首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the role of the central cannabinoid receptor (CB(1)) in mediating the actions of the endogenous cannabinoid agonist anandamide and the synthetic cannabinoid CP-55940. Activation of primary mouse astrocyte cultures by exposure to bacterial lipopolysaccharide (LPS) caused a marked (approximately tenfold) increase in nitric oxide (NO) release. Coincubation with the cannabinoid agonists anandamide or CP-55940 markedly inhibited release of NO (-12% to -55%). This effect was abolished by SR-141716A (1 microM), a CB1 receptor antagonist. SR-141716A alone also significantly increased NO release in response to LPS, suggesting that endogenous cannabinoids modify inflammatory responses. In contrast, coincubation with the CB2 receptor antagonist SR-144528 (1 microM) abolished the inhibitory effects of the endogenous cannabinoid anandamide on LPS-induced NO release, although this may reflect nonspecific effects of this ligand or cannabinoid actions through atypical receptors of anandamide. We also showed that endogenous or synthetic cannabinoids inhibit LPS-induced inducible NO synthase expression (mRNA and protein) in astrocyte cultures. These results indicate that CB1 receptors may promote antiinflammatory responses in astrocytes.  相似文献   

2.
Patel S  Hillard CJ 《Brain research》2003,963(1-2):15-25
Mesocorticolimbic dopaminergic systems subserve cognitive processes, motivated behavior, the central stress response, and the reinforcing properties of drugs of abuse. Hyperdopaminergic states have been suggested to contribute to the psychotropic effects of the cannabinoids; however, the mechanisms by which cannabinoids activate mesocorticolimbic dopaminergic systems are not well understood. We have examined the role of noradrenergic neurotransmission in the mediation of cannabinoid-induced activation of A10 dopaminergic neurons using Fos as a marker of neuronal activation in mice. Administration of the CB(1) receptor agonist CP55940 differentially increased the number of Fos-like immunoreactive (Fos-li) A10 dopaminergic cells within three anatomically distinct regions (parabrachial pigmented, paranigral, and caudal linear nuclei) compared to vehicle-treated mice. Similar results were obtained using the CB(1) receptor agonist Win 55212-2; and pretreatment with the CB(1) receptor antagonist SR141716 significantly inhibited CP55940-induced Fos expression. Pretreatment with the alpha(1)-adrenergic receptor antagonist, prazosin, and the alpha(2)-adrenergic receptor agonist, clonidine, reduced the number of Fos-li dopaminergic neurons induced by CP55940 in a subregion-specific manner. CP55940 and Win 55212-2 increased the number of Fos-li neurons within the locus coeruleus. Finally, CB(1) receptor immunoreactivity was detected on fibers within the CL but not in either PBP or PN. Our data demonstrate that cannabinoids induce Fos expression within A10 dopaminergic neurons in a heterogeneous anatomical pattern, and suggest that enhanced noradrenergic neurotransmission contributes to cannabinoid-induced activation of A10 dopaminergic neurons in vivo.  相似文献   

3.
Cannabinoids have been shown to impair cognition in vivo and block long-term potentiation (LTP), a candidate experimental model of learning and memory in vitro, via cannabinoid receptor (CB1) activation. cis-Oleamide (cOA) is an endogenous sleep-inducing lipid with putative cannabinomimetic properties. We hypothesise that cOA is cannabinomimetic and perform a comparative study with synthetic and endogenous cannabinoids on their effects on synaptic conditioning via two different patterns of stimulation in the hippocampal slice. CB1 agonists, R(+)-WIN55212-2 and anandamide, but not cOA blocked high frequency stimulation (HFS)-LTP. R(+)-WIN55212-2 and cOA (stereoselectively) attenuated responses to theta-burst-LTP, while anandamide did not. The anandamide transport inhibitor, AM404, attenuated HFS-LTP, an effect reversed by the CB1 receptor antagonist SR141716A but not mimicked by the vanilloid receptor agonist capsaicin. TFNO, an inhibitor of fatty acid amide hydrolase (FAAH), the enzyme responsible for degrading anandamide, failed to block HFS-LTP alone or in combination with cOA. On the contrary, this combination was as effective as cOA on its own in attenuating theta-burst-LTP. cOA effects on theta-burst-LTP were prevented in the presence of the GABA(A) receptor blocker picrotoxin, but not by pretreatment with SR141716A. These findings suggest that cOA neither directly activates CB1 receptors nor acts via the proposed "entourage" effect [Nature 389 (1997) 25] to increase titres of anandamide through FAAH inhibition. The selective effects of cOA on theta-burst-conditioning may reflect modulation of GABAergic transmission. Anandamide uptake inhibition, but not blockade of FAAH, effectively increases synaptic concentrations of endocannabinoids.  相似文献   

4.
In this study we investigated the effect of cannabinoids on [3H]glutamate release from hippocampal synaptosomes of rat and CB1-null mutant mouse. In the rat, cannabinoid receptor agonists, i.e. CP55,940 (EC50, 0.84 microm), WIN55,212-2 (EC50, 3.47 microm), ACEA (EC50, 17.8 microm), and R-(+)-methanandamide (EC50, 19.8 microm) concentration-dependently inhibited the 25-mm-K+ depolarization-evoked release of [3H]glutamate and, among them, WIN55,212-2 displayed the greatest efficacy. The CB1 receptor antagonists SR141716A (1-5 microm) and AM251 (1 microm) and the VR1 vanilloid receptor antagonist capsazepine (10 microm) did not antagonize the effect of the agonists. SR141716A by itself attenuated the evoked [3H]glutamate release. WIN55,212-2 inhibited the release of [3H]glutamate in CB1 -/- mice as well. These data demonstrate that the action of cannabinoids on glutamate release in the hippocampus is pharmacologically distinct and independent from the cloned CB1 receptor.  相似文献   

5.
It was shown recently that Delta9-tetrahydrocannabinol, like several other drugs eliciting euphoria, stimulates dopaminergic neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens. The aim of the present work was to clarify the mechanism of this stimulatory effect. Our hypothesis was that cannabinoids depress the GABAergic inhibition of dopaminergic neurons in the VTA. Electrophysiological properties of VTA neurons in rat coronal midbrain slices were studied with the patch-clamp technique. GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked by electrical stimulation in the vicinity of the recorded neurons. The amplitude of IPSCs was depressed by the synthetic mixed CB1/CB2 cannabinoid receptor agonist WIN55212-2 (10(-6) and 10(-5) m). The CB1 cannabinoid receptor antagonist SR141716A (10(-6) m) prevented the inhibition produced by WIN55212-2 (10(-5) m). Two observations showed that IPSCs were depressed with a presynaptic mechanism. WIN55212-2 (10(-5) m) did not change the amplitude of miniature IPSCs recorded in the presence of tetrodotoxin. Currents evoked by pressure ejection of muscimol from a pipette were also not changed by WIN55212-2 (10(-5) m). The results indicate that activation of CB1 cannabinoid receptors inhibits GABAergic neurotransmission in the VTA with a presynaptic mechanism. Depression of the GABAergic inhibitory input of dopaminergic neurons would increase their firing rate in vivo. Accordingly, dopamine release in the projection region of VTA neurons, the nucleus accumbens, would also increase.  相似文献   

6.
The cannabinoids (CB) modulate the extracellular signal-regulated kinase (ERK), leading to various forms of plasticity in the brain. Little is known, however, on the in vivo short- and long-term activation and regulation of the components of mitogen-activated protein kinase (MAPK)/ERK signaling by CB. The CB agonist WIN55212-2 (8 mg/kg) increased the immunodensities of phosphorylated c-Raf-1 (42%), MEK1/2 (63%), ERK1 (24%), and ERK2 (28%) in the rat cerebral frontal cortex. These effects were antagonized by SR141716A (rimonabant, 10 mg/kg), a selective CB(1) receptor antagonist. Repeated WIN55212-2 treatment (2-8 mg/kg for 5 days) resulted in tachyphylaxis to the acute activation of Raf-MEK-ERK signaling. Acute WIN55212-2 also induced a hypothermic effect in rats, which was reduced after repeated administration (tolerance). Treatment with SR141716A after chronic WIN55212-2 resulted in the expected cannabinoid withdrawal syndrome, without concomitant alterations in the phosphorylation state of c-Raf-1, MEK1/2, or ERK1/2. Pretreatment with SL327 (20 mg/kg, a MEK1/2 inhibitor) increased the basal phosphorylation of c-Raf-1 (40%) and MEK1/2 (74%; feedback regulation) and fully prevented the up-regulation of ERK1/2 (23-31%) induced by WIN55212-2. Pretreatment with MK801 (1 mg/kg, a NMDA receptor antagonist) effectively blocked the up-regulation c-Raf-1 (41%), MEK1/2 (57%) and ERK1/2 (25-30%) induced by the CB agonist. The main findings demonstrate that the acute stimulation of CB(1) receptors in the frontal cortex results in the sequential phosphorylation of Raf-MEK-ERK cascade, in which c-Raf-1 activation (rate-limiting process) plays a crucial role. Moreover, the in vivo stimulating effect of WIN55212-2 on Raf-MEK-ERK signaling is under the extrinsic regulation of an excitatory glutamatergic mechanism.  相似文献   

7.
8.
Upon activation, brain microglial cells release proinflammatory mediators, such as TNFalpha, which may play an important role in eliciting neuroinflammatory processes causing brain damage. As cannabinoids have been reported to exert anti-inflammatory and neuroprotective actions in the brain, we here examined the effect of both synthetic and endogenous cannabinoids on TNFalpha release elicited by bacterial endotoxin lypopolysaccharide (LPS) in cultured microglia. Exposure of primary cultures of rat cortical microglial cells to LPS significantly stimulated TNFalpha mRNA expression and release. The endogenous cannabinoids anandamide and 2-arachidonylglycerol (2-AG), as well as the synthetic cannabinoids (+)WIN 55,212-2, CP 55,940, and HU210, inhibited in a concentration-dependent manner (1-10 microM) the LPS-induced TNFalpha release. Unlike the high-affinity cannabinoid receptor agonist (+)WIN 55,212-2, the low-affinity stereoisomer (-)WIN 55,212-2 did not exert any significant inhibition on TNFalpha release. Given this stereoselectivity, the ability of (+)WIN 55,212-2 to inhibit LPS-induced TNFalpha release from microglia is most likely receptor-mediated. By RT-PCR we found that the two G(i/o) protein-coupled cannabinoid receptors (type 1 and 2) are both expressed in microglial cultures. However, selective antagonists of type 1 (SR141716A and AM251) and type 2 (SR144528) cannabinoid receptors did not affect the effect of (+)WIN 55,212-2. Consistent with this finding is the observation that the ablative effect of (+)WIN 55,212-2 on LPS-evoked release of TNFalpha was not sensitive to the G(i/o) protein inactivator pertussis toxin. In addition, the cAMP elevating agents dibutyryl cAMP and forskolin both abolished LPS-induced TNFalpha release, thus rendering unlikely the possibility that (+)WIN 55,212-2 could ablate TNFalpha release through the inhibition of adenylate cyclase via the G(i)-coupled cannabinoid receptors type 1 and 2. In summary, our data indicate that both synthetic and endogenous cannabinoids inhibit LPS-induced release of TNFalpha from microglial cells. By showing that such effect does not appear to be mediated by either CB receptor type 1 or 2, we provide evidence suggestive of the existence of yet unidentified cannabinoid receptor(s) in brain microglia.  相似文献   

9.
Activation of cannabinoid CB1 and CB2 receptors is known to attenuate nociception and hyperalgesia in somatic inflammatory conditions. The aim of this study was to determine whether cannabinoids modulate colonic sensitivity in basal and inflammatory conditions. The effects of CB1 and CB2 receptor agonists and antagonists on the abdominal contractile response to colorectal distension (CRD) in basal conditions and after 2,4,6-trinitrobenzenesulphonic acid-induced colitis were investigated. As previously described, colitis triggered a hypersensitivity to CRD. In basal conditions, both CB1 (WIN 55212-2) and CB2 (JWH 015) agonists reduced the abdominal response to CRD at a dose of 1 mg kg(-1), i.p. Both compounds were active at a lower dose (0.1 mg kg(-1)) abolishing the hypersensitivity induced by colitis. Administered alone, CB1 (Rimonabant) and CB2 (SR 144528) receptor antagonists (10 mg kg(-1)) had no effect on basal sensitivity. In contrast, the CB1, but not the CB2, receptor antagonist enhanced colitis-induced hyperalgesia. It is concluded that colonic inflammation enhances the antinociceptive action of CB1 and CB2 receptor agonists, and activates an endogenous, CB1 receptor mediated, antinociceptive pathway.  相似文献   

10.
Multiple sclerosis (MS) is the most common of the immune demyelinating disorders of the central nervous system (CNS). Leukocyte/endothelial interactions are important steps in the progression of the disease and substances that interfere with these activities have been evaluated as potential therapeutic agents. Cannabinoid receptor agonists have been shown to downregulate immune responses and there is preliminary evidence that they may slow the progress of MS. The purpose of this investigation was to determine how cannabinoid receptor agonists interfere with leukocyte rolling and adhesion. This was investigated in an experimental autoimmune encephalomyelitis (EAE) model using six to eight week old C57BL/6 mice. Mouse myelin oligodendrocyte protein and pertussis toxin were used to induce EAE. WIN 55212-2, CB1 and CB2 antagonist were given. By use of in vivo intravital microscopy, leukocyte/endothelial interactions were evaluated via a cranial window implanted two days before. The results demonstrated that EAE increases leukocyte rolling and firm adhesion in the brain, and that this increased leukocyte/endothelial interaction can be attenuated by administration of WIN 55212-2. Furthermore, use of the selective antagonists for the CB1 receptor (SR 141716A) and the CB2 receptor (SR144528) in this study demonstrated that the cannabinoid's inhibitory effects on leukocyte/endothelial interactions can be mediated by activating CB2 receptor.  相似文献   

11.
Background Cannabinoid receptors are involved in visceral pain perception and control of intestinal motility in vivo. The underlying mechanisms are not well characterized. We aimed to determine whether the cannabinoid‐1 (CB1) receptor modulates intestinal afferent nerve discharge and the peristaltic reflex. Methods Rats were anesthetized and intestinal segments were removed. Afferent nerve discharge from a mesenteric nerve was investigated in vitro in the presence of the CB1 antagonist SR 141716A or the CB1 agonist WIN 55212‐2. The myenteric peristaltic reflex was induced by electrical field stimulation and influence of SR 141716A or WIN 55212‐2 was recorded. Key Results Afferent nerve discharge to the algesic mediator bradykinin was reduced to 11 ± 5.1 imp s?1 following pretreatment with SR 141716A and unchanged after WIN 55212‐2 compared to 63 ± 15.4 imp s?1 in controls. At maximum distension pressure (80 cmH2O) during ramp distension, 92 ± 12.4 imp s?1 were reached following SR 141716A compared to 260 ± 13.2 in vehicle controls and 227 ± 15.4 in WIN 55212‐2 pretreated animals. In contrast, afferent discharge to 5‐HT (500 μmol L?1) was increased to 75 ± 24.6 imp s?1 following WIN 55212‐2 compared to 18 ± 5.9 imp s?1 in controls, whereas SR 141716A had no effect. Ascending neuronal contractions were dose‐dependently attenuated in the presence of SR 141716A and latency of these contractions was reduced. WIN 55212‐2 had opposite effects that were abolished by SR 141716A. Conclusions & Inferences Activation of the CB1 receptor differentially alters afferent intestinal nerve sensitivity to bradykinin, 5‐HT, and noxious mechanical distension, while it strengthens ascending neuronal contractions. Further studies are needed to determine the physiological relevance of these observations.  相似文献   

12.
Activation of CB(1) receptors on axon terminals by exogenous cannabinoids (eg, Δ(9)-tetrahydrocannabinol) and by endogenous cannabinoids (endocannabinoids) released by postsynaptic neurons leads to presynaptic inhibition of neurotransmission. The aim of this study was to characterize the effect of cannabinoids on GABAergic synaptic transmission in the human neocortex. Brain slices were prepared from neocortical tissues surgically removed to eliminate epileptogenic foci. Spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs) were recorded in putative pyramidal neurons using patch-clamp techniques. To enhance the activity of cannabinoid-sensitive presynaptic axons, muscarinic receptors were continuously stimulated by carbachol. The synthetic cannabinoid receptor agonist WIN55212-2 decreased the cumulative amplitude of sIPSCs. The CB(1) antagonist rimonabant prevented this effect, verifying the involvement of CB(1) receptors. WIN55212-2 decreased the frequency of miniature IPSCs (mIPSCs) recorded in the presence of tetrodotoxin, but did not change their amplitude, indicating that the neurotransmission was inhibited presynaptically. Depolarization of postsynaptic pyramidal neurons induced a suppression of sIPSCs. As rimonabant prevented this suppression, it is very likely that it was due to endocannabinods acting on CB(1) receptors. This is the first demonstration that an exogenous cannabinoid inhibits synaptic transmission in the human neocortex and that endocannabinoids released by postsynaptic neurons suppress synaptic transmission in the human brain. Interferences of cannabinoid agonists and antagonists with synaptic transmission in the cortex may explain the cognitive and memory deficits elicited by these drugs.  相似文献   

13.
Whether cannabinoids act as neuroprotectants or, on the contrary, even worsen neuronal damage after cerebral ischemia is currently under discussion. We have previously shown that treatment with the cannabinoid (CB1) receptor antagonist SR141716A reduces infarct volume by ∼40% after experimental stroke. Since it is suggested that SR141716A may exert neuroprotection besides its cannabinoid receptor-blocking effect, we addressed the question whether SR141716A may act via modulation of postischemic ligand binding to excitatory NMDA and/or α-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid (AMPA) receptors. For this purpose, rats (n = 12) were treated with either intravenous saline (control) or CB1 receptor antagonist SR141716A (1 mg/kg) 30 min after permanent middle cerebral artery occlusion. Five hours after ischemia, quantitative receptor autoradiography was performed using [3H]CP 55,940, [3H]MK-801, and [3H]AMPA for labeling of CB1, NMDA, and AMPA receptors, respectively. Ligand binding was analyzed within the infarct core, cortical penumbra, and corresponding areas of the contralateral hemisphere and compared to that of sham-operated rats (n = 5). Both in ischemic controls and SR141716A-treated rats [3H]CP 55,940 ligand binding was not specifically regulated in the cortical penumbra or contralateral cortex. Importantly, reduced infarct volumes in SR141716A-treated rats were associated with maintained [3H]MK-801 binding to excitotoxic NMDA receptors in the penumbra, compared to a decrease in the control group. In summary, our data suggest that SR141716A may possess additional intrinsic neuroprotective properties independent of receptor-coupled pathways or due to action as a partial agonist.  相似文献   

14.
Ding Z  Cowan A  Rawls SM 《Brain research》2005,1065(1-2):147-151
The present study investigated a potential role for cannabinoid CB(1) and CB(2) receptors in capsaicin-evoked hypothermia. Capsaicin (1 mg/kg, s.c.) caused rapid and significant hypothermia in rats. Pretreatment with SR 141716A (1, 2.5 and 5 mg/kg, i.p.), a CB(1) antagonist, or SR 144528 (1, 2.5 and 5 mg/kg, i.p.), a CB(2) antagonist, did not affect capsaicin-induced hypothermia. In separate experiments, the hypothermia caused by WIN 55212-2 (5 mg/kg, i.m.), a cannabinoid agonist, was not significantly altered by capsazepine (10 and 30 mg/kg, i.p.) or SB 366791 (2 mg/kg, i.p.), a novel TRPV1 antagonist. These data suggest that capsaicin causes hypothermia by a CB(1)- and CB(2)-independent mechanism, and that WIN 55212-2 causes hypothermia by a TRPV1-independent mechanism.  相似文献   

15.
The cannabinoid CB1 receptor antagonist SR 141716A (0.1, 0.5 and 1 microg) induces penile erection when injected into the paraventricular nucleus of the hypothalamus of male rats. The pro-erectile effect of SR 141716A occurs concomitantly with an increase in the concentration of glutamic acid in the paraventricular dialysate obtained by means of intra-cerebral microdialysis. Glutamic acid increase and penile erection did not occur when SR 141716A was given after tetrodotoxin, a voltage-dependent Na(+) channel blocker. Both penile erection and glutamic acid increases were also reduced by the cannabinoid CB1 receptor agonists WIN 55,212-2 or HU 210 given into the paraventricular nucleus before SR 141716A at doses unable to induce penile erection or to modify glutamic acid. In contrast, dizocilpine ((+)MK-801), an antagonist of excitatory amino acid receptors of the N-methyl-d-aspartic acid (NMDA) subtype, given into the paraventricular nucleus reduced penile erection, but was ineffective on the glutamic acid increase induced by the CB1 receptor antagonist. 6-Cyano-7-nitro-quinoxaline-2,3-dione (CNQX) and (+/-)-2-amino-4-phosphono-butanoic acid (AP(4)), antagonists of the excitatory amino acid receptors of the AMPA subtype and of the metabotropic subtype, respectively, were ineffective on both penile erection and glutamic acid increase. SR 141716A responses were also reduced by muscimol, a GABA(A) receptor agonist, but not by baclofen, a GABA(B) receptor agonist, given into the paraventricular nucleus before SR 141716A. The present results show that SR 141716A induces penile erection by activating glutamic acid neurotransmission, which causes in turn the activation of paraventricular oxytocinergic neurons mediating penile erection.  相似文献   

16.
Drugs acting on brain cannabinoid CB(1) receptors exert complex actions on modulatory transmitters that are involved in attention and cognition; however, little is known about the precise pharmacological and anatomical mechanisms that govern these effects. Previously demonstrated effects of cannabinoids on acetylcholine (ACh) in the hippocampus prompted us to evaluate changes in the prefrontal cortex, a site associated with mnemonic and attentional functions. We utilized in vivo microdialysis, coupled with direct reverse perfusion of agents, to study the actions on cannabinoidergic drugs on ACh release within the rat frontal cortex. Systemic administration of the CB(1) receptor agonists Delta(9)-tetrahydrocannabinol (THC) or WIN 55,212-2 (WIN) dose- and time-dependently increased ACh release; these effects were blocked by pretreatment with the selective CB(1) receptor antagonist / partial inverse agonist SR141716A (SR). THC applied by reverse dialysis in the frontal cortex caused no change in ACh release, although intrastriatal infusions of THC decreased ACh efflux. These data indicate that cannabinoid agonists potentiate ACh release in the frontal cortex by activating cannabinoid receptors in brain regions other than the frontal cortex.  相似文献   

17.
This study shows that two cannabinoids, Delta(9)-tetrahydrocannabinol (THC) and anandamide, induce dose-related immunosuppression in both the primary and secondary in vitro plaque-forming cell assays of antibody formation. The immunosuppression induced by both compounds could be blocked by SR144528, an antagonist specific for the CB(2) receptor, but not by SR141716, a CB(1) antagonist. These studies are novel in that they show that both anandamide and THC are active in the nanomolar to picomolar (for anandamide) range in these assays of immune function, and that both mediate their effects directly on cells of the immune system through the CB(2) receptor.  相似文献   

18.
The possible localization of cannabinoid (CB) receptors to glutamatergic and GABAergic synaptic terminals impinging upon GABAergic interneurons in the CA1 region of the rat hippocampus was examined using the electrophysiological measurement of neurotransmitter release in brain slices. Whereas activation of cannabinoid receptors via the application of the cannabinoid agonist WIN55,212-2 significantly and dose-dependently reduced evoked IPSCs recorded from interneurons possessing somata located in the stratum radiatum (S.R.) and stratum oriens (S.O.) lamellae, evoked glutamatergic EPSCs were unaffected in both neuronal populations. However, in agreement with previous reports, WIN55,212-2 significantly reduced EPSCs recorded from CA1 pyramidal neurons. Additional experiments confirmed that the effects of WIN55,212-2 on IPSCs were presynaptic and that they could be blocked by the CB1 receptor antagonist SR141716A. The involvement of endogenous cannabinoids in the presynaptic inhibition of GABA release was also examined in the interneurons and pyramidal cells using a depolarization-induced suppression of inhibition (DSI) paradigm. DSI was observed in CA1 pyramidal neurons under control conditions, and its incidence was greatly increased by the cholinergic agonist carbachol. However, DSI was not observed in the S.R. or S.O. interneuron populations, in either the presence or absence of carbachol. Whereas DSI was not present in these interneurons, the inhibitory inputs to these cells were modulated by the synthetic cannabinoid WIN55,212-2. These data support the hypothesis that cannabinoid receptors are located on inhibitory, but not excitatory, axon terminals impinging upon hippocampal interneurons, and that CA1 pyramidal neurons, and not interneurons, are capable of generating endogenous cannabinoids during prolonged states of depolarization.  相似文献   

19.
The cannabinoid receptor agonist, WIN 55,212-2, increases extracellular norepinephrine levels in the rat frontal cortex under basal conditions, likely via desensitization of inhibitory α2-adrenergic receptors located on norepinephrine terminals. Here, the effect of WIN 55,212-2 on stress-induced norepinephrine release was assessed in the medial prefrontal cortex (mPFC), in adult male Sprague-Dawley rats using in vivo microdialysis. Systemic administration of WIN 55,212-2 30 min prior to stressor exposure prevented stress-induced cortical norepinephrine release induced by a single exposure to swim when compared to vehicle. To further probe cortical cannabinoid-adrenergic interactions, postsynaptic α2-adrenergic receptor (AR)-mediated responses were assessed in mPFC pyramidal neurons using electrophysiological analysis in an in vitro cortical slice preparation. We confirm prior studies showing that clonidine increases cortical pyramidal cell excitability and that this was unaffected by exposure to acute stress. WIN 55,212-2, via bath application, blocked postsynaptic α2-AR mediated responses in cortical neurons irrespective of exposure to stress. Interestingly, stress exposure prevented the desensitization of α2-AR mediated responses produced by a history of cannabinoid exposure. Together, these data indicate the stress-dependent nature of cannabinoid interactions via both pre- and postsynaptic ARs. In summary, microdialysis data indicate that cannabinoids restrain stress-induced cortical NE efflux. Electrophysiology data indicate that cannabinoids also restrain cortical cell excitability under basal conditions; however, stress interferes with these CB1-α2 AR interactions, potentially contributing to over-activation of pyramidal neurons in mPFC. Overall, cannabinoids are protective of the NE system and cortical excitability but stress can derail this protective effect, potentially contributing to stress-related psychopathology. These data add to the growing evidence of complex, stress-dependent modulation of monoaminergic systems by cannabinoids and support the potential use of cannabinoids in the treatment of stress-induced noradrenergic dysfunction.  相似文献   

20.
The analgesic potential of cannabinoid (CB) receptor agonists is of clinical interest. Improved understanding of the mechanisms of action of cannabinoids at sites involved in the modulation of acute and sustained inflammatory nociceptive transmission, such as the spinal cord, is essential. In vivo electrophysiology was used to compare the effect of the synthetic CB agonist, HU210, on acute transcutaneous electrical-evoked responses of dorsal horn neurons of noninflamed anaesthetized rats and anaesthetized rats with a peripheral carrageenin inflammation. CB receptor G-protein coupling in lumbar spinal cord sections of noninflamed and carrageenin-inflamed rats was studied with in vitro autoradiography of guanylyl 5'-[gamma-[35S]thio]triphosphate ([35S]GTPgammaS) binding. Spinal HU210 significantly inhibited the C-fibre-mediated late (300-800 ms) postdischarge response of dorsal horn neurons of noninflamed and carrageenin-inflamed rats; the CB1 receptor antagonist SR141716A blocked the effect of HU210. HU210 had limited effects on A-fibre-evoked dorsal horn neuronal responses of both groups of rats. HU210 significantly increased [35S]GTPgammaS binding in the dorsal horn of the spinal cord of both groups of rats compared with basal [35S]GTPgammaS binding; SR141716A blocked these effects. The predominant effect of spinal HU210, via CB1 receptor activation, was on the C-fibre driven postdischarge responses, a measure of neuronal hyperexcitability following repetitive C-fibre stimulation. Sustained, but not enhanced, antinociceptive effects of HU210 following carrageenin inflammation are reported; CB receptor G-protein coupling was not altered by inflammation. These results strengthen the body of evidence suggesting CB agonists may be an important novel analgesic approach for the treatment of sustained pain states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号