首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
提出并设计一种用于下肢智能假肢的步态仿真模拟与评测系统的软硬件平台,从而可通过机器测试代替人体穿戴测试,定量分析智能膝关节假肢的穿戴对称性效果。通过全身三维步态与运动分析系统仪器采集成年人的关节角度和步幅等步态数据,提取模拟步态特征曲线,通过相应关节拟合步态曲线实验,验证测试平台的可行性,然后将所研发智能膝关节假肢穿戴在假肢测评系统上,定量分析步态对称效果。结果表明所研发智能膝关节不同速度下的步态对称性无明显差异,均可超过88%,假肢步态仿真模拟与评测对下肢智能假肢的功能模拟和评测具有良好的效果。  相似文献   

2.
背景:目前对于假肢的评价还停留在主观感受,缺乏一套客观的评价系统,建立模拟人体运动的在线假肢参数检测系统对于假肢性能的评价、假肢研究设计具有重要意义。 目的:实现假肢的多种步态运动,并通过运动学、动力学数据的比对,评价其仿真程度。 方法:根据仿生学原理,将下肢假肢简化成四杆四轴的力学模型,利用采集得到的多种步态模式,驱动下肢假肢运动,并搭建动态力学测试平台,实时测量假肢运动的地面垂直反力和前后剪力。 结果与结论:假肢步态运动,髋膝关节的变化曲线与正常步态数据相一致,而其地面垂直反力与前后剪力也与正常人体相接近。提示假肢步态实验平台模拟了下肢假肢步态运动,并实时采集假肢运动的多项运动学、动力学参数,具备较高的仿真程度。  相似文献   

3.
背景:下肢运动是一种复杂的运动,采用合适的传感器获取人体运动生理信息,成为智能假肢控制的前提。国际上现有的下肢假肢控制信息源为与运动信息有关的物理量,这类信息可以直接反映人体运动的生物力学特性,采集比较简单,非常适合实时控制。现有智能下肢假肢产品根据采用的控制方法不同选择一种或几种传感器测量人体运动信息。目的:研究一种能够采集智能下肢假肢控制所需人体运动信息的传感器系统。方法:对智能下肢假肢带固定式气缸阻尼器的四连杆机械机构进行运动分析,得出四连杆后臂下轴电位计输出信号与膝关节弯曲角度的对应关系,同时,选取合适的霍尔传感器安装位置,解决了其中存在的双值问题。设计了传感器输出信号采集实验,通过跑步机速度调节来保证步行速度完全可控,测量不同步速下脚尖离地时刻膝关节弯曲角度,分析采集结果找到了它们之间的对应关系。结果与结论:脚尖离地时刻膝关节弯曲角度随着步行速度增大而增大,采用二次曲线拟合取得了较好效果。实验结果显示,水平步行状态下,采用电位计和霍尔传感器作为检测手段能够检测下肢假肢的步速,也能区分支撑期和摆动期。  相似文献   

4.
目的 实现四连杆膝关节假肢的运动瞬心轨迹的仿真与稳定性分析系统。方法 建立四连杆膝关节假肢瞬心轨迹与稳定性模型,通过labview软件仿真假肢运动特性。结果 该软件以动画的形式显示四连杆膝关节瞬心轨迹,计算出脚尖离地和脚跟着地的x/y值,即髋关节保持稳定所需力矩,并保存相关数据,与实物实验测得的数据比较,软件准确描述四连杆运动瞬心轨迹和稳定性。结论 测试结果表明:通过设计参数,该系统能够动态仿真四连杆膝关节瞬心轨迹的变化,并结合稳定性参数,为四连杆假肢膝关节设计与评价提供了客观依据。  相似文献   

5.
目的 为了提高智能膝关节假肢的穿戴调试效率及行走的步态对称性,提出了一种利用假肢模型对膝关节假肢的阻尼参数进行优化的方法。方法 首先利用多杆刚体系统对智能膝关节假肢构建由膝关节、连杆及阻尼器组成的假肢模型。选择5例测试对象,其中男性3例,女性2例;年龄29~55岁,平均年龄44.20岁(标准差10.45岁);身高1.52~1.78 m,平均身高1.650 m(标准差0.098 m);体质量55~75 kg,平均体质量63.60 kg(标准差8.59 kg);大腿长0.37~0.44 m,平均大腿长0.404 m(标准差0.027 m);小腿长0.43~0.51 m,平均小腿长0.470 m(标准差0.029 m);步幅0.56~0.66 m,平均步幅0.610 m(标准差0.038 m)。将不同步速(0.8 m/s、1.2 m/s、1.6 m/s)的健肢侧膝关节角度及足底反力信息导入该模型,结合S.S.Rao Mechanical Vibration的二阶振动理论,以假肢模型与健肢之间的膝关节角度最小均方根误差为优化目标,对阻尼参数(ωd,ζ)进行优化求解。结果 通过对5例测试对象的步...  相似文献   

6.
一体化小腿假肢的三维有限元应力分析   总被引:6,自引:1,他引:5  
建立一体化小腿假肢和残肢的三维模型,应用有限元分析方法,计算此模型在模拟Mid—Stance步态时相的载荷作用下各节点的应力,从而得到此模型内外表面的应力分布,为一体化假肢设计的CAD\CAM系统提供理论依据。计算结果表明,接受腔的应力值较小,假腿的应力值较大,高应力区出现在假腿下端及接受腔与假腿的交界区域。  相似文献   

7.
智能膝关节假肢是截肢患者恢复日常运动的重要辅具。对人体下肢运动意图的识别是实现下肢假肢控制的关键。该文针对此问题,提出了一种通过表面肌电信号预测膝关节角度的方法。对表面肌电提取时域特征,通过 BP 神经网络模型建立平地行走过程中表面肌电信号和膝关节角度的映射关系,预测膝关节角度。  相似文献   

8.
壁面厚度对一体化小腿假肢应力分布的影响   总被引:6,自引:0,他引:6  
一体化假肢是以聚合物为材料从接受腔到假腿一体成型的新型下肢假肢 ,它比传统型假肢更经济、美观、轻便 ,具有较大的应用前景。如同传统假肢 ,应力分析对于一体化假肢的构型设计和优化具有重要的意义。由于假肢中的应力大小及分布与其所用材料的力学特性密切相关。本文的工作是基于一实验用内骨架一体化小腿假肢的真实几何构型 ,考虑残端软组织和骨 ,建立一体化小腿假肢的三维有限元模型 ;在保持假肢的几何形状不变的前提下 ,建立三个不同壁面厚度的一体化小腿假肢的三维模型 ,应用有限元分析方法 ,计算这些模型在模拟 Heel Off步态时相的载荷作用下的应力分布 ,分析壁面厚度对一体化小腿假肢应力分布的影响 ,为一体化小腿假肢壁面厚度的设计标准提供参考。结果表明 ,可以通过适当增加壁面厚度来减小一体化假肢的应力及软组织表面的压力。  相似文献   

9.
背景:传统的下肢假肢行走状态改变时膝关节阻尼不能随之改变,假肢跟随性差,变化范围小。 目的:基于有限状态机的智能下肢假肢控制方法,实现假肢侧对健肢侧的实时跟踪和步速跟随。 方法:智能下肢假肢采用带固定式气缸阻尼器的四连杆机构,采用有限状态机的控制方法,感知当前的步态事件,触发步态状态的转变,调整对应的步态模式,得到步态规划的输出动作。 结果与结论:实验结果表明,智能下肢假肢能够进行步速识别和步态识别,控制器输出不同的控制策略,控制步进电机调整膝关节阻尼的大小,假肢侧能够对健肢侧进行实时跟踪和步速跟随。  相似文献   

10.
背景:传统下肢假肢通过手动方式将气压或者液压膝关节阻尼器调整到一种比较适宜的状态,行走状态改变时膝关节阻尼不能随之改变,假肢跟随性差,步速变化范围小。智能下肢假肢能够根据人体运动信息调整膝关节阻尼力,从而达到更加接近正常步态的效果。开发国内智能下肢假肢对提高国内残疾人生活质量有着重要的现实意义。目的:研制能够实现步速跟随功能的智能下肢假肢。方法:智能下肢假肢机械部分采用带固定式气缸阻尼器的四连杆机构,由四连杆后臂下轴的转动角度得出步行速度,依照迭代学习算法得出的知识库确定该步行速度下的针阀开度,通过永磁式直线步进电机作为执行器驱动针阀来控制缓冲气缸腔室间气道有效截面积来调整假肢摆动速度。结果与结论:实验结果显示,采用电位计作为检测手段不但能够获得步行速度,而且能够区分支撑期和摆动期。在不同速度下,智能下肢假肢膝关节最大摆动角度变化小于13°。提示智能下肢假肢能够识别步行速度,并根据步行速度调整膝关节摆动速度,实现了对健肢步行速度的跟随,为进一步的研究奠定了实验基础。  相似文献   

11.
Force (peak torque) of m. quadriceps femoris was measured during 60 repeated, voluntary dynamic knee extensions in 10 men before and after a 4-week training regimen of one-legged cycle exercise. Biopsies for histochemical analysis were obtained from the lateral vastus muscle after the training period. One leg was trained with the blood flow to the leg muscles reduced by local supra-atmospheric external pressure of 50 mmHg ('Ischaemic leg, I-leg'). Employing the same work-load profile the other leg was trained at normal atmospheric pressure ('Non-restricted-flow leg, N-leg'). In response to I-training, Maximum Peak Torqued (MPT; the highest torque produced in any contraction) and Initial Peak Torque (IPT; the average peak torque of the initial 12 contractions) decreased by 8% (P less than 0.01) and 9% (P less than 0.001), respectively. Final Peak Torque (FPT; the average peak torque of the final 12 contractions) increased by 13% (P less than 0.05) after I-training. No changes in MPT, IPT or FPT occurred following N-training. After training the proportion of slow-twitch fibres was higher (P less than 0.05) and the mean slow-twitch fibre area was larger (P less than 0.05) in the I-than in the N-trained leg. The results indicate that blood flow-restricted training, in contrast to non-restricted-flow training, decreases maximum voluntary dynamic force, possibly by inducing an increase in the share of the muscle cross-sectional area consisting of slow-twitch fibres. That flow-restricted training improves maintenance of force during short-term local exercise may reflect ischaemically induced changes in the metabolic characteristics of skeletal muscle.  相似文献   

12.
Hypersensitivity of the flexor reflex pathways to input from force-sensitive muscle afferents may contribute to the prevalence and severity of muscle spasms in patients with spinal cord injury (SCI). In this study, we triggered flexor reflexes with constant velocity knee movements in 15 subjects with SCI. Ramp and hold knee extension perturbations were imposed on one leg while the hip and ankle were held in an isometric position using an instrumented leg brace. Knee, ankle and hip torque responses and electromyograms from six muscles of the leg were recorded following controlled knee extension at four different velocities. Tests were conducted with the hip in both flexed and extended positions. During the movement into knee extension, a velocity-dependent stretch reflex, represented by a progressively increasing knee flexion torque, was observed. In addition, another type of reflex that resembled a flexor reflex (flexion of the hip and ankle) was also triggered by the imposed knee extension. The magnitude of the ankle dorsiflexion torque responses was significantly correlated to the stretch reflex torque at the knee in 9 of the 15 subjects. We concluded that stretch reflexes initiate a muscle contraction that then can contribute to a flexor reflex response, possibly through muscle group III/IV afferent pathways. These results suggest that spasticity in SCI consists of a myriad of complex reflex responses that extend beyond stretch reflexes.  相似文献   

13.
目的通过研究膝骨关节炎(knee osteoarthritis,KOA)症状及病变阶段与膝关节伸、屈肌群肌力的相关性,探讨KOA患者肌力训练的关键肌群。方法社区募集健康老年人、单膝KOA患者、双膝KOA患者共99位志愿者,应用膝关节等速肌力测试、WOMAC评分、6 min步行测试、CS-30测试,分析志愿者膝关节伸、屈肌群峰力矩与KOA症状、全身有氧运动能力、关节功能等的相关性。结果单膝KOA组患者患侧膝关节伸肌群等速峰力矩显著低于健侧。双膝KOA组患者症状严重侧和症状较轻侧膝关节伸、屈肌群等速峰力矩差异均有统计学意义。双膝KOA组患者膝关节伸肌群等速峰力矩显著低于健康组。KOA患者膝关节伸、屈肌群等速峰力矩与CS-30测试、6 min步行测试均呈正相关,均与年龄呈负相关;膝关节伸肌群等速峰力矩与WOMAC评分的疼痛和功能障碍项呈负相关。结论膝关节伸、屈肌群均与KOA相关,KOA康复过程中不仅需重视股四头肌等伸肌群的训练,而且要兼顾腘绳肌、腓肠肌等屈肌群的训练。  相似文献   

14.
The present study was designed to determine the relative contribution of the gastrocnemius muscle to isometric plantar flexor torque production at varying knee angles, while investigating the activation of the gastrocnemius muscle at standardised non-optimal lengths. Voluntary plantar flexor torque, supramaximally stimulated twitch torque and myoelectric activity (EMG) from the triceps surae were measured at different knee angles. Surface and intra-muscular EMG were recorded from the soleus muscle and the medial and lateral heads of the gastrocnemius muscle in 10 male subjects. With the ankle angle held constant, knee angle was changed in steps of 30° ranging from 180° (extended) to 60° (extreme flexion), while voluntary torque from a 5-s contraction was determined at 10 different levels of voluntary effort, ranging from 10% of maximal effort to maximal effort. To assess effort, supramaximal twitches were superimposed on all voluntary contractions, and additionally during rest. Maximal plantar flexor torque and resting twitch torque decreased significantly in a sigmoidal fashion with increasing knee flexion to 60% of the maximum torque at 180° knee angle. For similar levels of voluntary effort, the EMG root mean square (RMS) of gastrocnemius was less with increased knee flexion, whereas soleus RMS remained unchanged. From these data, it is concluded that the contribution of gastrocnemius to plantar flexor torque is at least 40% of the total torque in the straight leg position. The decrease of gastrocnemius EMG RMS with decreasing muscle length may be brought about by a decrease in the number of fibres within the EMG electrode recording volume and/or impaired neuromuscular transmission.  相似文献   

15.
Multibody dynamic musculoskeletal models capable of predicting muscle forces and joint contact pressures simultaneously would be valuable for studying clinical issues related to knee joint degeneration and restoration. Current three-dimensional multibody knee models are either quasi-static with deformable contact or dynamic with rigid contact. This study proposes a computationally efficient methodology for combining multibody dynamic simulation methods with a deformable contact knee model. The methodology requires preparation of the articular surface geometry, development of efficient methods to calculate distances between contact surfaces, implementation of an efficient contact solver that accounts for the unique characteristics of human joints, and specification of an application programming interface for integration with any multibody dynamic simulation environment. The current implementation accommodates natural or artificial tibiofemoral joint models, small or large strain contact models, and linear or nonlinear material models. Applications are presented for static analysis (via dynamic simulation) of a natural knee model created from MRI and CT data and dynamic simulation of an artificial knee model produced from manufacturer's CAD data. Small and large strain natural knee static analyses required 1 min of CPU time and predicted similar contact conditions except for peak pressure, which was higher for the large strain model. Linear and nonlinear artificial knee dynamic simulations required 10 min of CPU time and predicted similar contact force and torque but different contact pressures, which were lower for the nonlinear model due to increased contact area. This methodology provides an important step toward the realization of dynamic musculoskeletal models that can predict in vivo knee joint motion and loading simultaneously.  相似文献   

16.
Previous studies have demonstrated that healthy young people typically have side-to-side differences in knee strength of about 10% when the peak torque generated by the stronger leg is contrasted with that of the weaker leg. However, the mechanisms responsible for side-to-side differences in knee strength have not been clearly defined. The current study tested the hypothesis that side-to-side knee extensor strength differences are explained by inter-limb variations in voluntary activation, antagonistic hamstrings activity, and electrically evoked torque at rest. Twenty-two volunteers served as subjects. Side-to-side differences in quadriceps activation and electrically evoked knee extensor torque explained 69% of the strength differences by side. Antagonistic hamstrings activity did not contribute significantly. The results suggest both central and peripheral mechanisms contribute to inter-limb variations in strength.  相似文献   

17.
A test device is developed to measure ankle joint compliance and muscle activity when the ankle is subjected to perturbations in angular position (or torque) from bias positions achieved volitionally or via electrical stimulation. The ankle measurement system uses a pivoting footplate and is operable with the subject sitting or supine. A companion platform for the knee is developed that uses a rotary arm and attached leg brace and is operable with the subject’s leg in the horizontal or vertical plane. The knee fixture’s pivoting arm can slide to account for the cam-like movement of the knee during rotation. The devices use similar hardware and share common instrumentation and control. Precise torque or position perturbations are delivered by a computer-controlled torque motor to the ankle or knee. Angular displacement, torque, acceleration, knee fixture moment arm and electromyographic data are collected on analogue tape and simultaneously digitised and stored. A special stimulator/recording amplifier permits the recording of electromyographic signals from the stimulated muscle. Experimental data indicate that the ankle and knee devices, operated horizontally, are purely inertial systems. Sample ankle and knee joint responses to perturbations are presented.  相似文献   

18.
It has been suggested that the cerebellum is an important contributor to CNS prediction and control of intersegmental dynamics during voluntary multijoint reaching movements. Leg movements subserve different behavioral goals, e.g., locomotion versus voluntary stepping, which may or may not be under similar dynamic control. The objective was to determine whether cerebellar leg hypermetria (excessive foot elevation) during obstacle avoidance in locomotion and voluntary stepping could be attributed to a particular deficit in appropriately controlling intersegmental dynamics. We compared the performance of eight individuals with cerebellar damage to eight healthy controls as they walked or voluntarily stepped in place over a small obstacle. Joint kinematics and dynamics were calculated during swing phase for both movement contexts. The kinematic analysis showed that hypermetria occurred during both walking and stepping and was associated with excessive knee flexion. When present, the amplitude of hypermetria was greater during stepping compared to walking. During stepping, subjects with cerebellar damage produced excessive knee flexor muscle torques and consequently overcompensated for interaction and gravitational torques normally used to decelerate the limb. During walking, the torque pattern was very similar to that of control subjects walking over a taller obstacle, and therefore might be a voluntary compensatory strategy to avoid tripping. Our results show that the extent of kinematic and dynamic abnormalities associated with cerebellar leg hypermetria is context-specific, with more fundamental abnormalities of leg dynamics being apparent during stepping as opposed to walking.  相似文献   

19.

Purpose

Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque–angle and force/torque–angular velocity properties for multi-joint leg extensions.

Methods

Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s?1.

Results

For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque–angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s?1 for 90–50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle.

Conclusions

The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.  相似文献   

20.
The effect of hamstring fatigue on knee extension torque was examined at different knee angles for seven male subjects. Before and after a dynamic flexion fatigue protocol (180° s–1, until dynamic torque had declined by 50%), maximal voluntary contraction extension torque was measured at four knee flexion angles (90°, 70°, 50° and 30°). Maximal torque generating capacity and voluntary activation of the quadriceps muscle were determined using electrical stimulation. Average rectified EMG of the biceps femoris was determined. Mean dynamic flexion torque declined by 48±11%. Extensor maximal voluntary contraction torque, maximal torque generating capacity, voluntary activation and average rectified EMG at the four knee angles were unaffected by the hamstring fatigue protocol. Only at 50° knee angle was voluntary activation significantly lower (15.7%) after fatigue (P<0.05). In addition, average rectified EMG before fatigue was not significantly influenced by knee angle. It was concluded that a fatigued hamstring muscle did not increase the maximal voluntary contraction extension torque and knee angle did not change coactivation. Three possible mechanisms may explain the results: a potential difference in recruited fibre populations in antagonist activity compared with the fibres which were fatigued in the protocol, a smaller loss in isometric torque generating capacity of the hamstring muscle than was expected from the dynamic measurements and/or a reduction in voluntary activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号