首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The anti-anginal effect of CP-060S, a new cardioprotective agent that prevents myocardial Na+-, Ca2+-overload and has Ca2+-channel blocking activity, was evaluated in a rat model of arginine8-vasopressin (AVP)-induced cardiac ischaemia. Infusion of AVP (0.2 IU kg(-1)) depressed the electrocardiogram (ECG) ST segment, an index of myocardial ischaemia. Vehicle, CP-060S and diltiazem were given orally 1, 2, 4, 8, 12 and 24 h before the administration of AVP. CP-060S, at 3 mg kg(-1) and 10 mg kg(-1), suppressed AVP-induced ST-segment depression for 2 h and 12 h, respectively. In contrast, diltiazem, at 10 and 30 mg kg(-1), suppressed AVP-induced ST-segment depression for only 1 h. The persistent suppression of the AVP-induced ST-segment depression by CP-060S correlated with the time course of changes in its plasma concentration. The minimum effective concentration of CP-060S was estimated to be 30 ng mL(-1) (approximately 50 nM), consistent with its vasorelaxant potency in rat isolated aortic strips (concentration producing 50% relaxation of KCl contraction, IC50 = 32.6+/-8.3 nM). Intravenously administered CP-060S, at 300 microg kg(-1) and diltiazem at 500 microg kg(-1) showed similar haemodynamic changes, whereas CP-060S, at 300 microg kg(-1), significantly suppressed AVP-induced ST-segment depression and diltiazem, at 500 microg kg(-1), had no effect on AVP-induced ST-segment depression. In summary, orally administered CP-060S exerted a long-lasting anti-anginal effect proportionate to the time course of changes in its plasma concentration in a rat model of AVP-induced ischaemia.  相似文献   

2.
The effect of (-)-(S)-2-[3,5-bis(1, 1-dimethylethyl)-4-hydroxyphenyl]-3-[3-[N-methyl-N-[2-(3, 4-methylenedioxyphenoxy)ethyl]amino]propyl]-1,3-thiazolidin- 4-one hydrogen fumarate (CP-060S), a novel Ca(2+) channel blocker, on hydrogen peroxide (H(2)O(2))-induced cytotoxicity was studied in cultured rat cardiac myocytes. The CP-060S effect was compared with that of CP-060R, an optical isomer of CP-060S with a less potent Ca(2+) channel blocking action than CP-060S. H(2)O(2) increased the release of lactate dehydrogenase from cardiac myocytes and decreased the formation of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) (MTT) formazan in cardiac myocytes (i.e., cytotoxic action). Both CP-060S (1 microM) and CP-060R (1 microM) attenuated to a similar extent the foregoing alterations induced by H(2)O(2). On the other hand, 1,3-dimethyl-2-thiourea (10 mM), a scavenger of both H(2)O(2) and hydroxyl radical, also attenuated the H(2)O(2)-induced cytotoxicity whereas diltiazem (10 microM) did not. In an experiment using electron spin resonance (ESR) with 5, 5-dimethyl-1-pyrroline N-oxide (DMPO), a spin-trapping agent, both CP-060S and CP-060R decreased the intensity of DMPO-hydroxyl radical signal concentration dependently. These results suggest that CP-060S protects cardiac myocytes from oxidative stress through its radical scavenging action.  相似文献   

3.
1. The effect of R56865 (N-[1-[4-(4-fluorophenoxy)-butyl]-4-piperidinyl]-N-methyl-2- benzothiazolamine) on cardiac sarcoplasmic reticulum (SR) Ca(2+)-release channel function was investigated. The effect of R56865 on [3H]-ryanodine and [3H]-digoxin binding to SR vesicles and its effect on the ATP-stimulated 45Ca2+ uptake into SR vesicles was also studied. 2. R56865 (0.5-50 microM) had no effect on single-channel open probability (Po) when added to native cardiac SR Ca(2+)-release channels, incorporated into planar phospholipid bilayers, that had previously been activated by 10 microM Ca2+. The single-channel conductance (93 pS) and the Ca2+/Tris+ permeability ratio (12.5) were also unaffected by R56865. 3. R56865 failed to affect the rapid Ca(2+)-induced efflux of 45Ca2+ from cardiac SR vesicles. The initial efflux rate at an extravesicular [Ca2+] of 0.1 microM was 176 +/- 33 nmol 45Ca2+ mg-1 protein s-1 (n = 5). Addition of 0.5-50 microM R56865 to the efflux solution did not affect the initial efflux rate or the total amount of 45Ca2+ released from the vesicles. 4. The specific binding of [3H]-ryanodine to SR vesicles can be viewed as a marker for SR Ca(2+)-release channel activation. R56865 (0.05-50 microM) did not change the amount of specific [3H]-ryanodine bound at 10 microM activating Ca2+. Taken together these data (points 2, 3 and 4) suggest that R56865 does not affect the Ca2+ activation of the cardiac SR Ca(2+)-release channel. 5. R56865 (0.5-50 microM) decreased the ATP-stimulated uptake of 45Ca2+ into cardiac SR vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Vasoinhibitory effects of (−)-(S)-2-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-3-[3-[N-methyl-N-[2-(3,4-methylenedioxyphenoxy)ethyl]amino]propyl]-1,3-thiazolidin-4-one hydrogen fumarate (CP-060S), a synthesized cardioprotective agent, were examined. In the rat aortic rings, the contractile responses to cumulative application of angiotensin II, [Arg8]-vasopressin (vasopressin), or prostaglandin F2 were inhibited by CP-060S in a concentration-dependent manner. The Ca2+-induced contractions in the presence of vasopressin or prostaglandin F2 were also inhibited by CP-060S in a concentration-dependent manner. The inhibitory effect of 10−5 M CP-060S on phenylephrine-induced contraction was as potent as that of 10−6 M nifedipine, and the combined addition of 10−6 M nifedipine and 10−5 M CP-060S showed the effect similar to that of 10−5 M CP-060S alone. In rat aorta loaded with a Ca2+ indicator, fura-PE3, 10−5 M CP-060S completely inhibited the high K+-induced increase in cytosolic Ca2+ level ([Ca2+]i) and contraction. In contrast, 10−5 M CP-060S only partially inhibited the increase in [Ca2+]i and contraction due to phenylephrine or prostaglandin F2. In the presence of 10−6 M nifedipine, 10−5 M CP-060S did not inhibit the increase in [Ca2+]i and contraction induced by prostaglandin F2. In a Ca2+-free medium, the phasic increases in contraction and [Ca2+]i induced by phenylephrine were not affected by 10−5 M CP-060S. These results suggest that the vasoinhibitory effect of CP-060S in rat aortic rings is due mainly to the inhibition of L-type voltage-dependent Ca2+-channels.  相似文献   

5.
Drugs preventing Na+ and Ca2+ overload.   总被引:2,自引:0,他引:2  
Cardiac intracellular Na+and Ca2+homeostasis is regulated by the concerted action of ion channels, pumps and exchangers. The Na+, K+-ATPase produces the electrochemical concentration gradient for Na+, which is the driving force for Ca2+removal from the cytosol via the Na+/Ca2+exchange. Reduction of this gradient by increased intracellular Na+concentration leads to cellular Ca2+overload resulting in arrhythmias and contractile dysfunction. Na+and Ca2+overload-associated arrhythmias can be produced experimentally by inhibition of Na+efflux (digitalis-induced intoxication) and by abnormal Na+influx via modulated Na+channels (veratridine, DPI 201-106; hypoxia) or via the Na+, H+exchanger. Theoretically, blockers of Na+and Ca2+channels, inhibitors of abnormal oscillatory release of Ca2+from internal stores or modulators of the Na+, Ca2+and Na+, H+exchanger activities could protect against cellular Na+and Ca2+overload.Three exemplary drugs that prevent Na+and Ca2+overload, i.e. the benzothiazolamine R56865, the methylenephenoxydioxy-derivative CP-060S, and the benzoyl-guanidine Hoe 642, a Na+, H+exchange blocker, are briefly reviewed with respect to their efficacy on digitalis-, veratridine- and ischaemia/reperfusion-induced arrhythmias.  相似文献   

6.
The nonpeptide substance P receptor antagonist CP-96,345 was found to displace binding to Ca2+ channel binding sites labelled with either [3H]desmethoxyverapamil or [3H]diltiazem and to enhance [3H]nitrendipine binding. Unlike the substance P receptor antagonist activity of CP-96,345, these effects on Ca2+ channel binding sites were neither stereoselective nor species-dependent. It is concluded that CP-96,345 may act as an antagonist of L-type Ca2+ channels in addition to being a potent NK1 receptor (substance P) antagonist.  相似文献   

7.
This study was performed to determine if diltiazem can reduce the severity of pacing-induced ischemia independently of its peripheral hemodynamic effects and of increases in ischemic region blood flow. Twelve anesthetized dogs were subjected to atrial pacing and had their left anterior descending coronary arteries (LAD) occluded gradually until ischemia ensued (greater than 10 mV epicardial ST-segment elevation). Cessation of pacing resulted in abolition of ST-segment elevation. ST-segment elevation, as well as peripheral and coronary hemodynamics, was measured during 5-min periods of pacing + LAD stenosis before and 0, 30, and 60 min after treatment with intracoronary (just distal to the stenosis) saline or 1.8 micrograms/kg diltiazem. Myocardial blood flow was measured using radioactive microspheres during pacing, pacing + stenosis, and pacing + stenosis + drug treatment at 60 min. Diltiazem significantly reduced ST-segment elevation approximately 50% at 0, 30, and 60 min compared with elevations seen in animals treated with saline as well as predrug values. No changes in blood pressure, heart rate, or LAD flow occurred with diltiazem. Overall ischemic tissue flow and its transmural distribution were not different with diltiazem compared with saline treatment. Thus, diltiazem can decrease the severity of pacing-induced ischemia independently of its peripheral effects and of increased ischemic region blood flow.  相似文献   

8.
  1. CP-060S is a novel sodium and calcium overload inhibitor, and is also characterized as a calcium channel blocker. As these activities have each been shown independently to ameliorate ischaemia damage in the myocardium, the combination may synergistically exert cardioprotection. In this study, therefore, the protective effect of CP-060S against ischaemia- and reperfusion-induced arrhythmia was evaluated in anesthetized rats.
  2. Rats were anaesthetized with pentobarbitone, and the left anterior descending coronary artery was occluded for either 5 min with subsequent reperfusion (a reperfusion-induced arrhythmia model) or 30 min without (an ischaemia-induced arrhythmia model). All drugs were intravenously administered 1 min before the onset of occlusion.
  3. In the reperfusion-induced arrhythmia model, the animals in the vehicle-treated group exhibited ventricular tachycardia (VT) in 100%, ventricular fibrillation (VF) in 89%, and death caused by sustained VF in 56%. CP-060S (30–300 μg kg−1) dose-dependently suppressed the incidences of arrhythmias. Significant decreases occurred at 100 μg kg−1 in VF (incidence: 42%) and mortality (8%), and at 300 μg kg−1 in VT (50%), VF (33%) and mortality (8%). This protective effect of CP-060S was 10 times more potent than that of a pure calcium channel blocker, diltiazem (30–1000 μg kg−1) we tested, in terms of effective dose ranges. As both drugs decreased myocardial oxygen consumption estimated by rate-pressure product to a similar extent, the calcium channel blocking activity of CP-060S would not seem to be sufficient to explain its potency.
  4. In the same model, co-administration of ineffective doses of diltiazem (300 μg kg−1) and a sodium and calcium overload inhibitor, R56865 (100 μg kg−1), produced significant suppression of VT (incidence: 62%), VF (46%) and mortality (8%). By contrast, co-administration of R56865 at the same dose with CP-060S (300 μg kg−1) did not add to the effect of a single treatment of CP-060S.
  5. In the ischaemia-induced arrhythmia model, CP-060S (300 μg kg−1) significantly decreased the incidence of VF from 75% to 29%, whereas diltiazem (1 mg kg−1) was ineffective.
  6. These results suggest that CP-060S inhibits both ischaemia- and reperfusion-induced arrhythmia. The combination of the calcium channel blocking effect and the calcium overload inhibition was hypothesized to contribute to these potently protective effects.
  相似文献   

9.
The effect of the anti-ischemic compounds flunarizine and R 56865 on the veratridine-induced uptake of Ca2+ and Na+ was observed in cortical synaptosomes in the rat. The veratridine-induced uptake of Na+ and Ca2+ was determined by means of a measurement of synaptosomal oxygen consumption and a method for the uptake of 45Ca2+, respectively. Veratridine (10(-5) M) was found to induce a 3-fold increase in synaptosomal oxygen consumption (uptake of Na+) and uptake of 45Ca2+, both of which were inhibited by tetrodotoxin (10(-5) M). Nitrendipine (10(-5) M) and omega-conotoxin (5 x 10(-7) M) were ineffective on the veratridine-induced response. Nimodipine (10(-5) M) suppressed the veratridine-induced uptake of 45Ca2+ but also diminished the unstimulated uptake of 45Ca2+. The veratridine-induced uptake of Na+ was not influenced by nimodipine. Flunarizine (3 x 10(-6)-10(-5) M), as well as R 56865 (10(-6)-10(-5) M), attenuated the veratridine-induced uptake of both Na+ and 45Ca2+. In conclusion, the veratridine-induced uptake of Na+ and 45Ca2+ was shown to be closely correlated to the activity of Na+ channels but not to voltage-operated Ca2+ channels. Secondly, flunarizine and R 56865 seemed to evoke their effects by interfering with the permeability of Na+ channels. Since veratridine-induced uptake of Na+ and Ca2+ shares some similarities with ischaemia-induced uptake of Na+ and Ca2+, it is proposed, that flunarizine and R 56865 exert their anti-ischaemic effects by reducing ischaemia-induced Na+ and Ca2+ load, probably by inhibiting a TTX-sensitive Na+ channel.  相似文献   

10.
1. The effects of diltiazem on various functional parameters were studied in bovine cultured adrenal chromaffin cells stimulated with the nicotinic receptor agonist dimethylphenylpiperazinium (DMPP) or with depolarizing Krebs-HEPES solutions containing high K+ concentrations. 2. The release of [3H]-noradrenaline induced by DMPP (100 microM for 5 min) was gradually and fully inhibited by increasing concentrations of diltiazem (IC50 = 1.3 microM). In contrast, the highest concentration of diltiazem used (10 microM) inhibited the response to high K+ (59 mM for 5 min) by only 25%. 3. 45Ca2+ uptake into cells stimulated with DMPP (100 microM for 1 min) was also blocked by diltiazem in a concentration-dependent manner (IC50 = 0.4 microM). Again, diltiazem blocked the K(+)-evoked 45Ca2+ uptake (70 mM K+ for 1 min) only by 20%. In contrast, the N-P-Q-type Ca2+ channel blocker omega-conotoxin MVIIC depressed the K+ signal by 70%. In the presence of this toxin, diltiazem exhibited an additional small inhibitory effect, indicating that the compound was acting on L-type Ca2+ channels. 4. Whole-cell Ba2+ currents through Ca2+ channels in voltage-clamped chromaffin cells were inhibited by 3-10 microM diltiazem by 20-25%. The inhibition was readily reversed upon washout of the drug. 5. The whole-cell currents elicited by 100 microM DMPP (IDMPP) were inhibited in a concentration-dependent and reversible manner by diltiazem. Maximal effects were found at 10 microM, which reduced the peak IDMPP by 70%. The area of each curve represented by total current (QDMPP) was reduced more than the peak current. At 10 microM, the inhibition amounted to 80%; the IC50 for QDMPP inhibition was 0.73 microM, a figure close to the IC50 for 45Ca2+ uptake (0.4 microM) and [3H]-noradrenaline release (1.3 microM). The blocking effects of diltiazem developed very quickly and did not exhibit use-dependence; thus the drug blocked the channel in its closed state. The blocking effects of 1 microM diltiazem on IDMPP were similar at different holding potentials (inhibition by around 30% at -100, -80 or -50 mV). Diltiazem did not affect the current flow through voltage-dependent Na+ channels. 6. These data are compatible with the idea that diltiazem has little effect on Ca2+ entry through voltage-dependent Ca2+ channels in bovine chromaffin cells. Neither, does diltiazem affect INa. Rather, diltiazem acts directly on the neuronal nicotinic receptor ion channel and blocks ion fluxes, cell depolarization and the subsequent Ca2+ entry and catecholamine release. This novel effect of diltiazem might have clinical relevance since it might reduce the sympathoadrenal drive to the heart and blood vessels, thus contributing to the well established antihypertensive and cardioprotective effects of the drug.  相似文献   

11.
In isolated heart muscle, the compound R56865 (N-[1-[4-(4-fluorophenoxy)butyl]-4-piperidinyl]-N-methyl-2- benzothiazolamine) has been shown to protect against intoxication by cardiac glycosides. We studied the influence of R56865 on various membrane currents in single isolated ventricular cardiomyocytes of the guinea-pig. The sodium current, INa, was investigated at reduced extracellular Na+ (30 mM) in the presence of Cd2+ to block the calcium current, ICa, and with Cs+ substituted for K+ to reduce the K+ currents, IK. Under these conditions, R56865 concentration dependently decreased the peak INa with a half-maximum effect at about 1 microM. The steady state inactivation and normalized conductance of INa were not significantly different from the control. In 'normal' Tyrode solution, R56865 (10 microM) did not markedly reduce ICa, and did not affect the quasi steady state IK, which was taken as an index of K+ conductance. We conclude that R56865 possesses Na+ channel-blocking properties, whereas ICa and membrane K+ conductance were not influenced.  相似文献   

12.
1. We investigated protective effects of KB-R7943, a Na+/Ca2+ exchange (NCX) inhibitor, on ouabain-induced tonotropy and arrhythmias in isolated whole atria and ouabain-induced changes in electrocardiogram (ECG) in the guinea-pig. 2. KB-R7943 (10 and 30 microM) suppressed the tonotropic effect of ouabain, and prolonged the onset time of extra-systole induced by ouabain in isolated atria. 3. The intravenous injection of KB-R7943 (1 and 3 mg kg-1) significantly increased the doses of ouabain required to induce ventricular premature beats (VPB), ventricular tachycardia (VT), ventricular fibrillation (VF) and cardiac arrest (CA) in anaesthetized guinea-pigs. 4. Lidocaine (Na+channel inhibitor) and R56865 (Na+ and Ca2+ overload inhibitor) also suppressed the ouabain-induced tonotropic effect and extra-systole in isolated atria, but Hoe-694 (Na+/H+ exchange inhibitor) or diltiazem (Ca2+ channel inhibitor) did not affect them. 5. Lidocaine also increased the doses of ouabain required to induce VPB, VT, VF and CA in anaesthetized guinea-pigs. 6. From these results, we conclude that KB-R7943 suppresses ouabain-induced arrhythmias through inhibition of the reverse-mode NCX.  相似文献   

13.
1. The putative inhibitory effects of verapamil and diltiazem on neuronal non-L-type Ca2+ channels were studied by investigating their effects on either K+- or veratridine-evoked [3H]-dopamine ([3H]-DA) release in rat striatal slices. Involvement of N-, P- and Q-type channels was identified by sensitivity of [3H]-DA release to omega-conotoxin GVIA (omega-CTx-GVIA), omega-agatoxin IVA (omega-Aga-IVA) and omega-conotoxin MVIIC (omega-CTx-MVIIC), respectively. 2. KCl (50 mM)-evoked [3H]-DA release was abolished in the absence of Ca2+, and was insensitive to dihydropyridines (up to 30 microM). It was significantly blocked by omega-CTx-GVIA (1 microM), omega-Aga-IVA (30 nM) and was confirmed to be abolished by omega-CTx-MVIIC (3 microM), indicating involvement of N-, P- and Q-type channel subtypes. 3. Verapamil and diltiazem inhibited K+-evoked [3H]-DA release in a concentration-dependent manner. The inhibitory effects of verapamil or diltiazem (each 30 microM) were fully additive to the effect of omega-CTx-GVIA (1 microM), whereas co-application with omega-Aga-IVA (30 nM) produced similar effects to those of omega-Aga-IVA alone. 4. As shown previously, veratridine-evoked [3H]-DA release in Ca2+ containing medium exclusively involves Q-type Ca2+ channels. Here, diltiazem (30 microM) did not inhibit veratridine-evoked [3H]-DA release, whereas verapamil (30 microM) partially inhibited it, indicating possible involvement of Q-type channels in verapamil-induced inhibition. However, verapamil (30 microM) inhibited this release even in the absence of extracellular Ca2+, suggesting that Na+ rather than Q-type Ca2+ channels are involved. 5. Taken together, our results suggest that verapamil can block P- and at higher concentrations possibly N- and Q-type Ca2+ channels linked to [3H]-DA release, whereas diltiazem appears to block P-type Ca2+ channels only.  相似文献   

14.
l-cis Diltiazem, an optical isomer of diltiazem, protects against myocardial dysfunction in vitro, whereas its Ca2+ channel blocking activity is about 100 times less potent than that of diltiazem. However, there is no evidence that l-cis diltiazem actually protects against ischemia/reperfusion injury in vivo. To assess this, we employed an anesthetized rabbit model, where the left circumflex artery was occluded for 15 min and reperfused for 360 min. Treatment with diltiazem before and during ischemia (bolus 200 microg/kg and 15 microg/kg per minute for 25 min, i.v.; 575 microg/kg total) showed slightly depressed hemodynamic parameters, while l-cis diltiazem (1150 microg/kg) had no effect. Treatment with l-cis diltiazem produced a high recovery of the thickening fraction and limited the infarct size in a dose-dependent manner. Furthermore, the treatment with l-cis diltiazem (1150 microg/kg) or diltiazem (575 microg/kg) 5 min before reperfusion also limited the infarct size, but not after reperfusion. These results suggest that l-cis diltiazem affects some events in the onset of reperfusion, independently of Ca2+-channel-blocking action. Our observations are the first to show that l-cis diltiazem demonstrated its cardioprotective action in the ischemic rabbit heart in vivo.  相似文献   

15.
Depolarization of [3H]inositol-prelabelled rat cortical slices through the elevation of extracellular K+ levels leads to increased accumulation of [3H]inositol phosphates. In the presence of 18 mM K+, Ca2+ channel activators selectively stimulated the formation of [3H]inositol monophosphate ([3H]IP1) whereas Ca2+ channel blockers were inhibitory. Blockade of the Na+ channel by 1 microM tetrodotoxin had no effect but chelation of extracellular Ca2+ abolished the response. The enantiomers of the benzoxadiazol 1,4-dihydropyridine 202-791 showed opposite stereospecific regulation of [3H]IP1 formation: (+)-(S)-202-791 stimulated (252%; ED50: 88 nM), whereas (-)-(R)-202-791 inhibited (65% inhibition, ED50: 602 nM). The (-) enantiomer of Bay K 8644 was a potent [3H]IP1 stimulator (258%; ED50: 82 nM). While (+)-Bay K 8644 was inactive in the presence of 18 mM K+, it completely inhibited the (-)-Bay K 8644-induced stimulation with a Ki of 103 nM. Representatives of the other two main classes of Ca2+ channel blockers (phenylalkylamines and benzothiazepines) inhibited K+ depolarization-induced and (-)-Bay K 8644 enhanced [3H]IP1 formation in a dose-dependent, stereospecific manner. The results show that Ca2+ channel blockers are efficient modulators of depolarization-induced and Ca2+ channel activator-induced [3H]inositol monophosphate formation in brain, and demonstrate the functional coupling of three distinct drug receptor sites on neuronal Ca2+ channels.  相似文献   

16.
We have previously demonstrated that treatment with L-cis diltiazem reduced cardiac infarct size in vivo. To examine the effect of L-cis diltiazem on Ca(2+) overload induced by ischemia/reperfusion, we used a model for Ca(2+) overload produced by metabolic inhibition in isolated guinea pig myocytes. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was quantified by fura-2 fluorescence microscopy and Ca(2+) overload was induced by inclusion of 1 microM of carbonyl cyanide m-chrolophenylhydrazone (CCCP) for 40 min treatment followed by washout for 30 min. This treatment caused a large [Ca(2+)](i) elevation as well as a sustained contracture of the cardiomyocytes. The increase was suppressed by 10 microM of 2-[2-[4-(4-nitrobenzyloxy) phenyl] ethyl] isothiourea methanesulphonate (KB-R7943), a specific inhibitor of the Na(+)/Ca(2+) exchanger, but not by nitrendipine (10 microM). L-cis Diltiazem (10 microM) attenuated the [Ca(2+)](i) increase, suggesting that L-cis diltiazem elicits a cardioprotective effect via attenuation of the [Ca(2+)](i) increase induced by metabolic inhibition and energy repletion.  相似文献   

17.
Previous studies have shown that Ca2+ channel antagonists in all chemical classes can inhibit Na(+)-induced CA2+ release from mitochondria. The effects of R023-6152, a new thiazepinone Ca2+ channel antagonist, on isolated rabbit heart mitochondrial Ca2+ transport and respiratory activity were compared with those of diltiazem. Heart mitochondria were also isolated and assayed from dogs treated in vivo with either R023-6152 or diltiazem. The results indicate that R023-6152 produces half-maximal inhibition of Na(+)-induced Ca2+ release from isolated mitochondria at relatively the same concentrations (10-30 microM) as diltiazem but also produces inhibition of mitochondrial Ca2+ uptake and state 3 respiration at concentrations (25-100 microM), at which diltiazem has no effect. The greater lipophilicity of R023-6152 in gaining access to and inhibiting the phosphate transporter in the mitochondrial membrane as compared with that of diltiazem may explain these results. Heart mitochondria isolated from dogs treated with diltiazem and R023-6152 exhibited lower rates of state 3 respiration as compared with controls. We suggest that this may result from a reduction in transsarcolemmal Ca2+ flux causing a down-regulation in mitochondrial dehydrogenase activity and not from any direct intracellular effects of the two drugs.  相似文献   

18.
观察毒毛旋花子苷元(strophanthidin, Str)对分离豚鼠心室肌细胞内游离钙浓度([Ca2+i)的影响。酶解分离豚鼠心室肌细胞, 用Fluo 3-AM负载, 激光共聚焦显微镜法测定单个豚鼠心室肌细胞[Ca2+i的荧光密度。Str可浓度依赖性地升高[Ca2+i, Str (10 μmol·L-1)在[Ca2+i升高达峰值时, 可使细胞挛缩, 而Str (1和10 nmol·L-1)对细胞形态无影响。TTX、 尼索地平或升高细胞外钙可影响Str (1和100 nmol·L-1)对[Ca2+i的升高作用,而对Str (10 μmol·L-1)无明显影响。在外液中加入ryanodine或去除细胞外钙, 则3个检测浓度的Str升高[Ca2+i作用均被明显抑制。在无K+、 无Na+液中, 10 μmol·L-1 Str升高[Ca2+i的作用减弱, 而Str (1和100 nmol·L-1)升高[Ca2+i的作用无明显影响。加入TTX、 尼索地平或增加细胞外的钙离子浓度, 则3个检测浓度Str的作用均受到影响。提示低浓度Str对[Ca2+i的升高作用与抑制Na+、K+-ATP酶活性无关, 而与促进L-型钙通道和TTX敏感性钠通道的“slip-mode”钙电导有关; 高浓度Str升高[Ca2+i的作用则是抑制Na+、K+-ATP酶的结果。此外, Str对[Ca2+i的升高作用还与直接作用于ryanodine受体促进内钙释放有关。  相似文献   

19.
Li XL  Li YQ  Yan WM  Li HY  Xu H  Zheng XX  Guo DW  Tang LK 《Planta medica》2004,70(11):1039-1044
Breviscapine is a flavonoid extracted from Erigeron breviscapus. Hand.-Mazz, and it has been reported that breviscapine can activate K+ channels and block Ca2+ channels. In this paper, we studied the cardioprotective effects of breviscapine on electrocardiogram (ECG) changes (ST-segment elevation), infarction size in dog heart subjected to myocardial infarction caused by left coronary artery ligation and lactate dehydrogenase (LDH) leakage, changes of intracellular free Ca2+ levels, apoptosis and necrosis in cultured neonatal rat cardiomyocytes subjected to hypoxia. Additionally, the effect of breviscapine on myocardial oxygen consumption was detected in dog myocardium in vitro. The results showed that breviscapine treatment (1 mg/kg, 2 mg/kg and 4 mg/kg) significantly reduced ST-segment elevation and infarction size in hearts subjected to myocardial infarction, that breviscapine treatment (14.29 microg/mL, 28.57 microg/mL and 57.14 microg/mL) significantly decreased oxygen consumption in myocardium, and that breviscapine treatment (5 microg/mL, 10 microg/mL and 20 microg/mL) significantly reduced LDH leakage, intracellular free Ca2+ levels, apoptosis and necrosis in cardiomyocytes subjected to hypoxia. In conclusion, the present study indicates that breviscapine is in favor of myocardial protection.  相似文献   

20.
1. The effects of betaxolol, (+/-)-1-[4-[2-(cyclopropylmethoxy) ethyl] phenoxy]-3-(isopropylamino)-2-propanol hydrochloride, a beta 1-selective adrenoceptor antagonist, on voltage-dependent Ca2+ channels were investigated in single smooth muscle cells from guinea-pig mesenteric artery and portal vein using a whole-cell variant of the patch-clamp technique. Ca2+ channel currents were recorded with bath solutions contained 10 mM Ba2+ for arterial cells and 2 mM Ca2+ for venous cells. 2. Betaxolol inhibited Ca2+ channel currents dose-dependently in both mesenteric artery cells and portal vein cells. The two isomers, (+)-betaxolol and (-)-betaxolol (relative beta-antagonistic efficacies of 0.1 and 1, respectively), had similar potencies for inhibiting Ca2+ channel currents in portal vein cells. Propranolol did not inhibit the currents. Thus the inhibitory action of betaxolol on Ca2+ channel currents was independent of the beta-adrenoceptor. 3. The inhibitory action of betaxolol on Ca2+ channel currents was compared with that of diltiazem and of nifedipine in mesenteric artery cells. The current inhibition depended on the stimulation frequency with all drugs (use-dependent block). All drugs also accelerated the current decay and shifted the voltage-dependent inactivation curve in a negative direction. 4. In conclusion, betaxolol inhibited Ca2+ channel currents in vascular smooth muscle cells. The mode of inhibitory action was similar to that of diltiazem and nifedipine. Our results suggest that betaxolol is a unique beta-adrenoceptor antagonist that has a direct inhibitory action on voltage-dependent Ca2+ channels in vascular smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号