首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Most pomegranate (Punica granatum Linn., Punicaceae) fruit parts are known to possess enormous antioxidant activity. The present study evaluated antioxidant and hepatoprotective activity of pomegranate flowers. Alcoholic (ethanolic) extract of flowers was prepared and used in the present study. The extract was found to contain a large amount of polyphenols and exhibit enormous reducing ability, both indicative of potent antioxidant ability. The extract showed 81.6% antioxidant activity in DPPH model system. The ability of extract to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS) was tested and it was found to significantly scavenge superoxide (O(2)(.-)) (by up to 53.3%), hydrogen peroxide (H(2)O(2)) (by up to 30%), hydroxyl radicals (()OH) (by up to 37%) and nitric oxide (NO) (by up to 74.5%). The extract also inhibited (.)OH induced oxidation of lipids and proteins in vitro. These results indicated pomegranate flower extract to exert a significant antioxidant activity in vitro. The efficacy of extract was tested in vivo and it was found to exhibit a potent protective activity in acute oxidative tissue injury animal model: ferric nitrilotriacetate (Fe-NTA) induced hepatotoxicity in mice. Intraperitoneal administration of 9 mg/kg body wt. Fe-NTA to mice induced oxidative stress and liver injury. Pretreatment with pomegranate flower extract at a dose regimen of 50-150 mg/kg body wt. for a week significantly and dose dependently protected against Fe-NTA induced oxidative stress as well as hepatic injury. The extract afforded up to 60% protection against hepatic lipid peroxidation and preserved glutathione (GSH) levels and activities of antioxidant enzymes viz., catalase (CAT), glutathione peroxidase (GPX) glutathione reductase (GR) and glutathione-S-transferase (GST) by up to 36%, 28.5%, 28.7%, 40.2% and 42.5% respectively. A protection against Fe-NTA induced liver injury was apparent as inhibition in the modulation of liver markers viz., aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin and albumin in serum. The histopathological changes produced by Fe-NTA, such as ballooning degeneration, fatty changes, necrosis were also alleviated by the extract. These results indicate pomegranate flowers to possess potent antioxidant and hepatoprotective property, the former being probably responsible for the latter.  相似文献   

2.
Intraperitoneal injection of ferric nitrilotriacetate (Fe-NTA) to rats and mice results in iron-induced free radical injury and cancer in kidneys. This study was designed to investigate the effects of garlic oil on Fe-NTA-induced damage and tumor promotion. Pretreatment of rats with garlic oil at a dose regimen of 50-100 mg/kg body weight for a week significantly and dose dependently protected against Fe-NTA induced damage as well as tumor promotion. Garlic oil afforded protection against hepatic lipid peroxidation, generation of hydrogen peroxide, preserved glutathione levels and activities of antioxidant enzymes. A protection against Fe-NTA induced hepatic tumor promotion was also apparent as inhibition in the modulation of hepatic tumor markers viz., ornithine decarboxylase activity and DNA synthesis. These results clearly demonstrate the role of oxidative stress and its relation to tumor promotion and suggest protective effects of garlic oil against Fe-NTA induced hepatic toxicity and it can serve as potent chemopreventive agent to suppress oxidant-induced tissue injury and carcinogenesis.  相似文献   

3.
Ferric nitrilotriacetate (Fe-NTA) is a potent nephrotoxicant and a renal carcinogen that induces its effect by causing oxidative stress. The present study was undertaken to explore protective effect of silymarin, a flavonolignan from milk thistle (Silybum marianum), against Fe-NTA mediated renal oxidative stress, inflammation and tumor promotion response along with elucidation of the implicated mechanism(s). Administration of Fe-NTA (10 mg/kg bd wt, i.p.) to Swiss albino mice induced marked oxidative stress in kidney, evident from augmentation in renal metallothionein (MT) expression, depletion of glutathione content and activities of antioxidant and phase II metabolizing enzymes, and enhancement in production of aldehyde products such as 4-hydroxy-2-nonenal. Fe-NTA also significantly activated nuclear factor kappa B (NFκB) and upregulated the expression of downstream genes: cyclooxygenase 2 and inducible nitric oxide synthase and enhancing the production of proinflammatory cytokines: tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). However, feeding of 0.5% and 1% silymarin diet conferred a significant protection against Fe-NTA induced oxidative stress and inflammation. It further augmented MT expression, restored the antioxidant armory, ameliorated NFκB activation and decreased the expression of proinflammatory mediators. Silymarin also suppressed Fe-NTA induced hyperproliferation in kidney, ameliorating renal ornithine decarboxylase activity and DNA synthesis. From these results, it could be concluded that silymarin markedly protects against chemically induced renal cancer and acts plausibly by virtue of its antioxidant, anti-inflammatory and antiproliferative activities.  相似文献   

4.
Paracetamol has a reasonable safety profile when taken in therapeutic doses. However, it could induce hepatotoxicity and even more severe fatal acute hepatic damage when taken in an overdose. The green alga, Dunaliella salina was investigated for hepatoprotective and antioxidant activity against paracetamol-induced liver damage in rats. Male albino Wistar rats overdosed with paracetamol showed liver damage and oxidative stress as indicated by significantly (P<0.05) increased serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide. At the same time, there were decreased activities of serum superoxide dismutase and total antioxidant capacity compared with the control group. Treatment with D. salina methanol extract at doses of 500 and 1000 mg/kg body weight or silymarin could significantly (P<0.05) decrease the liver damage marker enzymes, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide levels and increase the activities of superoxide dismutase and total antioxidant capacity in serum when compared with paracetamol intoxicated group. Liver histopathology also showed that D. salina reduced the centrilobular necrosis, congestion and inflammatory cell infiltration evoked by paracetamol overdose. These results suggest that D. salina exhibits a potent hepatoprotective effect on paracetamol-induced liver damage in rats, which may be due to both the increase of antioxidant enzymes activity and inhibition of lipid peroxidation.  相似文献   

5.
Oxidative damage is involved in the pathogenesis of various hepatic injuries. In the present study the capacity of Commiphora berryi (Arn) Engl bark as an antioxidant to protect against CCl(4)-induced oxidative stress and hepatotoxicity in Albino Wistar rats was investigated. Intraperitoneal injection of CCl(4), administered twice a week, produced a marked elevation in the serum levels of aspartate transaminase, alanine transaminase, alkaline phosphatase and bilirubin. Histopathological analysis of the liver of CCl(4)-induced rats revealed marked liver cell necrosis with inflammatory collections that were conformed to increase in the levels of SOD, GPx and CAT. Daily oral administration of methanolic extract of C. berryi (Arn) Engl bark at 100 and 200mg/kg doses for 15 days produced a dose-dependent reduction in the serum levels of liver enzymes. Treatment with C. berryi normalized various biochemical parameters of oxidative stress and was compared with standard Silymarin. Therefore, the results of this study show that C. berryi (Arn) Engl bark can be proposed to protect the liver against CCl(4)-induced oxidative damage in rats, and the hepatoprotective effect might be correlated with its antioxidant and free radical scavenger effects.  相似文献   

6.
Lead is known to disrupt the biological systems by altering the molecular interactions, cell signaling, and cellular function. Exposure to even low levels of lead may have potential hazardous effects on brain, liver, kidneys and testes. The efficacy of Etlingera elatior (torch ginger) to protect hepatotoxicity induced by lead acetate was evaluated experimentally in male Sprague - Dawley rats. Rats were exposed to lead acetate in drinking water (500 ppm) for 21 days and the effects of concurrent treatment with extract of E. elatior on hepatic lipid hydroperoxides (LPO), protein carbonyl content (PCC), total antioxidants (TA), superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione S- Transferase (GST) levels and histopathological changes in liver were evaluated. There was a significant decrease in TA and other antioxidant enzymes (p < 0.05) and increase in LPO and PCC (p < 0.05) with lead acetate ingestion. Concurrent treatment with E. elatior extract significantly reduced the LPO and PCC (p < 0.05) in serum and increased the antioxidant enzyme levels (p < 0.05) in the liver. Significant histopathological changes were seen in hepatic tissue with chronic lead ingestion. Treatment with E. elatior significantly reduced these lead-induced changes in hepatic architecture. E. elatior has also reduced the blood lead levels (BLL). Thus, there has been extensive biochemical and structural alterations indicative of liver toxicity with exposure to lead and E. elatior treatment significantly reduced these oxidative damage. Our results suggest that E. elatior has a powerful antioxidant effect against lead-induced hepatotoxicity.  相似文献   

7.
The protective effects of Taraxacum officinale (dandelion) root against alcoholic liver damage were investigated in HepG2/2E1 cells and ICR mice. When an increase in the production of reactive oxygen species was induced by 300 mM ethanol in vitro, cell viability was drastically decreased by 39%. However, in the presence of hot water extract (TOH) from T. officinale root, no hepatocytic damage was observed in the cells treated with ethanol, while ethanol-extract (TOE) did not show potent hepatoprotective activity. Mice, which received TOH (1 g/kg bw/day) with ethanol revealed complete prevention of alcohol-induced hepatotoxicity as evidenced by the significant reductions of serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities compared to ethanol-alone administered mice. When compared to the ethanol-alone treated group, the mice receiving ethanol plus TOH exhibited significant increases in hepatic antioxidant activities, including catalase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, and glutathione. Furthermore, the amelioration of malondialdehyde levels indicated TOH’s protective effects against liver damage mediated by alcohol in vivo. These results suggest that the aqueous extract of T. officinale root has protective action against alcohol-induced toxicity in the liver by elevating antioxidative potentials and decreasing lipid peroxidation.  相似文献   

8.
In the present work, we investigated the protective effects of the ethanol extract of Aralia continentalis roots (AC) on tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity in a cultured Hepa1c1c7 cell line and in mouse liver. Pretreatment with AC prior to the administration of t-BHP significantly prevented the increase in serum levels of hepatic enzyme markers (ALT, AST) and lipid peroxidation and reduced oxidative stress, as measured by glutathione content, in the liver. Histopathological evaluation of the livers also revealed that AC reduced the incidence of liver lesions. The in vitro study showed that AC significantly reduced t-BHP-induced oxidative injury in Hepa1c1c7 cells, as determined by cell cytotoxicity, intracellular glutathione content, lipid peroxidation, reactive oxygen species (ROS) levels, and caspase-3 activation. Also, AC up-regulated phase II genes including heme oxygenase-1 (HO-1), NAD(P)H:quinone reductase, and glutathione S-transferase. Moreover, AC induced Nrf2 nuclear translocation and ERK1/2 and p38 activation, pathways that are involved in inducing Nrf2 nuclear translocation. Taken together, these results suggest that the protective effects of AC against t-BHP-induced hepatotoxicity may, at least in part, be due to its ability to scavenge ROS and to regulate the antioxidant enzyme HO-1 via the ERK1/2 and p38/Nrf2 signaling pathways.  相似文献   

9.
Chiu PY  Mak DH  Poon MK  Ko KM 《Planta medica》2002,68(11):951-956
The in vivo antioxidant action of a lignan-enriched extract of the fruit of Schisandra chinensis (FS) and an anthraquinone-containing extract of the root of Polygonum multiflorum (PME) was compared with their respective active constituents schisandrin B (Sch B) and emodin by examining their effect on hepatic mitochondrial glutathione antioxidant status in control and carbon tetrachloride (CCl 4 )-intoxicated mice. FS and PME pretreatments produced a dose-dependent protection against CCl 4 hepatotoxicity, with the effect of FS being more potent. Pretreatment with Sch B, emodin or alpha-tocopherol (alpha-Toc) also protected against CCl 4 hepatotoxicity, with the effect of Sch B being more potent. The extent of hepatoprotection afforded by FS/Sch B and PME/emodin pretreatment against CCl 4 toxicity was found to correlate well with the degree of enhancement in hepatic mitochondrial glutathione antioxidant status, as evidenced by increases in reduced glutathione level and activities of glutathione reductase, glutathione peroxidase as well as glutathione S-transferases, in both control and CCl 4 -intoxicated mice. alpha-Toc, which did not enhance mitochondrial glutathione antioxidant status, seemed to be less potent in protecting against CCl 4 hepatotoxicity. The ensemble of results indicates that FS/PME produced a more potent in vivo antioxidant action than alpha-Toc by virtue of their ability to enhance hepatic mitochondrial glutathione antioxidant status and that the differential potency of FS and PME can be attributed to the difference in in vivo antioxidant potential between Sch B and emodin. Abbreviations. ALT:alanine aminotransferases CCl 4 :carbon tetrachloride FS:lignan-enriched extract of Schisandra fruit GRD:glutathione reductase GSH:reduced glutathione GSH-Px: Se-glutathione peroxidase GST:glutathione S-transferases mt:mitochondrial MDA:malondialdehyde PME:anthraquinone-containing fraction of Polygonum root Sch B:schisandrin B SDH:sorbitol dehydrogenase alpha-Toc:alpha-tocopherol  相似文献   

10.
Mercuric chloride (HgCl(2)) is a well-known nephrotoxic agent. Increasing number of evidences suggest the role of oxidative stress in HgCl(2) induced nephrotoxicity. Eruca sativa is widely used in folklore medicines and has a good reputation as a remedy of renal ailments. In the present study, the antioxidant potential of ethanolic extract of E. sativa seeds was determined and its protective effect on HgCl(2) induced renal toxicity was investigated. The extract was found to possess a potent antioxidant effect, with a large amount of polyphenols and a high reducing ability. HPLC analysis of the extract revealed glucoerucin and flavonoids to be the major antioxidants present in it. E. sativa extract significantly scavenged several reactive oxygen species (ROS) and reactive nitrogen species (RNS). Feeding of the extract to rats afforded a significant protection against HgCl(2) induced renal toxicity. Subcutaneous administration of 4 mg/kg body weight HgCl(2) induced renal injury evident as a marked elevation in serum creatinine and blood urea nitrogen levels, and histopathological changes such as necrosis, oedema and congestion of stroma and glomeruli. Oxidative modulation of renal tissues following HgCl(2) exposure was evident from a significant elevation in lipid peroxidation and attenuation in glutathione (GSH) contents and activities of antioxidant enzymes viz., catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD) and glutathione reductase (GR). Oral administration of E. sativa extract to rats at a dose regimen: 50-200 mg/kg body weight for 7 days prior to HgCl(2) treatment significantly and dose dependently protected against alterations in all these diagnostic parameters. The data obtained in the present study suggests E. sativa seeds to possess a potent antioxidant and renal protective activity and preclude oxidative damage inflicted to the kidney.  相似文献   

11.
Increasing evidence regarding free radical generating agents and the inflammatory process suggest that accumulation of reactive oxygen species (ROS) could involve hepatotoxicity. Hesperidin, a naturally occurring flavonoid presents in fruits and vegetables, has been reported to exert a wide range of pharmacological effects that include antioxidant, anti-inflammatory, antihypercholesterolemic, and anticarcinogenic actions. However, the cytoprotection and mechanism of hesperidin to neutralize oxidative stress in human hepatic L02 cells remain unclear. In this work, we assessed the capability of hesperidin to prevent tert-butyl hydroperoxide (t-BuOOH)-induced cell damage by augmenting cellular antioxidant defense. Hesperidin significantly protected hepatocytes against t-BuOOH-induced cell cytotoxicity, such as mitochondrial membrane potential (MMP) deplete and lactate dehydrogenase (LDH) release. Hesperidin also remarkably prevented indicators of oxidative stress, such as the ROS and lipid peroxidation level in a dose-dependent manner. Western blot showed that hesperidin facilitated ERK/MAPK phosphorylation which appeared to be responsible for nuclear translocation of Nrf2, thereby inducing cytoprotective heme oxygenase-1 (HO-1) expression. Based on the results described above, it suggested that hesperidin has potential as a therapeutic agent in the treatment of oxidative stress-related hepatocytes injury and liver dysfunctions.  相似文献   

12.
Anthocyanins have been shown to exert anti-proliferative, anti-inflammatory effects and anti-carcinogenic activity. In the present work, we investigated the protective effects of anthocyanin fraction (AF) from purple sweet potato on tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity in HepG2 cell line and in rat liver. The result showed that the oral pretreatment of AF before t-BHP treatment significantly lowered the serum levels of the hepatic enzyme markers (ALT and AST) and reduced oxidative stress of the liver by evaluation of malondialdehyde and glutathione. Histopathological evaluation of the livers also revealed that AF reduced the incidence of liver lesions. The in vitro result showed that AF significantly reduced t-BHP-induced oxidative injury, as determined by cell cytotoxicity, intracellular glutathione content, lipid peroxidation, reactive oxygen species (ROS) levels, and caspases activation. Also, AF up-regulated antioxidant enzymes including heme oxygenase-1 (HO-1), NAD(P)H:quinone reductase, and glutathione S-transferase. Moreover, AF induced Nrf2 nuclear translocation and Akt and ERK1/2 activation, pathways that are involved in inducing Nrf2 nuclear translocation. Taken together, these results suggest that the protective effects of AF against t-BHP-induced hepatotoxicity may, at least in part, be due to its ability to scavenge ROS and to regulate the antioxidant enzyme HO-1 via the Akt and ERK1/2/Nrf2 signaling pathways.  相似文献   

13.
In the present study, we investigated the hepatoprotective effects of salvianolic acid A, a novel antioxidant, against oxidative stress and acute liver injury induced by carbon tetrachloride (CCl(4)) in rats, and the mechanisms underlying its protective effects. Administration of CCl(4) to rats caused severe hepatic damage, as demonstrated by the significant increase in the levels of serum alanine aminotransferase, aspartate aminotransferase and classic histological changes including hepatocyte necrosis or apoptosis, haemorrhage, fatty degeneration, etc. Co-treatment with salvianolic acid A (20 mg/kg, intraperitoneally), a water-soluble extract from a Chinese traditional drug, Radix Salvia miltiorrhiza, significantly decreased CCl(4)-induced hepatotoxicity. Salvianolic acid A not only decreased serum alanine aminotransferase, aspartate aminotransferas levels and ameliorated histopathological manifestations in CCl(4)-treated rats, but also reduced oxidative stress, as evidenced by decreased reactive oxygen species production and malondialdehyde concentrations in the liver tissues, combined with elevated hepatic superoxide dismutase activity and gluthathione content. In addition, salvianolic acid A treatment remarkably reduced intrahepatic tumour necrosis factor-alpha concentrations and caspase-3 activities as compared with the CCl(4)-treated rats. The results suggested that treatment with salvianolic acid A provides a potent protective effect against acute hepatic damage caused by CCl(4) in rats, which may mainly be related to its antioxidative effect.  相似文献   

14.
15.
An iron chelate, ferric nitrilotriacetate (Fe-NTA), induces acute proximal tubular necrosis as a consequence of lipid peroxidation and oxidative tissue damage, that eventually leads to high incidence of renal adenocarcinomas in rodents. This study was designed to investigate the effect of quercetin, a bioflavonoid with antioxidant potential, on Fe-NTA-induced nephrotoxicity in rats. One hour after a single intraperitoneal (i.p.) injection of Fe-NTA (8 mg iron/kg), a marked deterioration of renal architecture and renal function was observed. Fe-NTA induced a significant renal oxidative stress demonstrated by elevated thiobarbituric acid reacting substances (TBARS) and reduction in activities of renal catalase, superoxide dismutase and glutathione reductase. Pretreatment of animals with quercetin (2 mg/kg, i.p.) 30 minutes before Fe-NTA administration markedly attenuated renal dysfunction, morphological alterations, reduced elevated TBARS and restored the depleted renal antioxidant enzymes. These results clearly demonstrate the role of oxidative stress and its relation to renal dysfunction, and suggest a protective effect of quercetin on Fe-NTA-induced nephrotoxicity in rats.  相似文献   

16.
Fractionation with supercritical CO(2) is employed to divide ethanolic extract (E) of B. kaoi into four fractions (R, F1, F2 and F3). To assess the selectivity of the fractionation, extracts of the four fractions were characterized in terms of the hepatoprotective capacity and activity of antioxidant enzymes to against CCl(4)-induced damage. The in vitro study revealed that pretreatment with B. kaoi extract or its fractions, except F3, significantly protected primary hepatocytes against damage by CCl(4) (P<0.05). The R and F1 fractions had the highest saikosaponins content (175 and 200 mg/g dry weight, respectively) and most effectively protected the liver from damage by CCl(4). This study demonstrated that the oral pretreatment of B. kaoi (100 and 500 mg/kg), except F3, three days before a single dose of CCl(4) (CCl(4)/olive oil=1:1, 3 ml/kg, sc) was administered significantly lowered the serum levels of hepatic enzyme markers (AST and ALT) (P<0.05). A pathological examination showed that lesions, including ballooning degeneration, necrosis, hepatitis and portal triaditis were partially healed by treatment with B. kaoi extract and fractions. Oxidative stress induced by CCl(4) led to lipid peroxidation (MDA) and changes in the levels of the antioxidant enzymes in the liver. However, all the fractions, except F3, markedly suppressed lipid peroxidation and reversed the activities of the antioxidant enzymes to the normal levels.  相似文献   

17.
《Pharmaceutical biology》2013,51(7):911-918
Context: Cecropia glaziovii Snethl. (Cecropiaceae), commonly known as “embaúba-vermelha”, is widely distributed throughout Latin America and has been reported in Brazilian folk medicine to treat cough, asthma, high blood pressure and inflammation.

Objective: Investigate the hepatoprotective properties of crude hydroethanolic extract of C. glaziovii as well as its in vitro antioxidant and antiviral (HSV-1 acyclovir resistant strain) activities.

Materials and methods: The hepatoprotective effect, the antioxidant properties and antiviral activity of crude hydroethanol extract (RCE40) from C. glaziovii leaves were evaluated by carbon-tetrachloride (CCl4)-induced hepatotoxicity, by TBARS (thiobarbituric acid reactive species) and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assays, respectively.

Results: The RCE40 extract (20?mg/kg) inhibited lipid peroxidation on liver in post injury treatment and decreased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In addition, in this protocol the RCE40 (20?mg/kg) enhanced the activity of hepatic enzymes (SOD/CAT) which are involved in combating reactive oxygen species (ROS), suggesting that it possesses the capacity to attenuate the CCl4-induced liver damage. Moreover the RCE40 (20?mg/kg) inhibited TBARS formation induced by several different inductors of oxidative stress showing significant antioxidant activity, including physiologically relevant concentration, as low as 2 µg/mL. Concerning antiviral activity, the RCE40 was effective against herpes simplex virus type 1 replication (29R acyclovir resistant strain) with EC50?=?40 µg/mL and selective index (SI)?=?50.

Discussion and conclusion: These results indicate that C. glaziovii could be a good source of antioxidant and anti-HSV-1 lead compounds.  相似文献   

18.
We have evaluated the effect of dietary antioxidant, antioxidant biofactor (a processed grain food), on iron nitrilotriacetate-induced renal tumorigenesis, hyperproliferative response, and oxidative damage. In tumorigenesis studies, iron nitrilotriacetate alone treatment resulted in a development of 75% renal cell tumor incidence, whereas, in the group of animals fed with antioxidant biofactor diet and treated with iron nitrilotriacetate, only 43% of renal cell tumor incidence was observed. In oxidative damage studies, the decrease in the level of renal glutathione and antioxidant enzymes induced by iron nitrilotriacetate was significantly reversed by antioxidant biofactor diet pretreatment in a dose-dependent manner (18-71% recovery, P < 0.05). Antioxidant biofactor diet pretreatment also resulted in a dose-dependent inhibition (35-49% inhibition, P < 0.05) of iron nitrilotriacetate-induced lipid peroxidation as measured by thiobarbituric acid reactive substances formation in renal tissues. Similarly, in hyperproliferation studies, antioxidant biofactor diet pretreatment showed a strong inhibition of iron nitrilotriacetate-induced renal ornithine decarboxylase activity (18-54% inhibition, P < 0.05). In addition, antioxidant biofactor fed diet pretreatment also protected the kidney tissues against observed histopathological alterations. From this data, it can be concluded that antioxidant biofactor diet can abrogate the toxic and tumor promoting effects of iron nitrilotriacetate and can serve as a potent chemopreventive agent to suppress oxidant-induced tissue injury and tumorigenesis.  相似文献   

19.
The hepatoprotective and antioxidant activity of 50% ethanolic extract of whole plant of Amaranthus spinosus (ASE) was evaluated against carbon tetrachloride (CCl4) induced hepatic damage in rats. The ASE at dose of 100, 200 and 400 mg/kg were administered orally once daily for fourteen days. The substantially elevated serum enzymatic levels of serum glutamate oxaloacetate transaminase (AST), serum glutamate pyruvate transaminase (ALT), serum alkaline phosphatase (SALP) and total bilirubin were restored towards normalization significantly by the ASE in a dose dependent manner. Higher dose exhibited significant hepatoprotective activity against carbon tetrachloride induced hepatotoxicity in rats. The biochemical observations were supplemented with histopathological examination of rat liver sections. Meanwhile, in vivo antioxidant activities as malondialdehyde (MDA), hydroperoxides, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were also screened which were also found significantly positive in a dose dependent manner. The results of this study strongly indicate that whole plants of A. spinosus have potent hepatoprotective activity against carbon tetrachloride induced hepatic damage in experimental animals. This study suggests that possible mechanism of this activity may be due to the presence of flavonoids and phenolics compound in the ASE which may be responsible to hepatoprotective activity.  相似文献   

20.
Hepatoprotective potential of the aqueous extract of the roots of Decalepis hamiltonii (DHA) against cyclophosphamide (CP)-induced oxidative stress has been investigated in mice. Administration of CP (25 mg/kg b.w., i.p) for 10 days induced hepatic damage as indicated by the serum marker enzymes aspartate and alanine transaminases (AST, ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). Parallel to these changes CP induced oxidative stress in the liver as evident from the increased lipid peroxidation (LPO), reactive oxygen species (ROS), depletion of glutathione (GSH), and reduced activities of the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST). Treatment with DHA (50 and 100 mg/kg b.w., po) mitigated the CP-induced oxidative stress. Moreover, expression of genes for the antioxidant enzymes, were down-regulated by CP treatment which was reversed by DHA. Our study shows the DHA protected the liver from toxicity induced by CP and therefore, it could be serve as a safe medicinal supplement during cyclophosphamide chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号