo CIII gene overexpression caused hypertriglyceridemia with a significant decrease in HDL-C and apo A-I levels primarily due to decreased HDL CE and apo A-I TR but without a profound change in HDL size. In the hypertriglyceridemic mice, human CETP gene expression further reduced HDL-C and apo A-I levels, primarily by increasing HDL CE and apo A-I FCR, while dramatically reducing HDL size. This study provides insights into the genes that may cause the high-triglyceride, low-HDL-C phenotype in humans and the metabolic mechanisms involved.  相似文献   

14.
High levels of HDL-cholesterol (HDL-C) protect against coronary heart disease susceptibility, but the metabolic mechanisms underlying elevated HDL-C levels are poorly understood. We now report the turnover of isologous radioiodinated HDL apolipoproteins, apo A-I and apo A-II, in 15 female subjects on a metabolic diet with HDL-C levels ranging from 51 to 122 mg/dl. The metabolic parameters, fractional catabolic rate (FCR) and absolute synthetic rate (SR), were determined for apo A-I and apo A-II in all subjects. There was an inverse correlation between plasma HDL-C and the FCR of apo A-I and apo A-II (r = -0.75, P less than 0.001, and r = -0.54, P = 0.036, respectively), but no correlation with the SR of either apo A-I or apo A-II (r = 0.09, and r = -0.16, respectively, both P = NS). Apo A-I levels correlated inversely with apo A-I FCR (r = -0.64, P = 0.01) but not with apo A-I SR (r = 0.30, P = NS). In contrast, plasma levels of apo A-II did not correlate with apo A-II FCR (r = -0.38, P = 0.16), but did correlate with apo A-II SR (r = 0.65, P = 0.009). Further analysis showed that apo A-I and apo A-II FCR were inversely correlated with the HDL-C/apo A-I + A-II ratio (r = -0.69 and -0.61, P = 0.005 and 0.015, respectively). These data suggest that: (a) low HDL apolipoprotein FCR is the predominant metabolic mechanism of elevated HDL-C levels; (b) apo A-I FCR is the primary factor in controlling plasma apo A-I levels, but apo A-II SR is the primary factor controlling plasma apo A-II levels; (c) low HDL apolipoprotein FCR is associated with a lipid-rich HDL fraction. These findings elucidate aspects of HDL metabolism which contribute to high HDL-C levels and which may constitute mechanisms for protection against coronary heart disease.  相似文献   

15.
Pravafenix(?) is a fixed-dose combination of pravastatin 40 mg and fenofibrate 160 mg. The rationale for the use of Pravafenix is based on the increased residual cardiovascular risk observed for high-risk patients with either increased triglycerides or low HDL cholesterol levels despite statin monotherapy. This article reviews the current available information on the pharmacology, clinical efficacy and safety of Pravafenix. Pravafenix is recommended to be taken with food in the evening. In clinical trials, Pravafenix consistently produces complementary benefits on the overall atherogenic lipid profile of high-risk patients with mixed hyperlipidemia not controlled by either pravastatin 40 mg or simvastatin 20 mg. Within the limitations of the database, Pravafenix seems to be well tolerated up to 64 weeks, with an overall tolerability and safety profile consistent with findings generally observed with fenofibrate treatment. In particular, no myopathy or rhabdomyolysis has been reported. The actual European indication is restricted to high-risk patients with mixed hyperlipidemia whose LDL cholesterol levels are adequately controlled on pravastatin 40 mg monotherapy. Whether Pravafenix confers additional cardiovascular benefits in high-risk patients treated with a statin remains to be determined.  相似文献   

16.
The effect of sample pre-treatment as a source of variability of apolipoprotein (apo) AI, AII and B assays was demonstrated with lipid dissociating agents. The average mean percentage change ranged from -58 to +133% compared with untreated samples. The apolipoprotein method selected was validated by comparing their concentrations with their corresponding lipoprotein lipid or protein in normal controls and Type 2 (non-insulin-dependent) diabetic patients. The coefficient of variation was maintained below 3.5% for apo AI, AII, B and HDL2-apo AI. The apolipoprotein concentrations of fasting plasma lipoproteins were determined in a cross-sectional study of non-obese (body-mass index less than or equal to 30) patients with Type 2 diabetes mellitus. Compared with normal subjects matched for sex, age, body-mass index, exercise, alcohol consumption and smoking. Type 2 patients at diagnosis showed reduced apo AI and HDL2-apo AI concentrations, lowered apo AI:B ratio and increased concentrations of apo B. Type 2 patients treated by diet alone (for 6-72 months) and diet plus glibenclamide (2.5-15 mg/day for 6-48 months) exhibited similar abnormalities of plasma apolipoprotein concentration to Type 2 patients at diagnosis. However, in Type 2 patients treated with insulin (25-65 U/day for 8-144 months) concentrations of apo AI and HDL2-apo AI, and the apo AI:B ratio were normal. Apo B concentrations were generally lower compared with all groups of non-insulin treated patients. These abnormalities of apolipoprotein metabolism, which are associated with premature coronary disease, are still evident in patients treated by diet and diet plus glibenclamide, but are not seen in Type 2 patients treated with insulin.  相似文献   

17.
HDL metabolism and atherosclerosis were studied in apo E knockout (KO) mice overexpressing human apo AI, a des- (190-243)-apo AI carboxyl-terminal deletion mutant of human apo AI or an apo AI-(1-189)-apo AII-(12-77) chimera in which the carboxyl-terminal domain of apo AI was substituted with the pair of helices of apo AII. HDL cholesterol levels ranked: apo AI/apo E KO approximately apo AI-(1-189)-apo AII- (12-77)/apo E KO > > des-(190-243)-apo AI/apo E KO > apo E KO mice. Progression of atherosclerosis ranked: apo E KO > des-(190-243)-apo AI/apo E KO > > apo AI-(1-189)- apo AII-(12-77)/apo E KO approximately apo AI/apo E KO mice. Whereas the total capacity to induce cholesterol efflux from lipid-loaded THP-1 macrophages was higher for HDL of mice overexpressing human apo AI or the apo AI/apo AII chimera, the fractional cholesterol efflux rate, expressed in percent cholesterol efflux/microg apolipoprotein/h, for HDL of these mice was similar to that for HDL of mice overexpressing the deletion mutant and for HDL of apo E KO mice. This study demonstrates that the tertiary structure of apo AI, e.g., the number and organization of its helices, and not its amino sequence is essential for protection against atherosclerosis because it determines HDL cholesterol levels and not cholesterol efflux. Amino acid sequences of apo AII, which is considered to be less antiatherogenic, can be used to restore the structure of apo AI and thereby its antiatherogenicity.  相似文献   

18.
Patients with type 2 diabetes feature important modification of both low density lipoprotein (LDL) and high density lipoprotein particles which are likely to play an important role in the development of atherosclerosis. Although plasma LDL cholesterol level is usually normal in type 2 diabetic patients, LDLs show a significant increase in their plasma residence time which may promote cholesterol deposition in the arterial wall. Moreover, important qualitative abnormalities of LDLs, potentially atherogenic, are observed in type 2 diabetic patients: small dense, triglyceride-rich, LDL particles (known as subclass B), oxidized LDL and glycated LDL. All these qualitative modification of LDLs amplify the atherosclerotic process.
Plasma high density lipoprotein (HDL) cholesterol is decreased in type 2 diabetes related to increased catabolism of HDL particles. One of the mechanism responsible for increased catabolism of HDLs is hypertriglyceridemia, promoting through cholesteryl ester transfer protein (CETP) the transfer of triglycerides (TG) to HDL leading to the formation of TG-rich HDLs which are very good substrates for hepatic lipase, enzyme in charge of HDLs catabolism. The reduction in plasma adiponectin level, observed in type 2 diabetes may be another mechanism involved in the diminution of HDL cholesterol. Furthermore, qualitative abnormalities of HDLs are described in type 2 diabetes: enrichment in triglycerides and glycation, which may impair HDL-mediated cholesterol efflux and reverse cholesterol transport. In addition to their role in reverse cholesterol transport, HDLs usually show antioxidative, anti-inflammatory, anti-thrombotic and endothelium-dependent vasorelaxant effects. It has been shown that HDLs from patients with type 2 diabetes have a significant reduction in their antioxidative and endothelium-dependent vasorelaxant properties.  相似文献   

19.
Although diet influences levels of lipoproteins and their corresponding apoproteins, its effects on the molecular regulation of apoprotein synthesis are relatively unknown. Male Sprague-Dawley rats were fed an atherogenic diet containing cholesterol and propylthiouracil (PTU). Intestinal apo AI and AIV mRNA concentrations were decreased by the atherogenic diet, but apo AI and AIV synthesis was increased in vitro (organ explants) and in vivo (polysome runoff), consistent with regulation at the translational level. In contrast, hepatic apo E mRNA concentration and synthesis were increased after the atherogenic diet, consistent with pretranslational regulation. The response to cholesterol feeding for hepatic apo AI and E showed a third pattern of regulation, in which synthesis increased and mRNA content remained stable or fell, again suggesting translational control, but polysome runoff synthesis was unchanged. The apparent importance of translational regulation in the intestine is consistent with the necessity for the tissue to respond rapidly to changes in intraluminal content.  相似文献   

20.
目的探讨两类调脂药物阿托伐他汀及非诺贝特对动脉CXC趋化因子配体16(CXCL16)表达的影响。方法研究对象采用ApoE基因敲除小鼠,随机分为阿托伐他汀组、非诺贝特组及对照组,给予药物干预8周后,取小鼠主动脉采用医学图像分析系统测量动脉斑块大小,免疫组化半定量分析主动脉弓CXCL16及CXCR6的蛋白表达,实时定量聚合酶链反应测定CXCL16 mRNA。结果阿托伐他汀及非诺贝特组动脉硬化程度均较对照组明显减轻,斑块面积减小;阿托伐他汀组及非诺贝特组主动脉弓CXCL16和CXCR6的平均光密度值均较对照组减低;非诺贝特组CXCL16mRNA表达减低(P<0.05),而阿托伐他汀组CXCL16 mRNA表达较对照组无显著变化。结论阿托伐他汀及非诺贝特均可以减轻ApoE基因敲除小鼠动脉粥样硬化病变,下调CXCL16蛋白表达,但非诺贝特不同于阿托伐他汀可以有效减低CXCL16 mRNA的表达,两者作用机制可能不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号