首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The receptor-mediated axonal transport of [125I]-labeled neurotrophins by afferent and efferent neurons of the vagus nerve was determined to predict the responsiveness of these neurons to neurotrophins in vivo. [125I]-labeled neurotrophins were administered to the proximal stump of the transected cervical vagus nerve of adult rats. Vagal afferent neurons retrogradely transported [125I]neurotrophin-3 (NT-3), [125I]nerve growth factor (NGF), and [125I]neurotrophin-4 (NT-4) to perikarya in the ipsilateral nodose ganglion, and transganglionically transported [125I]NT-3, [125I]NGF, and [125I]NT-4 to the central terminal field, the nucleus tractus solitarius (NTS). Vagal afferent neurons showed minimal accumulation of [125I]brain-derived neurotrophic factor (BDNF). In contrast, efferent (parasympathetic and motor) neurons located in the dorsal motor nucleus of the vagus and nucleus ambiguus retrogradely transported [125I]BDNF, [125I]NT-3, and [125I]NT-4, but not [125I]NGF. The receptor specificity of neurotrophin transport was examined by applying [125I]-labeled neurotrophins with an excess of unlabeled neurotrophins. The retrograde transport of [125I]NT-3 to the nodose ganglion was reduced by NT-3 and by NGF, and the transport of [125I]NGF was reduced only by NGF, whereas the transport of [125I]NT-4 was significantly reduced by each of the neurotrophins. The competition profiles for the transport of NT-3 and NGF are consistent with the presence of TrkA and TrkC and the absence of TrkB in the nodose ganglion, whereas the profile for NT-4 suggests a p75 receptor-mediated transport mechanism. The transport profiles of neurotrophins by efferent vagal neurons in the dorsal motor nucleus of the vagus and nucleus ambiguus are consistent with the presence of TrkB and TrkC, but not TrkA, in these nuclei. These observations describe the unique receptor-mediated axonal transport of neurotrophins in adult vagal afferent and efferent neurons and thus serve as a template to discern the role of specific neurotrophins in the functions of these visceral sensory and motor neurons in vivo. J. Comp. Neurol. 393:102–117, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    2.
    Abnormal availability of neurotrophins, such as nerve growth factor (NGF), has been implicated in diabetic somatosensory polyneuropathy. However, the involvement of neurotrophins in diabetic neuropathy of autonomic nerves, particularly the vagus nerve which plays a critical role in visceral afferent and in autonomic motor functions, is unknown. To assess the effects of hyperglycemia on the neurotrophin content and transport in this system, cervical vagus nerves of streptozotocin (STZ)-induced diabetic rats were studied at 8, 16, and 24 weeks after the induction of diabetes. Elevations in vagus nerve hexose (glucose and fructose) and polyol levels (sorbitol), and their normalization with insulin treatment, verified that the STZ treatment resulted in hyperglycemia-induced metabolic abnormalities in the nerve. Neurotrophin (NGF and neurotrophin-3; NT-3) content and axonal transport were assessed in the cervical vagus nerves from nondiabetic control rats, STZ-induced diabetic rats, and diabetic rats treated with insulin. The NGF, but not the NT-3, content of intact vagus nerves from diabetic rats was increased at 8 and 16 weeks (but not at 24 weeks). Using a double-ligation model to assess the transport of endogenous neurotrophins, the retrograde transport of both NGF and NT-3 was found to be significantly reduced in the cervical vagus nerve at later stages of diabetes (16 and 24 weeks). Anterograde transport of NGF or NT-3 was not apparent in the vagus nerve of diabetic or control rats. These data suggest that an increase in vagus nerve NGF is an early, but transient, response to the diabetic hyperglycemia and that a subsequent reduction in neuronal access to NGF and NT-3 secondary to decreased retrograde axonal transport may play a role in diabetes-induced damage to the vagus nerve.  相似文献   

    3.
    The PI3 (phosphatidylinositol-3) kinase/Akt (protein kinase B) signal pathway is involved in the molecular signaling that regulates retrograde axonal transport of neurotrophins in the nervous system. Previous work showed that a reduced retrograde axonal transport of endogenous nerve growth factor (NGF) and neurotrophin-3 (NT-3) in the vagus nerve of diabetic rats occurred in the presence of normal production of neurotrophins and neurotrophin receptors. To assess the potential involvement of an impaired PI3 kinase/Akt signal pathway in the diabetes-induced reduction in retrograde axonal transport of neurotrophins in the vagus nerve, we characterized diabetes-induced changes in the PI3 kinase/Akt signal pathway in the vagus nerve and vagal afferent neurons. Control and streptozotocin (STZ)-induced diabetic rats with a duration of 16 weeks, kinase assays, Western blotting, and immunocytochemistry were used to show that diabetes resulted in alterations in activity and protein expression of the PI3 kinase/Akt signal pathway in the vagus nerve and vagal afferent neurons. Diabetes caused a significant decrease in enzymatic activity of PI3 kinase and Akt (52 and 36% of control, respectively) in the vagus nerve. The reduced enzymatic activity was not associated with decreased protein expression of the p85 subunit of PI3 kinase, Akt and phosphorylation of Akt (ser473). In contrast, there was a significant increase in the phosphorylation of p70s6 kinase (thr421/ser424) along with a normal protein expression of p70s6 kinase in the vagus nerve of diabetic rats. However, diabetes induced an overall decrease in immunoreactivity of the p85 subunit of PI3 kinase, phospho-Akt (ser473) and phospho-p70s6/p85s6 kinase (thr421/ser424) in vagal afferent neurons. Thus, impaired PI3 kinase/Akt signal pathway may partly account for the reduced retrograde axonal transport of neurotrophins in the vagus nerve of STZ-induced diabetic rats.  相似文献   

    4.
    Neurotrophins and neurotrophin receptors play an important role in survival and growth of injured peripheral nerves. To study the injury-mediated neurotrophic response in autonomic nerves, we investigated changes in mRNA expression of neurotrophins and their receptors in the transected vagus nerve and nodose ganglion. Studies using in situ hybridization histochemistry showed that axotomy of the cervical vagus nerve resulted in increased expression of mRNAs for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and for TrkA, TrkB, and TrkC receptors in non-neuronal cells at both the proximal and distal segments of the transected cervical vagus nerve. Moreover, NGF protein was increased in the distal end, and NT-3 protein was increased in both the proximal and the distal ends of the transected nerve 3 days after axotomy. No change of p75(NTR) mRNA was detected in the transected vagus nerve. The induction of each neurotrophin and Trk receptor mRNA was apparent within 1 day after the axotomy and was sustained at least 14 days. By 45 days after the axotomy, a time when axonal reconnection with target tissue is made (integrity of the nerve-target connection was confirmed by the retrograde transport of FluoroGold from the stomach to vagal cell bodies), the levels of neurotrophin and Trk mRNAs in the vagus nerve declined to pre-axotomy levels. TrkA, TrkC, and p75(NTR) mRNA-containing vagal sensory neurons in the nodose ganglion were reduced in number after cervical vagotomy. Neurotrophin-mRNA-containing neurons were not found in the nodose ganglia from either intact or vagotomized rats. The axotomy-induced up-regulation of neurotrophins and Trk receptors mainly in the non-neuronal cells at or near the site of transection suggests that neurotrophins are involved in the survival and regeneration process of the vagus nerve after injury.  相似文献   

    5.
    6.
    Mature nodose and petrosal ganglia neurons (placodally derived afferent neurons of the vagal and glossopharyngeal nerves) contain TrkA and TrkC, and transport specific neurotrophins [nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4)]. This study evaluated neurotrophin influences on the presence of neuropeptides and/or neurotransmitter enzymes in these visceral sensory neurons. NGF, NT-3 and NT-4 (10–100 ng/ml) were applied (5 days) to dissociated, enriched, cultures of mature nodose/petrosal ganglia neurons, and the neurons processed for tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neurofilament (NF-200) immunocytochemistry. Addition of NGF to nodose/petrosal ganglia neuron-enriched cultures significantly increased the number of TH-immunoreactive (ir) neurons, decreased the number of VIP-ir neurons in the cultures, and did not affect the numbers of CGRP-ir neurons. The addition of an NGF neutralizing antibody attenuated the effects of NGF on TH and VIP-ir neurons. NT-3 increased the number of VIP-ir neurons in the nodose/petrosal ganglia cultures and did not alter the numbers of TH-, or CGRP-ir neurons. The addition of an NT-3 neutralizing antibody attenuated the effects of NT-3 on VIP-ir neurons. NT-4 had no significant effects on the numbers of TH, VIP and CGRP-ir neurons. The absence of neurotrophin-induced changes in the numbers of NF-200-ir neurons in culture showed the lack of neurotrophin-mediated changes in survival of mature vagal afferent neurons. These data demonstrate that specific neurotrophins influence the numbers of neurons labeled for specific neurochemicals in nodose/petrosal ganglia cultures. These data, coupled with previous evidence for the presence of TrkA and TrkC mRNA and of the retrograde transport of NGF and NT-3, suggest important roles for NGF and NT-3 in the maintenance of transmitter phenotype of these mature visceral afferent neurons.  相似文献   

    7.
    Mature nodose and petrosal ganglia neurons (placodally derived afferent neurons of the vagal and glossopharyngeal nerves) contain TrkA and TrkC, and transport specific neurotrophins [nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4)]. This study evaluated neurotrophin influences on the presence of neuropeptides and/or neurotransmitter enzymes in these visceral sensory neurons. NGF, NT-3 and NT-4 (10-100 ng/ml) were applied (5 days) to dissociated, enriched, cultures of mature nodose/petrosal ganglia neurons, and the neurons processed for tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neurofilament (NF-200) immunocytochemistry. Addition of NGF to nodose/petrosal ganglia neuron-enriched cultures significantly increased the number of TH-immunoreactive (ir) neurons, decreased the number of VIP-ir neurons in the cultures, and did not affect the numbers of CGRP-ir neurons. The addition of an NGF neutralizing antibody attenuated the effects of NGF on TH and VIP-ir neurons. NT-3 increased the number of VIP-ir neurons in the nodose/petrosal ganglia cultures and did not alter the numbers of TH-, or CGRP-ir neurons. The addition of an NT-3 neutralizing antibody attenuated the effects of NT-3 on VIP-ir neurons. NT-4 had no significant effects on the numbers of TH, VIP and CGRP-ir neurons. The absence of neurotrophin-induced changes in the numbers of NF-200-ir neurons in culture showed the lack of neurotrophin-mediated changes in survival of mature vagal afferent neurons. These data demonstrate that specific neurotrophins influence the numbers of neurons labeled for specific neurochemicals in nodose/petrosal ganglia cultures. These data, coupled with previous evidence for the presence of TrkA and TrkC mRNA and of the retrograde transport of NGF and NT-3, suggest important roles for NGF and NT-3 in the maintenance of transmitter phenotype of these mature visceral afferent neurons.  相似文献   

    8.
    Specific neurotensin (NT) binding sites were recently shown to be highly concentrated in the nucleus of the solitary tract (NTS), which receives primary vagal afferents, and in the dorsal motor nucleus of the vagus (DMN), which contains the cell bodies of origin of vagal preganglionic neurons. To investigate the relationship of these binding sites with sensory and visceromotor components of the vagus nerve, they were labeled here in vitro, using monoiodo[Tyr3]neurotensin (125I-NT) and visualized by light microscopic radioautography in the dorsomedial medulla of both intact and unilaterally vagotomized rats, in the nodose ganglia of intact animals, and in ligated vagus nerves. Unilateral vagotomy performed above the nodose ganglion resulted in a significant ipsilateral decrease in 125I-NT binding within both the NTS and the DMN, suggesting that NT binding sites were associated with both primary afferent fibers and preganglionic nerve cell bodies. The selective radioautographic labeling of a subpopulation (approximately 15%) of neuronal perikarya in the nodose ganglion confirmed that a proportion of vagal afferent neurons contained NT binding sites. Following vagus nerve ligation, a pile up of radiolabeled NT binding sites was observed on both sides of the nerve crush, indicating that NT receptor components were transported both anterogradely and retrogradely along fibers of the vagus nerve. We conclude that NT receptors are synthesized and transported within a subpopulation of afferent and efferent components of the vagus nerve and that NT may therefore act presynaptically upon vagal axon terminals in both central and peripheral nervous systems.  相似文献   

    9.
    It is known that the vagus nerve contains catecholaminergic fibers. However, the origin of these fibers has not been systematically examined. In this study, we addressed this issue using retrograde tracing from the subdiaphragmatic vagus nerve combined with immunocytochemistry. The cervical and thoracic sympathetic trunk ganglia, the nodose ganglia and the dorsal motor nucleus of the vagus nerve were examined following injection of Fluoro-Gold or cholera toxin horseradish peroxidase conjugate into the trunks of the subdiaphragmatic vagus nerve of rats. Numerous retrogradely labeled neurons were seen in the nodose ganglion and the dorsal motor nucleus of the vagus nerve. Very few labeled neurons were found in the sympathetic ganglia (less than 0.06% of the neurons in either superior cervical ganglion or cervicothoracic ganglion were retrogradely labeled). Double labeling with immunofluoresence for catecholamine synthesizing enzymes revealed that: (1) 92% of all Fluoro-Gold retrogradely labeled tyrosine hydroxylase immunoreactive neurons were found in parasympathetic sources (75% in the dorsal motor nucleus of the vagus nerve and 17% in the nodose ganglia), and only 8% in the cervicothoracic sympathetic ganglia; (2) 12% of the retrogradely labeled catecholaminergic neurons in the dorsal motor nucleus of the vagus nerve were also dopamine-beta-hydroxylase immunopositive neurons; (3) 70% of the retrogradely labeled neurons in the sympathetic ganglia were tyrosine hydroxylase immunopositive and 54% of these catecholaminergic neurons contained dopamine-beta-hydroxylase, while 30% of the retrogradely labeled neurons were non-catecholaminergic neurons. These results indicate that catecholaminergic fibers in the abdominal vagus nerve are primarily dopaminergic and of parasympathetic origin, and that only an extremely small number of these fibers, mostly noradrenergic in nature, arise from postganglionic sympathetic neurons.  相似文献   

    10.
    Long-term physiological responses of nerve growth factor (NGF) and other neurotrophins require gene regulation and likely depend on retrograde axonal transport of NGF or a signaling molecule activated by ligand-receptor interaction. The low-affinity neurotrophin receptor p75LANR is retrogradely transported, but this receptor is not sufficient for NGF-dependent cell survival or differentiation. In this study we examined the distribution and transport of the TrkA NGF receptor using two anti-peptide polyclonal antibodies and a monoclonal antibody, all of which are TrkA specific. We find that (1) in the adult rat brain TrkA-like immunoreactivity is similar with all antibodies in striatal and basal forebrain neurons, (2) TrkA is upregulated in neuronal and nonneuronal cells near the sites of injury, and (3) TrkA immunoreactivity builds up within the proximal and distal segments of transected fimbrial axons, which is consistent with its transport in the anterograde and retrograde directions. Thus, TrkA may itself be, or be a component of, the neurotrophic intraaxonal messenger by which NGF regulates gene expression in sensitive neurons.  相似文献   

    11.
    12.
    The medullary distribution of afferent fibers and cells of origin of the cervical vagal trunk and of the vagal innervation of the stomach have been studied using the anterograde and retrograde transport of horseradish peroxidase (HRP). Injections of HRP were made into the cervical vagus nerve, the stomach wall, the proximal small intestine, or the peritoneal cavity. Two to four days following the injections, the rats were perfused and the medullae oblongatae and nodose ganglia were processed using the tetramethyl benzidine method. Cervical vagus nerve injections of HRP resulted in heavy anterograde labeling in the ipsilateral nucleus of the tractus solitarius (NTS) and the commissural nucleus. Lighter labeling was seen in these regions on the contralateral side, but did not extend as far rostrally in the NTS. Labeling was also seen in the area postrema. Retrogade labeling of somata was present in the ipsilateral side in the nodose ganglion, throughout the whole extent of the dorsal motor nucleus of the vagus, much of the nucleus ambiguus and in rostral levels of the cervical spinal cord. After stomach injections, labeling indicative of afferent fibers was observed bilaterally in the dorsomedial and medial portions of the NTS and in the commissural nucleus. Labeled efferent fibres arose from neurons in the dorsal motor nucleus of the vagus, nucleus ambiguus and the cervical spinal cord. Retrogradely labeled somata were found bilaterally, throughout the rostrocaudal length of the dorsal motor nucleus in all cases with stomach injections. In some, but not all cases, labeled somata were seen bilaterally in compact areas within the nucleus ambiguus, particularly rostrally. Control injections of HRP into the intestinal wall and peritoneal cavity indicated that the stomach was the primary source of afferent and efferent labeling in the medulla following subdiaphragmatic injections.  相似文献   

    13.
    The presence of cholinergic fibers in the afferent vagal system of various species was shown using biochemical and immunohistochemical methods. Biochemical activity of choline acetyl transferase, the synthesizing enzyme for acetylcholine, was detected in the nodose ganglion of cat, rabbit, dog and sheep. Immunohistochemistry, using a monoclonal antibody raised against choline acetyl transferase, revealed labelled cell bodies in the nodose ganglion of the rabbit. Acetylcholine endogenous content, measured in nodose ganglia devoid of efferent fibers, was twice as high in the right ganglion as compared to the left. Enzyme transport and choline acetyl transferase activity analysis were each determined on separate peripheral vagus nerves. These results are discussed in terms of functional properties of the vagal afferent neurons, including the modulation of vagal afferent messages at the level of the nodose ganglion and the eventual control of peripheral intrinsic neurons by sensory vagal terminals.  相似文献   

    14.
    Sympathetic (stellate and superior cervical ganglion) and sensory vagal (nodose and jugular ganglion) neurons innervating the guinea-pig trachea were labelled using a retrograde neuronal tracer (Fast Blue) and tested for immunoreactivity to nitric oxide synthase (NOS) and either tyrosine hydroxylase (TH; sympathetic ganglia) or substance P (SP; vagal afferent neurons). Approx. 3% of the sympathetic neurons innervating the trachea were NOS-positive. These neurons belonged to the non-catecholaminergic phenotype. Amongst the retrogradely labelled neurons in the vagal sensory ganglia, 5–10% of retrogradely labelled neurons in the nodose (inferior vagal) ganglion, and 10–20% of those in the jugular (superior vagal) ganglion were NOS-immunoreactive. All NOS-positive vagal afferent neurons labelled with retrograde tracer were negative for substance P. Accordingly, the results of these studies provide evidence that portions of the sympathetic and sensory innervation of the guinea-pig trachea is provided by NOS-immunoreactive neurons.  相似文献   

    15.
    Fong AY  Talman WT  Lawrence AJ 《Brain research》2000,878(1-2):240-246
    Previous studies have shown that the NO(ccirf)-cGMP pathway may be functionally relevant in the nodose ganglion and at afferent terminations of the vagus nerve. The technique of unilateral vagal ligations, using double ligatures, was combined with the techniques of NADPH-diaphorase histochemistry, as an index of nitric oxide synthase (NOS) activity, and autoradiography using the radioligands [(3)H]nitro-L-arginine and [(3)H]cGMP, to examine axonal transport of NOS and cGMP-dependent effectors by the rat vagus nerve. A population of perikarya in the nodose ganglia was NADPH-diaphorase positive, and binding of both [(3)H]nitro-L-arginine and [(3)H]cGMP was found on the nodose ganglia. Following vagal ligation, NADPH-diaphorase reactivity accumulated proximal to the proximal ligature and distal to the distal ligature. Vagus nerve transection beyond the distal ligature eliminated NADPH-diaphorase reactivity at the distal ligature. Similarly, [(3)H]nitro-L-arginine binding was found over the nodose ganglion; and after vagal ligation, an accumulation of [(3)H]nitro-L-arginine binding was seen adjacent to the proximal ligature, though little binding was found adjacent to the distal ligature. No accumulation of [3H]cGMP binding was found adjacent to either the proximal or the distal ligatures. These findings suggest that the rat vagus nerve bidirectionally transports NOS, the enzyme involved in biosynthesis of NO(ccirf) by nitroxidergic nerves. As anticipated, [(3)H]nitro-L-arginine, a competitive inhibitor of the amino acid precursor for NO(ccirf), binds only to a centrifugally transported moiety that we conjecture is NOS, while cGMP apparently is not subject to transport. These data further support the use of NO(&z.ccirf;) in transmission at vagal afferent terminals.  相似文献   

    16.
    The ability of vagal and glossopharyngeal afferent neurons to retrogradely transport 3H-D-aspartate from the nucleus tractus solitarius to the nodose and petrosal ganglia was examined. Injections of 3H-D-aspartate centered in the medial NTS at the rostral-caudal level of the area postrema failed to consistently label cells in the nodose and petrosal ganglia. In 5 of the 10 rats studied no retrogradely labeled neurons were observed in these ganglia ipsilateral to the injection site, while in the other 5 rats a small number of cells (less than 3%) were labeled. Injections of 3H-D-aspartate into the NTS consistently produced retrograde labeling of neurons in the ipsilateral paratrigeminal area. In addition, many heavily labeled neurons were observed in the injected as well as the contralateral NTS. Injections of 3H-D-asparate into the spinal trigeminal nucleus consistently labeled neurons in the trigeminal ganglion. Since the uptake and retrograde transport of 3H-D-aspartate appears to be characteristic of neurons that use glutamate or aspartate as a neurotransmitter, these results suggest that vagal and glossopharyngeal afferents are not glutamatergic or aspartatergic.  相似文献   

    17.
    Specific angiotensin II (Ang II) binding sites are present in the dorsal medulla of several species and dose-related cardiovascular effects are produced by microinjection of the peptide into this region. Because the anatomical location of Ang II binding sites in the area postrema (ap), nucleus tractus solitarii (nTS) and dorsal motor nucleus of the vagus (dmnX) coincides with the topography of vagal afferent fibers and efferent motor neurons, the effect of either nodose ganglionectomy or cervical vagotomy on Ang II binding sites in the dorsomedial medulla was investigated in dogs by in vitro receptor autoradiography. Two weeks after unilateral ganglionectomy, there was a marked reduction in the density of specific Ang II binding sites in the ipsilateral ap, nTS and dmnX and an absence of binding sites in the region where vagal afferent fibers course through the rostral medulla. Unilateral cervical vagotomy, which has been shown to spare central processes of afferent fibers, resulted in a loss of binding only in the ipsilateral dmnX. We also show that Ang II binding sites are present in the nodose ganglion and central and peripheral processes of the vagus nerve. The data indicate that medullary Ang II binding sites are associated with both vagal afferent fibers and efferent motor neurons.  相似文献   

    18.
    Although vesicular retrograde transport of neurotrophins in vivo is well established, relatively little is known about the mechanisms that underlie vesicle endocytosis and formation before transport. We demonstrate that in vivo not all retrograde transport vesicles are alike, nor are they all formed using identical mechanisms. As characterized by density, there are at least two populations of vesicles present in the synaptic terminal that are retrogradely transported along the axon: those containing neurotrophins (NTs) and those resulting from synaptic vesicle recycling. Vesicles containing nerve growth factor (NGF), NT-3, or NT-4 had similar densities with peak values at about 1.05 g/ml. Synaptic-derived vesicles, labeled with anti-dopamine beta-hydroxylase (DBH), had densities with peak values at about 1.16 g/ml. We assayed the effects of pharmacologic agents in vivo on retrograde transport from the anterior eye chamber to the superior cervical ganglion. Inhibitors of phosphatidylinositol-3-OH (PI-3) kinase and actin function blocked transport of both anti-DBH and NGF, demonstrating an essential role for these molecules in retrograde transport of both vesicle types. Dynamin, a key element in synaptic vesicle recycling, was axonally transported in retrograde and anterograde directions, and compounds able to interfere with dynamin function had a differential effect on retrograde transport of NTs and anti-DBH. Okadaic acid significantly decreased retrograde axonal transport of anti-DBH and increased NGF retrograde transport. We conclude that there are both different and common proteins involved in endocytosis and targeting of retrograde transport of these two populations of vesicles.  相似文献   

    19.
    In situ hybridization analysis of cells expressing messenger RNAs (mRNAs) for the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and their high-affinity receptors (trk, trkB and trkC) in the rat embryo revealed a complex but specific expression pattern for each of these mRNAs. For all mRNAs a developmentally regulated expression was seen in many different tissues. BDNF and NT-3 mRNAs were expressed in the sensory epithelia of the cochlea and vestibule macula of the sacculus and utricle, and both trkB and trkC mRNA were expressed in the spiral and vestibule ganglia innervating these sensory structures. NGF and NT-3 mRNA were found in the iris, innervated by the sympathetic neurons of the superior cervical ganglion and sensory neurons from the trigeminal ganglion, which expressed both trk and trkC mRNAs. Both NGF and NT-3 mRNAs were also expressed in other target fields of the trigeminal ganglion, the epithelium of the whisker follicles (NT-3 mRNA) and in the epithelium of the nose, tongue and jaw. NT-3 mRNA was found in the cerebellar external granule layer and trkC mRNA in the Purkinje layer of the cerebellar primordia. These sites of synthesis are consistent with a target-derived neurotrophic interaction for NGF, BDNF and NT-3. However, in some cases mRNAs for both the neurotrophins and their high-affinity receptors were detected in the same tissue, including the dorsal root, geniculate, superior, jugular, petrose and nodose ganglia, as well as in the hippocampus, frontal cortical plate and pineal recess, implying a local mode of action. Combined, these data suggest a broad function for the neurotrophins and their receptors in supporting neural innervation during embryonic development. The results also identify several novel neuronal systems that are likely to depend on the neurotrophins in vivo.  相似文献   

    20.
    To begin to study the factors regulating the synthesis and release of substance P (SP) in the sensory vagus nerve, cultures of neonatal rat nodose ganglia were developed. In microexplant cultures, obtained from small fragments of nodose ganglia, SP was present in low amounts: after 3 weeks, 141 +/- 36 pg per well, 10 ganglia equivalents per well. To enhance neuron survival, nodose ganglia were enzymatically dissociated using neutral protease. Estimated survival at 5 days was 20-30%, with 800-1200 surviving neurons per plated ganglion, and decreased slowly thereafter. Specific SP immunostaining was present in 10-20% of neurons, mostly of small diameter (18-22 micron). SP content was low for 5 days then rose progressively after 14 days to 80-150 pg per plated ganglion. The addition of nerve growth factor (NGF, 100 ng/ml) to the culture medium did not alter neuron survival. However, SP content was doubled in the presence of NGF, or fell rapidly to one-half control levels following its withdrawal: e.g. following 12 days in culture with NGF 1185 +/- 176 pg/well vs NGF withdrawn day 8-12, 592 +/- 118 pg/well, mean +/- S.D., P less than 0.01. Somatostatin, present in one-sixth the amount of SP, was unaltered by NGF. In subsequent studies, plating of neurons onto previously dissociated rat atriacytes increased survival by 50% but did not alter SP content per surviving neurons. These studies demonstrate that SP is present in dissociated cultures of rat vagal sensory neurons; the quantities and estimated net synthesis rate correspond to previous observations in vivo. The studies also demonstrate that SP content but not neuron survival are regulated by NGF in nodose ganglion neurons. This model may prove valuable for the study of SP and other sensory neuropeptides in this important class of visceral afferent neurons.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号