首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stochastic hybrid modeling of DNA replication across a complete genome   总被引:5,自引:0,他引:5  
DNA replication in eukaryotic cells initiates from hundreds of origins along their genomes, leading to complete duplication of genetic information before cell division. The large number of potential origins, coupled with system uncertainty, dictates the need for new analytical tools to capture spatial and temporal patterns of DNA replication genome-wide. We have developed a stochastic hybrid model that reproduces DNA replication throughout a complete genome. The model can capture different modes of DNA replication and is applicable to various organisms. Using genome-wide data on the location and firing efficiencies of origins in the fission yeast, we show how the DNA replication process evolves during S-phase in the presence of stochastic origin firing. Simulations reveal small regions of the genome that extend S-phase to three times its reported duration. The low levels of late replication predicted by the model are below the detection limit of techniques used to measure S-phase length. Parameter sensitivity analysis shows that increased replication fork speeds genome-wide, or additional origins are not sufficient to reduce S-phase to its reported length. We model the redistribution of a limiting initiation factor during S-phase and show that it could shorten S-phase to the reported duration. Alternatively, S-phase may be extended, and what has traditionally been defined as G2 may be occupied by low levels of DNA synthesis with the onset of mitosis delayed by activation of the G2/M checkpoint.  相似文献   

2.
3.
Although the evolution process and ecological benefits of symbiotic species with small genomes are well understood, these issues remain poorly elucidated for free-living species with large genomes. We have compared 115 completed prokaryotic genomes by using the Clusters of Orthologous Groups database to determine whether there are changes with genome size in the proportion of the genome attributable to particular cellular processes, because this may reflect both cellular and ecological strategies associated with genome expansion. We found that large genomes are disproportionately enriched in regulation and secondary metabolism genes and depleted in protein translation, DNA replication, cell division, and nucleotide metabolism genes compared to medium- and small-sized genomes. Furthermore, large genomes do not accumulate noncoding DNA or hypothetical ORFs, because the portion of the genome devoted to these functions remained constant with genome size. Traits other than genome size or strain-specific processes are reflected by the dispersion around the mean for cell functions that showed no correlation with genome size. For example, Archaea had significantly more genes in energy production, coenzyme metabolism, and the poorly characterized category, and fewer in cell membrane biogenesis and carbohydrate metabolism than Bacteria. The trends we noted with genome size by using Clusters of Orthologous Groups were confirmed by our independent analysis with The Institute for Genomic Research's Comprehensive Microbial Resource and Kyoto Encyclopedia of Genes and Genomes' Orthology annotation databases. These trends suggest that larger genome-sized species may dominate in environments where resources are scarce but diverse and where there is little penalty for slow growth, such as soil.  相似文献   

4.
Multigene families and vestigial sequences   总被引:5,自引:1,他引:4       下载免费PDF全文
Random duplication and deletion events generate complex genomes carrying a large amount of dispensable sequences. We have simulated such events in a computer model. We followed the evolution of a genome carrying at least one copy of each type of gene. Partial duplications and deletions of genes generated nonfunctional vestigial sequences that were dispensable. The size of the genome stabilized only when the amount of dispensable sequences had increased to the point that most deletions did not affect vital genes. Within such genomes, the number of copies of specific genes fluctuated, thereby generating small multigene families. The parameters of the model were tested over 100,000 events in both simple and complex genomes. The results indicate that when the size of the genome is not critical to survival, as appears to be the case within limits in most eukaryotic organisms, the genome carries vestigial sequences that are no longer functional and that many genes are present in multigene families by chance.  相似文献   

5.
Retrieving a large amount of genetic information from extinct species was demonstrated feasible, but complete mitochondrial genome sequences have only been deciphered for the moa, a bird that became extinct a few hundred years ago, and for Pleistocene species, such as the woolly mammoth and the mastodon, both of which could be studied from animals embedded in permafrost. To enlarge the diversity of mitochondrial genomes available for Pleistocene species, we turned to the cave bear (Ursus spelaeus), whose only remains consist of skeletal elements. We collected bone samples from the Paleolithic painted cave of Chauvet-Pont d'Arc (France), which displays the earliest known human drawings, and contains thousands of bear remains. We selected a cave bear sternebra, radiocarbon dated to 32,000 years before present, from which we generated overlapping DNA fragments assembling into a 16,810-base pair mitochondrial genome. Together with the first mitochondrial genome for the brown bear western lineage, this study provides a statistically secured molecular phylogeny assessing the cave bear as a sister taxon to the brown bear and polar bear clade, with a divergence inferred to 1.6 million years ago. With the first mitochondrial genome for a Pleistocene carnivore to be delivered, our study establishes the Chauvet-Pont d'Arc Cave as a new reservoir for Paleogenetic studies. These molecular data enable establishing the chronology of bear speciation, and provide a helpful resource to rescue for genetic analysis archeological samples initially diagnosed as devoid of amplifiable DNA.  相似文献   

6.
Bacterial, archaeal, yeast, and fly genomes are compared with respect to predicted highly expressed (PHX) genes and several genomic properties. There is a striking difference in the status of PHX ribosomal protein (RP) genes where the archaeal genome generally encodes more RP genes and fewer PHX RPs compared with bacterial genomes. The increase in RPs in archaea and eukaryotes compared with that in bacteria may reflect a more complex set of interactions in archaea and eukaryotes in regulating translation, e.g., differences in structure requiring scaffolding of longer rRNA molecules, expanded interactions with the chaperone machinery, and, in eukaryotic interactions with endoplasmic reticulum components. The yeast genome is similar to fast-growing bacteria in PHX genes but also features several cytoskeletal genes, including actin and tropomyosin, and several signal transduction regulatory proteins from the 14.3.3 family. The most PHX genes of Drosophila encode cytoskeletal and exoskeletal proteins. We found that the preference of a microorganism for an anaerobic metabolism correlates with the number of PHX enzymes of the glycolysis pathway that well exceeds the number of PHX enzymes acting in the tricarboxylic acid cycle. Conversely, if the number of PHX enzymes of the tricarboxylic acid cycle well exceeds the PHX enzymes of glycolysis, an aerobic metabolism is preferred. Where the numbers are approximately commensurate, a facultative growth behavior prevails.  相似文献   

7.
High levels of genomic and allelic microvariation have been found in major marine planktonic microbial species, including the ubiquitous open ocean cyanobacterium, Prochlorococcus marinus. Crocosphaera watsonii is a unicellular cyanobacterium that has recently been shown to be important in oceanic N2 fixation and has been reported from the Atlantic and Pacific oceans in both hemispheres, and the Arabian Sea. In direct contrast to the current observations of genomic variability in marine non-N2-fixing planktonic cyanobacteria, which can range up to >15% nucleotide sequence divergence, we discovered that the marine planktonic nitrogen-fixing cyanobacterial genus Crocosphaera has remarkably low genomic diversity, with <1% nucleotide sequence divergence in several genes among widely distributed populations and strains. The cultivated C. watsonii WH8501 genome sequence was virtually identical to DNA sequences of large metagenomic fragments cloned from the subtropical North Pacific Ocean with <1% sequence divergence even in intergenic regions. Thus, there appears to be multiple strategies for evolution, adaptation, and diversification in oceanic microbial populations. The C. watsonii genome contains multiple copies of several families of transposases that may be involved in maintaining genetic diversity through genome rearrangements. Although genomic diversity seems to be the rule in many, if not most, marine microbial lineages, different forces may control the evolution and diversification in low abundance microorganisms, such as the nitrogen-fixing cyanobacteria.  相似文献   

8.
Cartilaginous fishes are the oldest living phylogenetic group of jawed vertebrates. Here, we demonstrate the value of cartilaginous fish sequences in reconstructing the evolutionary history of vertebrate genomes by sequencing the protocadherin cluster in the relatively small genome (910 Mb) of the elephant shark (Callorhinchus milii). Human and coelacanth contain a single protocadherin cluster with 53 and 49 genes, respectively, that are organized in three subclusters, Pcdhalpha, Pcdhbeta, and Pcdhgamma, whereas the duplicated protocadherin clusters in fugu and zebrafish contain >77 and 107 genes, respectively, that are organized in Pcdhalpha and Pcdhgamma subclusters. By contrast, the elephant shark contains a single protocadherin cluster with 47 genes organized in four subclusters (Pcdhdelta, Pcdhepsilon, Pcdhmu, and Pcdhnu). By comparison with elephant shark sequences, we discovered a Pcdhdelta subcluster in teleost fishes, coelacanth, Xenopus, and chicken. Our results suggest that the protocadherin cluster in the ancestral jawed vertebrate contained more subclusters than modern vertebrates, and the evolution of the protocadherin cluster is characterized by lineage-specific differential loss of entire subclusters of genes. In contrast to teleost fish and mammalian protocadherin genes that have undergone gene conversion events, elephant shark protocadherin genes have experienced very little gene conversion. The syntenic block of genes in the elephant shark protocadherin locus is well conserved in human but disrupted in fugu. Thus, the elephant shark genome appears to be less prone to rearrangements compared with teleost fish genomes. The small and "stable" genome of the elephant shark is a valuable reference for understanding the evolution of vertebrate genomes.  相似文献   

9.
Physical and gene mapping studies reveal that chloroplast DNA from geranium (Pelargonium hortorum) has sustained a number of extensive duplications and inversions, resulting in a genome arrangement radically unlike that of other plants. At 217 kilobases in size, the circular chromosome is about 50% larger than the typical land plant chloroplast genome and is by far the largest described to date, to our knowledge. Most of this extra size can be accounted for by a 76-kilobase inverted duplication, three times larger than the normal chloroplast DNA inverted repeat. This tripling has occurred primarily by spreading of the inverted repeat into regions that are single copy in all other chloroplast genomes. Consequently, 10 protein genes that are present only once in all other land plants are duplicated in geranium. At least six inversions, occurring in both the inverted repeat and large single-copy region, must be postulated to account for all of the gene order differences that distinguish the geranium genome from other chloroplast genomes. We report the existence in geranium of two families of short dispersed repeats and hypothesize that recombination between repeats may be the major cause of inversions in geranium chloroplast DNA.  相似文献   

10.
In Vitro Packaging of Satellite Phage P4 DNA   总被引:11,自引:6,他引:5       下载免费PDF全文
Satellite phage P4 directs the capsid proteins of its helper phage, P2, to form a head which is only one-third the size of the normal P2 head. The P2 head contains a genome of molecular weight 22 x 10(6), while the small P4 head contains a genome with a molecular weight of only 7 x 10(6). We have used in vitro DNA packaging to test whether P2 and P4 phage head sizes are determined by DNA size.The small DNA of satellite phage P4 added to a P2-infected cell extract was packaged primarily into particles containing three copies of the P4 genome. This process occurred with approximately the same efficiency as P2 DNA packaging in the same cell extract. In contrast, the large DNA of P2 was packaged 300-fold less efficiently than the small DNA of P4 in an extract derived from P4-infected, P2-lysogenic cells. These results suggest that DNA size is not sufficient to determine head size. The results are compatible with DNA packaging via the filling of preformed empty capsids.  相似文献   

11.
12.
Although thousands of DNA damaging events occur in each cell every day, efficient DNA repair pathways have evolved to counteract them. The DNA repair machinery plays a key role in maintaining genomic stability by avoiding the maintenance of mutations. The DNA repair enzymes continuously monitor the chromosomes to correct any damage that is caused by exogenous and endogenous mutagens. If DNA damage in proliferating cells is not repaired because of an inadequate expression of DNA repair genes, it might increase the risk of cancer. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes has been associated with carcinogenesis. Gastric cancer represents the second highest cause of cancer mortality worldwide. The disease develops from the accumulation of several genetic and epigenetic changes during the lifetime. Among the risk factors, Helicobacter pylori (H. pylori) infection is considered the main driving factor to gastric cancer development. Thus, in this review, we summarize the current knowledge of the role of H. pylori infection on the epigenetic regulation of DNA repair machinery in gastric carcinogenesis.  相似文献   

13.
We have developed an approach for genetic analysis of the murine H-2 complex that has broad general applicability to the study of eukaryotic genome organization. We have used a retroviral vector to introduce a selectable marker into the mouse genome close to the major histocompatibility complex (MHC). Chromosomal segments containing large portions of the MHC from these donor cells have been transferred both to hamster and monkey cell recipients. The procedure involved the following steps. First, a murine cell line was multiply infected with a defective recombinant murine leukemia virus that contains the neomycin-resistance gene (a gene that confers resistance to G418). In this way, the neomycin-resistance gene was introduced at multiple sites in the mouse genome. Second, metaphase chromosomes, prepared from this infected cell population, were transferred to hamster cell recipients. Third, two G418-resistant transferents were identified that expressed murine H-2 antigens on their cell surface. These transferents were shown to contain a large segment of the murine MHC (H-2K and I regions) by DNA hybridization. The neomycin-resistance gene and the mouse MHC genes must be physically linked in these cells since they could be cotransferred from the hamster cells to monkey cells. Fourth, the murine cell carrying the neomycin-resistance gene near the MHC was identified from the original donor cell population. This cell will serve as a useful source of chromosome fragments for analysis of larger portions of the MHC. This series of steps can serve as a paradigm for the first steps in a detailed genetic analysis of any specific region of a mammalian genome to which one or more genes have already been mapped.  相似文献   

14.
Polyploidy is an important driver of eukaryotic evolution, evident in many animals, fungi, and plants. One consequence of polyploidy is subfunctionalization, in which the ancestral expression profile becomes partitioned among duplicated genes (termed homoeologs). Subfunctionalization appears to be a common phenomenon insofar as it has been studied, at the scale of organs. Here, we use a high-resolution methodology to investigate the expression of thousands of pairs of homoeologs during the development of a single plant cell, using as a model the seed trichomes ("cotton fiber") of allopolyploid (containing "A" and "D" genomes) cotton (Gossypium). We demonstrate that approximately 30% of the homoeologs are significantly A- or D-biased at each of three time points studied during fiber development. Genes differentially biased toward the A or D genome belong to different biological processes, illustrating the functional partitioning of genomic contributions during cellular development. Interestingly, expression of the biased genes was shifted strongly toward the agronomically inferior D genome. Analyses of homoeologous gene expression during development of this cell showed that one-fifth of the genes exhibit changes in A/D ratios, indicating that significant alteration in duplicated gene expression is fairly frequent even at the level of development and maturation of a single cell. Comparing changes in homoeolog expression in cultivated versus wild cotton showed that most homoeolog expression bias reflects polyploidy rather than domestication. Evidence suggests, however, that domestication may increase expression bias in fibers toward the D genome, potentially implicating D-genome recruitment under human selection during domestication.  相似文献   

15.
16.
17.
More than a dozen large DNA viruses exceeding 240-kb genome size were recently discovered, including the "giant" mimivirus with a 1.2-Mb genome size. The detection of mimivirus and other large viruses has stimulated new analysis and discussion concerning the early evolution of life and the complexity and mechanisms of evolutionary transitions. This paper presents analysis in three contexts. (i) Genome signatures of large viruses tend to deviate from the genome signatures of their hosts, perhaps indicating that the large viruses are lytic in the hosts. (ii) Proteome composition within these viral genomes contrast with cellular organisms; for example, most eukaryotic genomes, with respect to acidic residue usages, select Glu over Asp, but the opposite generally prevails for the large viral genomes preferring Asp more than Glu. In comparing Phe vs. Tyr usage, the viral genomes select mostly Tyr over Phe, whereas in almost all bacterial and eukaryotic genomes, Phe is used more than Tyr. Interpretations of these contrasts are proffered with respect to protein structure and function. (iii) Frequent oligonucleotides and peptides are characterized in the large viral genomes. The frequent words may provide structural flexibility to interact with host proteins.  相似文献   

18.
19.
A unique cell division machinery in the Archaea   总被引:2,自引:2,他引:0  
In contrast to the cell division machineries of bacteria, euryarchaea, and eukaryotes, no division components have been identified in the second main archaeal phylum, Crenarchaeota. Here, we demonstrate that a three-gene operon, cdv, in the crenarchaeon Sulfolobus acidocaldarius, forms part of a unique cell division machinery. The operon is induced at the onset of genome segregation and division, and the Cdv proteins then polymerize between segregating nucleoids and persist throughout cell division, forming a successively smaller structure during constriction. The cdv operon is dramatically down-regulated after UV irradiation, indicating division inhibition in response to DNA damage, reminiscent of eukaryotic checkpoint systems. The cdv genes exhibit a complementary phylogenetic range relative to FtsZ-based archaeal division systems such that, in most archaeal lineages, either one or the other system is present. Two of the Cdv proteins, CdvB and CdvC, display homology to components of the eukaryotic ESCRT-III sorting complex involved in budding of luminal vesicles and HIV-1 virion release, suggesting mechanistic similarities and a common evolutionary origin.  相似文献   

20.
The rhizobium-legume symbiosis has been widely studied as the model of mutualistic evolution and the essential component of sustainable agriculture. Extensive genetic and recent genomic studies have led to the hypothesis that many distinct strategies, regardless of rhizobial phylogeny, contributed to the varied rhizobium-legume symbiosis. We sequenced 26 genomes of Sinorhizobium and Bradyrhizobium nodulating soybean to test this hypothesis. The Bradyrhizobium core genome is disproportionally enriched in lipid and secondary metabolism, whereas several gene clusters known to be involved in osmoprotection and adaptation to alkaline pH are specific to the Sinorhizobium core genome. These features are consistent with biogeographic patterns of these bacteria. Surprisingly, no genes are specifically shared by these soybean microsymbionts compared with other legume microsymbionts. On the other hand, phyletic patterns of 561 known symbiosis genes of rhizobia reflected the species phylogeny of these soybean microsymbionts and other rhizobia. Similar analyses with 887 known functional genes or the whole pan genome of rhizobia revealed that only the phyletic distribution of functional genes was consistent with the species tree of rhizobia. Further evolutionary genetics revealed that recombination dominated the evolution of core genome. Taken together, our results suggested that faithfully vertical genes were rare compared with those with history of recombination including lateral gene transfer, although rhizobial adaptations to symbiotic interactions and other environmental conditions extensively recruited lineage-specific shell genes under direct or indirect control through the speciation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号