首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elucidation of the molecular basis of isoniazid (INH) resistance in Mycobacterium tuberculosis has led to the development of different genotypic approaches for the rapid detection of INH resistance in clinical isolates. Mutations in katG, in particular the S315T substitution, are responsible for INH resistance in a large proportion of tuberculosis cases. However, the frequency of the katG S315T substitution varies with population samples. In this study, 52 epidemiologically unrelated clinical INH-resistant M. tuberculosis isolates collected in Australia were screened for mutations at katG codon 315 and the fabG1-inhA regulatory region. Importantly, 52 INH-sensitive isolates, selected to reflect the geographic and genotypic diversity of the isolates, were also included for comparison. The katG S315T substitution and fabG1-inhA -15 C-to-T mutation were identified in 34 and 13 of the 52 INH-resistant isolates, respectively, and none of the INH-sensitive isolates. Three novel katG mutations, D117A, M257I, and G491C, were identified in three INH-resistant strains with a wild-type katG codon 315, fabG1-inhA regulatory region, and inhA structural gene. When analyzed for possible associations between resistance mechanisms, resistance phenotype, and genotypic groups, it was found that neither the katG S315T nor fabG1-inhA -15 C-to-T mutation clustered with any one genotypic group, but that the -15 C-to-T substitution was associated with isolates with intermediate INH resistance and isolates coresistant to ethionamide. In total, 90.4% of unrelated INH-resistant isolates could be identified by analysis of just two loci: katG315 and the fabG1-inhA regulatory region.  相似文献   

2.
We investigated mutations in the genes katG, inhA (regulatory and structural regions), and kasA and the oxyR-ahpC intergenic region of 97 isoniazid (INH)-resistant and 60 INH-susceptible Mycobacterium tuberculosis isolates obtained in two states in Brazil: São Paulo and Paraná. PCR-single-strand conformational polymorphism (PCR-SSCP) was evaluated for screening mutations in regions of prevalence, including codons 315 and 463 of katG, the regulatory region and codons 16 and 94 of inhA, kasA, and the oxyR-ahpC intergenic region. DNA sequencing of PCR amplicons was performed for all isolates with altered PCR-SSCP profiles. Mutations in katG were found in 83 (85.6%) of the 97 INH-resistant isolates, including mutations in codon 315 that occurred in 60 (61.9%) of the INH-resistant isolates and 23 previously unreported katG mutations. Mutations in the inhA promoter region occurred in 25 (25.8%) of the INH-resistant isolates; 6.2% of the isolates had inhA structural gene mutations, and 10.3% had mutations in the oxyR-ahpC intergenic region (one, nucleotide −48, previously unreported). Polymorphisms in the kasA gene occurred in both INH-resistant and INH-susceptible isolates. The most frequent polymorphism encoded a G269A substitution. Although KatG315 substitutions are predominant, novel mutations also appear to be responsible for INH resistance in the two states in Brazil. Since ca. 90.7% of the INH-resistant isolates had mutations identified by SSCP electrophoresis, this method may be a useful genotypic screen for INH resistance.Isoniazid (INH), a first-line antituberculosis drug, is bactericidal and has a simple chemical structure consisting of a pyridine ring and a hydrazide group. INH is a prodrug that enters actively growing tubercle bacilli by passive diffusion (2). The bifunctional bacterial enzyme catalase-peroxidase (KatG) converts INH to a range of oxygenated and organic toxic radicals that attack multiple targets in the mycobacterial cell (35, 36, 48). The best-characterized target of these radicals is the cell wall mycolic acid, but DNA, carbohydrates, lipids, and NAD metabolism may be targeted as well (16, 36, 50).The tuberculosis case rate in Brazil is the 15th highest in the world, with an estimated prevalence of 64 cases per 100,000 population; moreover, ∼0.9% of the new cases are multidrug resistant (45). A recent nationwide investigation of primary INH resistance found a national frequency of 3.8% (29); however, the percentages varied greatly between geographic regions of the country. The incidence of tuberculosis cases in Brazil also varies widely among geographic regions, with 18,112 new reported cases in São Paulo State (51.40 cases per 100,000 population) in 1998 (38) and 2,684 new cases in Paraná State (28.99 cases per 100,000 population) in the same year (37).Molecular studies of the mechanisms of resistance to INH in Mycobacterium tuberculosis demonstrated that a significant number of drug-resistant strains have mutations in the katG gene, which encodes the KatG enzyme. Initial investigations of katG found large deletions in resistant strains (48, 49), but subsequent studies showed this to be rare. Mutations reduce the ability of KatG to activate the prodrug INH, thus leading to resistance (11, 17, 24, 42). In addition, mutations in other genes, including inhA and kasA, and in the oxyR-ahpC intergenic region have been associated with INH resistance but in much lower percentages of strains (26, 32, 33, 50).An activated INH radical appears to inhibit the InhA enzyme by reacting with the NAD(H) cofactor bound to the InhA active site, which compromises the mycolic acid synthesis (23). Mutation at the InhA enzyme''s site of interaction can reduce its affinity for NAD(H) and confer INH and ethionamide resistance to strains (1). The overexpression of InhA because of an upregulation mutation in the promoter region of inhA (preceding the mabA-inhA operon) can also cause resistance to INH by a titration mechanism (1, 2, 3, 8, 16, 23). Mutations in the oxyR-ahpC intergenic region, where the putative promoter of ahpC is located, are considered to be a compensatory mechanism for the loss of KatG function in resistant strains (18, 33, 35, 46, 47). These mutations may be used as surrogate markers for the detection of INH resistance in M. tuberculosis (33, 39, 41, 50).Mdluli et al. (25) reported that the ketoacyl acyl carrier protein synthase (KasA), encoded by the kasA gene, which is involved in the biosynthesis of mycolic acids, is a likely target for INH. They found an association between mutations in the kasA gene and resistance to INH in M. tuberculosis. However, Lee et al. (22) observed mutations in the kasA gene in resistant and in susceptible M. tuberculosis strains from Singapore. Recently, Larsen et al. (21) demonstrated no correlation between resistance to INH and overexpression of KasA.A variety of methods have been used to facilitate the rapid detection of mutations in mycobacteria. One widely used method is PCR-single-strand conformational polymorphism (PCR-SSCP) (7, 28, 43). If any two single strands of DNA differ by one or more nucleotides, differences in the secondary structure of these strands may be identified by their electrophoretic mobilities in nondenaturing polyacrylamide gels (9), offering a convenient and cost-efficient method for analyzing mutations in PCR products. The PCR-SSCP method has been demonstrated to be useful for screening mutations associated with antituberculosis drug resistance (7, 10, 15, 30, 46).We investigated the prevalence of mutations in the genes, katG, kasA, and inhA (regulatory and structural regions) and in the oxyR-ahpC intergenic region. We evaluated the usefulness of SSCP electrophoresis for the detection of those mutations among INH-resistant isolates from São Paulo and Paraná, Brazil.  相似文献   

3.
In this study, we describe a multiplex PCR to detect a AGC-->ACC (serine to threonine) mutation in the katG gene and a -15 C-to-T substitution (inhA(C-15T)) at the 5' end of a presumed ribosome binding site in the promoter of the mabA-inhA operon. These mutations have been reported in the majority of previous studies as the most frequent mutations involved in the resistance to isoniazid (INH) of Mycobacterium tuberculosis clinical strains with high levels of resistance. The method was optimized and validated after an analysis of 30 M. tuberculosis clinical isolates with known sequences of the relevant part of the katG gene and the regulatory region of the mabA-inhA operon. We analyzed 297 INH-resistant M. tuberculosis isolates collected in Spain from 1996 to 2003 by PCR-restriction fragment length polymorphism (using the katG gene), DNA sequencing, and the newly developed multiplex PCR. The results were concordant for all 297 isolates tested. The analysis revealed that 204 (68.7%) of the isolates carried one or both of the mutations. This finding suggests that with further development this multiplex PCR will be able to detect the majority of the INH-resistant M. tuberculosis clinical isolates from Spain and other countries where a high frequency of similar mutations occur.  相似文献   

4.
The ahpC genes of 57 clinical isolates and one in vitro mutant of Mycobacterium tuberculosis were evaluated by nucleotide sequence analyses. Although compensatory ahpC promoter mutations were identified in 8 catalase-negative, katG-defective strains, the ahpC genes of 25 catalase-positive, isoniazid-resistant isolates and 25 drug-sensitive strains were not altered.  相似文献   

5.
OBJECTIVES: Three Mycobacterium tuberculosis genetic loci--rpoB and katG genes and the fabG1(mabA)-inhA operon promoter region--were studied to reveal the mutations associated with rifampicin and isoniazid resistance. METHODS: Four hundred and twelve isolates of M. tuberculosis from different regions of the Russian Federation were collected during 1997-2005. A matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS)-based minisequencing method was used for the detection of mutations. RESULTS: Thirteen different variants of single mutations in codons 533, 531, 526, 516, 513 and 511 of the rifampicin resistance-determining region of the rpoB gene as well as the TTG insertion in the 514a position were found among the rifampicin-resistant isolates. Single nucleotide substitutions in codons 531, 526 and 516 (64.8%, 10.3% and 7.7%, respectively) were the most prevalent mutations. Codon 526 was shown to be the most variable of all. No mutations were detected in rpoB genes for 29 (10.7%) of the rifampicin-resistant isolates. 76.9% of the isoniazid-resistant isolates carried single mutations in codon 315 of the katG gene. For another 12.9% of them, double mutations in the katG gene and the fabG1(mabA)-inhA promoter region were revealed. No mutations were detected in 8.2% of the isoniazid-resistant isolates. CONCLUSIONS: Molecular analysis of the loci of rpoB and katG genes and the inhA promoter region of 412 M. tuberculosis clinical isolates from various parts of the Russian Federation was carried out. The new MALDI-TOF MS-based method may be used for rapid and accurate monitoring of the spread of drug resistance.  相似文献   

6.
China is one of the countries with the highest prevalence of fluoroquinolone-resistant (FQ(r)) Mycobacterium tuberculosis. Nevertheless, knowledge on the molecular characterization of the FQ(r)M. tuberculosis strains of this region remains very limited. This study was performed to investigate the frequencies and types of mutations present in FQ(r)M. tuberculosis clinical isolates collected in Shanghai, China. A total of 206 FQ(r)M. tuberculosis strains and 21 ofloxacin-sensitive (FQ(s)) M. tuberculosis strains were isolated from patients with pulmonary tuberculosis in Shanghai. The phenotypic drug susceptibilities were determined by the proportion method, and the mutations inside quinolone resistance-determining region (QRDR) of gyrA and gyrB genes were identified by DNA sequence analyses. Among 206 FQ(r)M. tuberculosis strains, 44% (90/206) were multidrug-resistant isolates and 39% (81/206) were extensively drug-resistant isolates. Only 9% (19/206) were monoresistant to ofloxacin. In total, 79.1% (163/206) of FQ(r) isolates harboured mutations in either gyrA or gyrB QRDR. Mutations in gyrA QRDR were found in 75.7% (156/206) of FQ(r) clinical isolates. Among those gyrA mutants, a majority (75.6%) harboured mutations at amino acid position 94, with D94G being the most frequent amino acid substitution. Mutations in gyrA QRDR showed 100% positive predictive value for FQ(r)M. tuberculosis in China. Mutations in gyrB were observed in 15.5% (32/206) of FQ(r) clinical isolates. Ten novel mutations were identified in gyrB. However, most of them also harboured mutations in gyrA, limiting their contribution to FQ(r) resistance in M. tuberculosis. Our findings indicated that, similar to other geographic regions, mutations in gyrA were shown to be the major mechanism of FQ(r) resistance in M. tuberculosis isolates. The mutations in gyrA QRDR can be a good molecular surrogate marker for detecting FQ(r)M. tuberculosis in China.  相似文献   

7.
In this study, a battery of oligonucleotides was directed toward the katG gene and PCR-single-stranded conformation polymorphism (SSCP) analysis was used to search for katG gene deviations in clinical isolates of Mycobacterium tuberculosis from different geographical regions. Since a complete deletion of the katG gene was not found, it is suggested that deletion is not a major mechanism of isoniazid (isonicotinic acid hydrazide; INH) resistance in these isolates. However, 7 of 39 isolates (4 of 25 from South Africa and 3 of 14 from other geographical regions) showed mobility shifts by SSCP analysis, suggesting aberrations in the katG gene. Direct sequence analysis confirmed that the mobility shifts were due to Thr-275-->Ala (Thr275Ala), Arg409Ala, Arg463Leu, and Asp695Ala mutations and a 12-bp deletion in the 5' region of the katG gene. Mutations at codons 275, 463, and 695 created altered restriction sites for HhaI, MspI, and HaeIII, respectively, and sequence results, supported by restriction fragment length polymorphism analysis, suggested that the PCR-SSCP procedure is a good indicator of mutations in PCR-amplified fragments. Identical mutations at codons 463 and 275 were found in isolates from different geographical regions. This may suggest a common evolutionary event, but one of the control isolates (susceptible to INH [3%; n = 30]) also had a mutation at codon 463. The results suggest that variations in the katG coding gene sequences of INH-resistant isolates of M. tuberculosis are infrequent and that defects in other regions of the M. tuberculosis genome are of equal or greater importance in contributing to the acquisition of resistance to INH.  相似文献   

8.
Resistance to isoniazid in Mycobacterium tuberculosis has been associated with mutations in genes encoding the mycobacterial catalase-peroxidase (katG) and the InhA protein (inhA). Among the 26 isoniazid-resistant clinical isolates evaluated in this study, mutations in putative inhA regulatory sequences were identified in 2 catalase-positive isolates, katG gene alterations were detected in 20 strains, and 4 isolates had wild-type katG and inhA genes. Mutations in the katG gene were detected in all 11 catalase-negative isolates: one frameshift insertion, two partial gene deletions, and nine different missense mutations were identified. An arginine-to-leucine substitution at position 463 was detected in nine catalase-positive isolates. However, site-directed mutagenesis experiments demonstrated that the presence of a leucine at codon 463 did not alter the activity of the M. tuberculosis catalase-peroxidase and did not affect the capacity of this enzyme to restore isoniazid susceptibility to isoniazid-resistant, KatG-defective Mycobacterium smegmatis BH1 cells. These studies further support the association between katG and inhA gene mutations and isoniazid resistance in M. tuberculosis, while also suggesting that other undefined mechanisms of isoniazid resistance exist.  相似文献   

9.
katG and inhA genes from isoniazid-resistant Mycobacterium tuberculosis strains isolated in Finland were examined by PCR or sequencing. By PCR, katG was not detected in 3 of 54 strains. Sequencing of katG from 13 strains showed small point mutations or insertions; a previously described mutation causing a Ser-to-Thr change at position 315 was found in 4 strains, and there were nine new missense mutations of katG. A 209-bp segment of inhA from 17 strains was sequenced, but no mutations were observed. This result indicates that different mutations prevail in different geographical areas.  相似文献   

10.
Linezolid resistance was found in 4 (1.9%) of 210 multidrug-resistant Mycobacterium tuberculosis strains. The MICs of linezolid were 4 microg/ml (one strain) and 8 microg/ml (three strains). Since no mutations were detected in potential target genes, the mechanism of resistance remains unclear.  相似文献   

11.
目的研究新疆结核分枝杆菌Spoligotyping基因分型,初步了解其基因型多态性状况及主要流行株。方法在新疆维吾尔自治区胸科医院收集一个连续时间段的结核分枝杆菌临床分离菌株,采用比例法检测进行耐药性检测、间隔寡核苷酸分型(Spoligotyp ing)方法进行分型研究。基因聚类分析采用B ioNum erics 5.0数据库软件,统计学分析采用χ2检验,P0.05为差异有统计学意义。结果共收集到结核分枝杆菌临床分离菌株175株,其中对利福平、异烟肼、链霉素和乙胺丁醇全敏感115株,耐药60株(包括单耐药31株和耐多药29株)。经Spoligotyp ing分型,这些菌株可分为4个基因群49种基因型,最大的1个基因群为北京家族,占68.57%(120/175)。北京家族中,敏感菌株63.87%(76/119),耐药菌株占36.13%(43/119);非北京家族中,敏感菌株68.52%(37/54),耐药菌株占31.48%(17/54),北京家族与非北京家族的耐药率之间差异无统计学意义(P=0.551)。结论新疆结核分枝杆菌临床菌株存在明显的基因多态性,主要流行菌株为北京基因型。北京基因型与耐药性无明显相关性。  相似文献   

12.
The present study investigated the prevalence and diagnostic potential of the most commonly reported mutations associated with isoniazid resistance, katG 315Thr, katG 315Asn, inhA -15T, inhA -8A, and the oxyR-ahpC intergenic region, in a population sample of 202 isoniazid-resistant Mycobacterium tuberculosis isolates and 176 randomly selected fully sensitive isolates from England and Wales identified by using a directed oligonucleotide array and limited DNA sequencing. The strains were recovered from patients originating from 29 countries; 41 isolates were multidrug resistant. Mutations affecting katG 315, the inhA promoter, and the oxyR-ahpC intergenic region were found in 62.7, 21.9, and 30% of 169 genotypically distinct isoniazid-resistant isolates, respectively, whereas they were found in 0, 0, and 8% of susceptible strains, respectively. The frequency of mutation at each locus was unrelated to the resistance profile or previous antituberculous drug therapy. The commonest mutation in the oxyR-ahpC intergenic region, ahpC -46A, was present in 23.7% of isoniazid-resistant isolates and 7.5% of susceptible isolates. This proved to be a phylogenetic marker for a subgroup of M. tuberculosis strains originating on the Indian subcontinent, which shared IS6110-based restriction fragment length polymorphism and spoligotype features with the Delhi strain and Central Asian strain CAS1; and this marker is strongly associated with isoniazid resistance and the katG 315Thr mutation. In total, 82.8% of unrelated isoniazid-resistant isolates could be identified by analysis of just two loci: katG 315 and the inhA promoter. Analysis of the oxyR-ahpC intergenic region, although phylogenetically interesting, does not contribute significantly to further identification of isoniazid-resistant isolates.  相似文献   

13.
A total of 204 isoniazid (INH)-resistant strains of Mycobacterium tuberculosis isolated from different patients in the northwestern region of Russia from 1996 to 2001 were screened by a PCR-restriction fragment length polymorphism (RFLP) assay. This assay uses HapII cleavage of an amplified fragment of the katG gene to detect the transversion 315AGC-->ACC (Ser-->Thr), which is associated with INH resistance. This analysis revealed a 93.6% prevalence of the katG S315T mutation in strains from patients with both newly and previously diagnosed cases of tuberculosis (TB). This mutation was not found in any of 57 INH-susceptible isolates included in the study. The specificity of the assay was 100%; all isolates that contained the S315T mutation were classified as resistant by a culture-based susceptibility testing method. The Beijing genotype, defined by IS6110-RFLP analysis and the spacer oligonucleotide typing (spoligotyping) method, was found in 60.3% of the INH-resistant strains studied. The katG S315T shift was more prevalent among Beijing genotype strains than among non-Beijing genotype strains: 97.8 versus 84.6%, respectively, for all isolates, including those from patients with new and previously diagnosed cases, isolated from 1999 to 2001 and 100.0 versus 86.5%, respectively, for isolates from patients with new cases isolated from 1996 to 2001. The design of this PCR-RFLP assay allows the rapid and unambiguous identification of the katG 315ACC mutant allele. The simplicity of the assay permits its implementation into routine practice in clinical microbiology laboratories in regions with a high incidence of TB where this mutation is predominant, including northwestern Russia.  相似文献   

14.
Ethionamide (ETH) needs to be activated by the mono-oxygenase EthA, which is regulated by EthR, in order to be active against Mycobacterium tuberculosis. The activated drug targets the enzyme InhA, which is involved in cell wall biosynthesis. Resistance to ETH has been reported to result from various mechanisms, including mutations altering EthA/EthR, InhA and its promoter, the NADH dehydrogenase encoded by ndh, and the MshA enzyme, involved in mycothiol biosynthesis. We searched for such mutations in 87 clinical isolates: 47 ETH-resistant (ETH(r)) isolates, 24 ETH-susceptible (ETH(s)) isolates, and 16 isolates susceptible to ETH but displaying an intermediate proportion of resistant cells (ETH(Sip); defined as ≥1% but <10% resistant cells). In 81% (38/47) of the ETH(r) isolates, we found mutations in ethA, ethR, or inhA or its promoter, which mostly corresponded to new alterations in ethA and ethR. The 9 ETH(r) isolates without a mutation in these three genes (9/47, 19%) had no mutation in ndh, and a single isolate had a mutation in mshA. Of the 16 ETH(Sip) isolates, 7 had a mutation in ethA, 8 had no detectable mutation, and 1 had a mutation in mshA. Finally, of the 24 ETH(s) isolates, 23 had no mutation in the studied genes and 1 displayed a yet unknown mutation in the inhA promoter. Globally, the mechanism of resistance to ETH remained unknown for 19% of the ETH(r) isolates, highlighting the complexity of the mechanisms of ETH resistance in M. tuberculosis.  相似文献   

15.
Despite the fact that Nepal is one of the first countries globally to introduce multidrug-resistant tuberculosis (MDR-TB) case management, the number of MDR-TB cases is continuing to rise in Nepal. Rapid molecular tests applicable in this setting to identify resistant organisms would be an effective tool in reversing this trend. To develop such tools, information about the frequency and distribution of mutations that are associated with phenotypic drug resistance in Mycobacterium tuberculosis is required. In the present study, we investigated the prevalence of mutations in rpoB and katG genes and the inhA promoter region in 158 M. tuberculosis isolates (109 phenotypically MDR and 49 non-MDR isolates collected in Nepal) by DNA sequencing. Mutations affecting the 81-bp rifampin (RIF) resistance-determining region (RRDR) of rpoB were identified in 106 of 109 (97.3%) RIF-resistant isolates. Codons 531, 526, and 516 were the most commonly affected, at percentages of 58.7, 15.6, and 15.6%, respectively. Of 113 isoniazid (INH)-resistant isolates, 99 (87.6%) had mutations in the katG gene, with Ser315Thr being the most prevalent (81.4%) substitution. Mutations in the inhA promoter region were detected in 14 (12.4%) INH-resistant isolates. The results from this study provide an overview of the current situation of RIF and INH resistance in M. tuberculosis in Nepal and can serve as a basis for developing or improving rapid molecular tests to monitor drug-resistant strains in this country.  相似文献   

16.
The use of isoniazid (INH) for the treatment of INH-resistant Mycobacterium tuberculosis infection has been controversial. The purpose of the present studies was to determine if there is a dose response with INH for INH-susceptible M. tuberculosis Erdman (ATCC 35801), and whether high-dose INH (100 mg/kg of body weight) was more effective than standard-dose INH (25 mg/kg) for therapy of tuberculosis infections caused by INH-resistant mutants of M. tuberculosis Erdman. Six-week-old CD-1 mice were infected with approximately 10(7) viable mycobacteria. Early control groups of infected but untreated mice were euthanized by CO(2) inhalation 1 week later when treatment was initiated. INH (25, 50, 75, and 100 mg/kg) was given by gavage 5 days/week for 4 weeks. Late control groups of untreated mice and treated mice were sacrificed 2 days after the last dose of drug. Spleens and right lungs were removed aseptically and homogenized, and viable cell counts were determined by titration on 7H10 agar plates. In the next study, INH at 100 mg/kg was compared to INH at 25 mg/kg against an isogenic mutant of M. tuberculosis Erdman (INH MIC, 2 microg/ml) and the parent strain. This mutant was found to have a mutation in the KatG protein (Phe to Leu at position 183). In the first study, there was no dose response with increasing doses of INH. In the second study, there was no significant difference between the reduction of viable cell counts for mice treated with INH at 100 mg/kg and that for mice treated with INH at 25 mg/kg (parent or INH-resistant mutant). These preliminary results suggest that INH may be useful in combination therapy of M. tuberculosis infections caused by low-level INH-resistant organisms (INH MICs, 0.2 to 5 microg/ml) and that higher doses of INH are unlikely to be more efficacious than the standard 300-mg/day dose.  相似文献   

17.
目的:探讨广东地区MDR-TB菌株rpoB基因突变的分子特征.方法:对95例MDR-TB菌株rpoB基因453-564位密码子片段进行PCR-直接测序.结果:95例MDR-TB菌株rpoB基因突变率91.58%.86例为点突变,1例插入突变,未发现缺失.常见位点为531 (63.22%)、526(20.69%)、516(9.20%).其中:单位点突变69例(80.23%),双位点突变16例(18.60%),三位点突变1例(1.17%).511位点突变常同时伴有其他位点突变(57.14%).结论:主要突变位点与国内外报道基本相同,但各位点所占比例具有地域差异;联合突变率较高,占19.54%.512位点插入(AGGAGC)突变可能为新突变类型.  相似文献   

18.
目的了解结核分枝杆菌(MTB)临床分离株对氧氟沙星的耐药性与gyrA基因突变的关系。方法对20株随机筛选的耐氧氟沙星MTB临床分离株行gyrA基因喹诺酮类药物耐药决定区(QRDR)序列测定。结果18株发现了有义突变,其中2株第91位密码子由TCG(丝氨酸)→CCG(脯氨酸),3株第90位密码子由CCG(甘氨酸)→GTG(缬氨酸),10株第94位密码子由GAC(天冬氨酸)→GGC(赖氨酸),2株第94位密码子由GAC(天冬氨酸)→GCC(甘氨酸),1株第94位密码子由GAC(天冬氨酸)→GTC(缬氨酸)。6例既往未应用过氟喹诺酮类药物抗结核治疗,2例曾在结核诊断前应用氟喹诺酮类药物经验性抗感染治疗1周,12例曾应用氟喹诺酮类药物抗结核治疗。结论gyrA基因突变是MTB对氟喹诺酮类药物产生耐药的机制之一;gyrA基因的有义突变主要发生在第90位、91位、94位密码子上。  相似文献   

19.
目的了解海盐县分离自肺结核病人的结核分枝杆菌耐药基因突变率及耐药情况,以利抗结核治疗中抗菌药物的合理选用。方法对痰涂片阳性的新发初治和复治肺结核病人进行痰结核分枝杆菌培养,阳性菌株采用高、低两种药物浓度,四种抗结核药物耐药性测试,同时用实时PCR法对结核分枝杆菌的耐药基因rpoB和katG突变进行检测。结果131例痰培养阳性菌株总耐药率为14.5%,其中初治耐药率7.8%,复治耐药率38.2%,对四种抗结核药物的耐药率依次为异烟肼9.2%,利福平4.6%,链霉素4.6%,乙胺丁醇0.8%。耐药基因检测结果,在初治组中rpoB和katG的突变率为12.7%(13/102)和10.8%(11/102)。复治组中rpoB和katG的突变率为31.0%(9/29)和20.7%(6/29)。结论本地区分离自结核病人的结核分枝杆菌在初始治疗时已存在耐药性,而药物治疗有可能使其耐药性增加。结果表明抗结核治疗前及在治疗过程中对结核分枝杆菌进行耐药性及耐药基因检测很有意义。  相似文献   

20.
目的:分析耐左氧氟沙星结核分枝杆菌临床菌株gyrA基因的突变情况及其耐药机制.方法:用聚合酶链反应(PER)和DNA直接测序技术(DS)测定64株耐左氧氟沙星结核分枝杆菌gyrA基因的QRDR(quinolone resistance-determining regions)序列.结果:64株耐药菌株有47株QRDR序列发生突变,其中45株为单位点突变,另2株为双位点突变;突变分布为70位突变2株、89位1株、90位12株、91位4株、94位30株,其中70位和89位为新发现的突变位点.结论:结核分枝杆菌喹诺酮类药物耐受现象与gyrA基因QRDR的突变有关,包括新发现的70位和89位突变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号