首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tyrosine kinase receptors trkB and trkC are essential components of the high-affinity receptors for members of the neurotrophin family, including brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3). Both neurotrophin receptor mRNAs are broadly distributed throughout the caudate-putamen. In animal models of Parkinson's disease, loss of the ventral mesencephalic dopamine projection to the striatum has been shown to alter the expression of several striatal peptides, neurotransmitter-synthesizing enzymes and receptors. To determine if expression of trkB and/or trkC striatal mRNAs is also regulated by the integrity of the dopaminergic afferents, adult rats were given unilateral injections of 6–hydroxydopamine (6–OHDA), selective catecholamine neurotoxin, or vehicle into the right ascending medial forebrain bundle. Following 2 week survival period, in situ hybridization with 35S-labelled cRNA probes for the kinase-specific, full-length form of trkB mRNA and all forms of trkC mRNA was performed in striatal sections. A significant increase in the hybridization density for trkB mRNA was observed in the caudate-putamen ipsilateral to the 6–OHDA injection, compared with the uninjected control side (P < 0.001). In contrast, no alteration in the hybridization density for trkC mRNA was observed in the striatum of 6–OHDA-treated rats. No alterations in trkB or trkC mRNA levels were observed in the striata of vehicle-treated animals. These data suggest that midbrain dopaminergic afferents regulate the expression of trkB mRNA in the caudate-putamen. Alternatively, since dopaminergic neurons of the ventral mesencephalon express BDNF mRNA, the up-regulation of striatal trkB mRNA may reflect compensatory response by striatal neurons due to loss of anterogradely and/or retrogradely derived trophic support from the ventral midbrain.  相似文献   

2.
Infection of newborn rats with Borna disease virus (BDV) leads to persistence in the absence of overt signs of inflammation. BDV persistence, however, causes cerebellar hypoplasia and hippocampal dentate gyrus neuronal cell loss, which are accompanied by diverse neurobehavioral abnormalities. Neurotrophins and their receptors play important roles in the differentiation and survival of hippocampal and cerebellar neurons. We have examined whether BDV can cause alterations in the neurotrophin network, thus promoting neuronal damage. We have used RNase protection assay to measure mRNA levels of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and their trkC and trkB receptors, as well as the growth factors insulin-like growth factor I (IGF-1) and basic fibroblast growth factor (bFGF), in the cerebellum and hippocampus of BDV-infected and control rats at different time points p.i. Reduced mRNA expression levels of NT-3, BDNF and NGF were found after day 14 p.i. in the hippocampus, but not in the cerebellum, of newborn infected rats. Three weeks after infection, trkC mRNA expression levels were reduced in both hippocampus and cerebellum of infected rats, whereas decreased trkB mRNA levels were only observed in the cerebellum. Reduced trkC mRNA expression was confined to the dentate gyrus of the hippocampus, as assessed by in situ hybridization. TUNEL assay revealed massive apoptotic cell death in the dentate gyrus of infected rats at days 27 and 33 p.i. Increased numbers of apoptotic cells were also detected in the cerebellar granular layer of infected rats after 8 days p.i. Moreover, a dramatic loss of cerebellar Purkinje cells was seen after day 27 p.i. Our results support the hypothesis, that BDV-induced alterations in neurotrophin systems might contribute to selective neuronal cell death.  相似文献   

3.
The molecular events responsible for impairments in cognition following mild traumatic brain injury are poorly understood. Neurotrophins, such as brain-derived neurotrophic factor (BDNF), have been identified as having a role in learning and memory. We have previously demonstrated that following experimental brain trauma of moderate severity (2.0-2.1 atm), mRNA levels of BDNF and its high-affinity receptor, trkB, are increased bilaterally in the hippocampus for several hours, whereas NT-3 mRNA expression is decreased. In the present study, we used in situ hybridization to compare BDNF, trkB, NT-3, and trkC mRNA expression in rat hippocampus at 3 or 6 h after a lateral fluid percussion brain injury (FPI) of mild severity (1.0 atm) to sham-injured controls at equivalent time points. Mild FPI induced significant increases in hybridization levels for BDNF and trkB mRNAs, and a decrease in NT-3 mRNA in the hippocampus. However, in contrast to the bilateral effects of moderate experimental brain injury, the present changes with mild injury were restricted to the injured side. These findings demonstrate that even a mild traumatic brain injury differentially alters neurotrophin and neurotrophin receptor levels in the hippocampus. Such alterations may have important implications for neural plasticity and recovery of function in people who sustain a mild head injury.  相似文献   

4.
Patients with schizophrenia have reduced neurotrophin levels in their dorsolateral prefrontal cortex (DLPFC) compared to normal unaffected individuals. The tyrosine kinase-containing receptors, trkB and trkC, mediate the growth-promoting effects of neurotrophins and respond to changes in growth factor availability. We hypothesized that trkB and/or trkC expression would be altered in the DLPFC of patients with schizophrenia. We measured mRNA encoding the tyrosine kinase domain (TK+)-containing form of trkB and measured pan trkC mRNA in schizophrenics (N=14) and controls (N=15) using in situ hybridization. TrkB and trkC mRNAs were detected in large and small neurons in multiple cortical layers of the human DLPFC. We found significantly diminished expression of trkB(TK+) mRNA in large neurons in multiple cortical layers of patients as compared to controls, while small neurons also showed reductions in trkB(TK+) mRNA that did not reach statistical significance. In normals, strong positive correlations were found between trkB(TK+) mRNA levels and brain-derived neurotrophic factor (BDNF) mRNA levels among various neurons, while no correlation between BDNF and trkB(TK+) was found in patients with schizophrenia. TrkC mRNA was also reduced in the DLPFC of schizophrenics in large neurons in layers II, III, V and VI and in small neurons in layer IV. Since neurons in the DLPFC integrate and communicate signals to various cortical and subcortical regions, these reductions in growth factor receptors may compromise the function and plasticity of the DLPFC in schizophrenia.  相似文献   

5.
Nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3, designated neurotrophins, are a family of neurotrophic factors, having important functions in the survival of embryonic and adult neuronal subpopulations. Through the trk family of receptors, these neurotrophins utilize phosphotyrosine-mediated signal transduction. We have used RT-PCR to detect the expression of mRNA for the above neurotrophins and their respective receptors, namely trkA, trkB and trkC in embryonic stages 1–8 of chicken development. While trkA and trkC mRNAs were expressed from stage 1 onwards, NGF and NT-3 mRNAs were expressed only at stages 3 and 5, respectively. In contrast, BDNF mRNA was expressed at stage 1, being the only neurotrophin expressed prior to expression of its respective receptor trkB. However, the latter was not expressed until stage 8. These results indicate an earlier expression of some but not all trk proto-oncogenes, suggesting that the two different receptor mRNAs expressed i.e. trkA and trkC in conjunction with BDNF, at stage 1, may act in aspects of very early embryonic development, such as gastrulation. Thereafter, mRNAs for trkB, NGF and NT-3 are expressed reflecting their later action in early embryonic development.  相似文献   

6.
Aging is accompanied by declined sensory perception, paralleled by widespread dystrophic and degenerative changes in both central and peripheral sensory pathways. Several lines of evidence indicate that neurotrophic interactions are of importance for a maintained plasticity in the adult and aging nervous system, and that changes in the expression of neurotrophins and/or their receptors may underpin senile neurodegeneration. We have here examined the expression of neurotrophin receptor (p75NTR, trkA, trkB, and trkC) mRNA and protein in intact and axotomized primary sensory neurons of young adult (3 months) and aged (30 months) rats. To examine possible differences among primary sensory neuron populations, we have studied trigeminal ganglia (TG) as well as cervical and lumbar dorsal root ganglia (DRG). In intact aged rats, a decrease in trk (A/B/C) mRNA labeling densities and protein-like immunoreactivities was observed. The decrease was most pronounced in lumbar DRG. In contrast, a small, not statistically significant, increase of p75NTR expression was observed in aged DRG neuron profiles. After axotomy, a down-regulation of mRNA and protein levels was observed for all neurotrophin receptors (p75NTR, trkA, trkB and trkC) in both young adult and aged rats. Consistent with the higher expression levels of neurotrophin receptors in unlesioned young adult primary sensory neurons, the relative effect of axotomy was more pronounced in the young adult than aged rats. Although a decrease in mean cell profile cross-sectional areas was found during aging and after axotomy, the characteristic distribution of neurotrophin receptor expression in different populations of NRG neurons was conserved. The present findings suggest an attenuation of neurotrophic signaling in primary sensory neurons with advancing age and that the expression of p75NTR and trks is regulated differently during aging. A similar dissociation of p75NTR and trk regulation has previously been reported in other neuronal systems during aging, suggesting that there may be a common underlying mechanism. Decreased access to ligands, disturbed axon function and systemic changes in androgen/estrogen levels are discussed as inducing and/or contributing factors.  相似文献   

7.
Although numerous studies have examined the effects of neurotrophin treatment following spinal cord injury, few have examined the changes that occur in the neurotrophin receptors following either such damage or neurotrophin treatment. To determine what changes occur in neurotrophin receptor expression following spinal cord damage, adult rats received a midthoracic spinal cord hemisection alone or in combination with intrathecal application of brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). Using immunohistochemical and in situ hybridization techniques, p75, trkA, trkB, and trkC receptor expression was examined throughout the spinal cord. Results showed that trkA, full-length trkB, and trkC receptors were not present in the lesion site but had a normal expression pattern in uninjured parts of the spinal cord. In contrast, p75 receptor expression occurred on Schwann cells throughout the lesion site. BDNF and NT-3 (but not saline) applied to the lesion site increased this expression. In addition, the truncated trkB receptor was expressed in the border between the lesion and intact spinal cord. Truncated trkB receptor expression was also increased throughout the white matter ipsilateral to the lesion and BDNF (but not NT-3 or saline) prevented this increase. The study is the first to show changes in truncated trkB receptor expression that extend beyond the site of a spinal cord lesion and is one of the first to show that BDNF and NT-3 affect Schwann cells and/or p75 expression following spinal cord damage. These results indicate that changes in neurotrophin receptor expression following spinal cord injury could influence the availability of neurotrophins at the lesion site. In addition, neurotrophins may affect their own availability to damaged neurons by altering the expression of the p75 and truncated trkB receptor.  相似文献   

8.
Neurotrophins and their cognate receptors are critical to normal nervous system development. Trk receptors are high-affinity receptors for nerve-growth factor (trkA), brain-derived neurotrophic factor and neurotrophin-4/5 (trkB), and neurotrophin-3 (trkC). We examine the expression of these three neurotrophin tyrosine kinase receptors in the chick auditory system throughout most of development. Trks were localized in the auditory brainstem, the cochlear ganglion, and the basilar papilla of chicks from embryonic (E) day 5 to E21, by using antibodies and standard immunocytochemical methods. TrkB mRNA was localized in brainstem nuclei by in situ hybridization. TrkB and trkC are highly expressed in the embryonic auditory brainstem, and their patterns of expression are both spatially and temporally dynamic. During early brainstem development, trkB and trkC are localized in the neuronal cell bodies and in the surrounding neuropil of nucleus magnocellularis (NM) and nucleus laminaris (NL). During later development, trkC is expressed in the cell bodies of NM and NL, whereas trkB is expressed in the nerve calyces surrounding NM neurons and in the ventral, but not the dorsal, dendrites of NL. In the periphery, trkB and trkC are located in the cochlear ganglion neurons and in peripheral fibers innervating the basilar papilla and synapsing at the base of hair cells. The protracted expression of trks seen in our materials is consistent with the hypothesis that the neurotrophins/tyrosine kinase receptors play one or several roles in the development of auditory circuitry. In particular, the polarized expression of trkB in NL is coincident with refinement of NM terminal arborizations on NL.  相似文献   

9.
During development neurons are protected against various insults by intrinsic properties. Here we evaluate trkB (both full-length and truncated forms) and trkC expression in the striatum, cortex, and substantia nigra after intrastriatal injection of quinolinic acid (QUIN) at different stages of postnatal (P) development, by RNase protection assay and in situ hybridization. During normal development, a region-specific regulation of trkB and trkC was observed, showing the maximal mRNA levels at P5. Excitotoxic lesion did not modify striatal trkB mRNA levels at any age examined. However, trkC decreased after QUIN injection at P5 in the striatum (52 +/- 2% of control levels). On the other hand, regulation of trkB and trkC expression was observed in cortex and substantia nigra after striatal excitotoxic lesion. Both full-length and truncated receptor isoforms of trkB were enhanced in the cortex when striatal injury was produced at P21 (268 +/- 38 and 206 +/- 35%) or P30 (174 +/- 35 and 157 +/- 13%). In situ hybridization studies localized this increase in trkB expression in layers II/III and V along the cerebral cortex. Within the substantia nigra, striatal excitotoxicity at P5 selectively decreased the truncated form of trkB (70 +/- 7%), whereas the full-length form was up-regulated at P30 (130 +/- 2%). A biphasic increase in trkC mRNA levels was observed at P5 (151 +/- 3%) and P21 (168 +/- 4%). These changes were localized in the substantia nigra pars compacta. Triple-labeling studies disclosed that all these changes were mainly located in neurons. These results demonstrate that the endogenous response to excitotoxicity includes transneuronal regulation of neurotrophin receptors, which is specific for each nucleus and depends on the developmental stage.  相似文献   

10.
Neurotrophins acting through high-affinity tyrosine kinase receptors (trkA, trkB, and trkC) play a crucial role in regulating survival and maintenance of specific neuronal functions after injury. Adult motoneurons supplying extraocular muscles survive after disconnection from the target, but suffer dramatic changes in morphological and physiological properties, due in part to the loss of their trophic support from the muscle. To investigate the dependence of the adult rat extraocular motoneurons on neurotrophins, we examined trkA, trkB, and trkC mRNA expression after axotomy by in situ hybridization. trkA mRNA expression was detectable at low levels in unlesioned motoneurons, and its expression was downregulated 1 and 3 days after injury. Expression of trkB and trkC mRNAs was stronger, and after axotomy a simultaneous, but inverse regulation of both receptors was observed. Thus, whereas a considerable increase in trkB expression was seen about 2 weeks after axotomy, the expression of trkC mRNA had decreased at the same post-lesion period. Injured extraocular motoneurons also experienced an initial induction in expression of calcitonin gene-related peptide and a transient downregulation of cholinergic characteristics, indicating a switch in the phenotype from a transmitter-specific to a regenerative state. These results suggest that specific neurotrophins may contribute differentially to the survival and regenerative responses of extraocular motoneurons after lesion.  相似文献   

11.
In the present work, we examined the time-dependent changes in trkA, trkB and trkC mRNA levels induced by the injection of glutamate receptor agonists into the striatum. Changes in trk mRNAs induced by quinolinate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), kainate or 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) were analyzed by a ribonuclease protection assay. All high-affinity neurotrophin receptors showed differential regulation after intrastriatal injury. Up-regulation of trkA expression was observed in kainate- or ACPD-injected striata at 10 and 24 h, respectively, whereas quinolinate injection induced down-regulation between 4 and 6 h after injury. Interestingly, all the excitatory amino acid receptor agonists induced up-regulation of trkB-kinase mRNA levels. This increase was maximal between 2 and 4 h after injection except in kainate injected striata, which showed the peak of expression at 10 h. In contrast, no changes in trkC mRNA expression were observed after striatal excitotoxic injury. In conclusion, our results show that trk receptor mRNA levels are differentially regulated by excitatory amino acid receptor agonists in the striatum, suggesting that changes in the levels of neurotrophin receptors might be involved either in synaptic plasticity processes or in neuronal protection in the striatal excitotoxic paradigm.  相似文献   

12.
(±)3,4-Methylenedioxymethamphetamine (MDMA), a widely used drug of abuse, rapidly reduces serotonin levels in the brain when ingested or administered in sufficient quantities, resulting in deficits in complex route-based learning, spatial learning, and reference memory. Neurotrophins are important for survival and preservation of neurons in the adult brain, including serotonergic neurons. In this study, we examined the effects of MDMA on the expression of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and their respective high-affinity receptors, tropomyosin receptor kinase (trk)B and trkC, in multiple regions of the rat brain. A serotonergic-depleting dose of MDMA (10 mg/kg × 4 at 2-hour intervals on a single day) was administered to adult Sprague-Dawley rats, and brains were examined 1, 7, or 24 hours after the last dose. Messenger RNA levels of BDNF, NT-3, trkB, and trkC were analyzed by using in situ hybridization with cRNA probes. The prefrontal cortex was particularly vulnerable to MDMA-induced alterations in that BDNF, NT-3, trkB, and trkC mRNAs were all upregulated at multiple time points. MDMA-treated animals had increased BDNF expression in the frontal, parietal, piriform, and entorhinal cortices, increased NT-3 expression in the anterior cingulate cortex, and elevated trkC in the entorhinal cortex. In the nigrostriatal system, BDNF expression was upregulated in the substantia nigra pars compacta, and trkB was elevated in the striatum in MDMA-treated animals. Both neurotrophins and trkB were differentially regulated in several regions of the hippocampal formation. These findings suggest a possible role for neurotrophin signaling in the learning and memory deficits seen following MDMA treatment.  相似文献   

13.
14.
This study was designed to determine whether or not an exogenous source of glial cell line-derived neurotrophic factor (GDNF) could be delivered continuously into the denervated/transplanted striatum and stimulate the survival, growth, and function of fetal ventral mesencephalic tissue transplants. Adult male rats with unilateral 6-hydroxydopamine lesions received transplants of fetal ventral mesencephalic tissue into the denervated striatum. Immediately thereafter, osmotic pumps [Alzet 2002, 0.5 μl/h] were attached to intracerebral cannula and either a citrate buffer alone [control] orr-methuGDNF [dissolved in sodium citrate buffer to a concentration of 0.45 μg/μl] was infused into a site ≈1.0 mm lateral to the transplant for a 2-week period; one group of lesioned animals did not receive transplants but was infused with GDNF. The effect of GDNF on tyrosine hydroxylase-positive (TH+) fiber outgrowth from transplants was variable, and image analysis revealed no significant difference between the GDNF and citrate groups. In contrast, the mean number of TH+ cells bodies in transplants infused with GDNF [2,037 ± 149,n = 8] vs citrate [663 ± 160,n = 8] was statistically significant (P < 0.001); cell counts were made in every third brain section [35 μm]. Similarly, transplants infused with GDNF showed an over-compensatory effect to amphetamine-induced rotational behavior that was significantly lower than that observed in transplanted animals receiving citrate buffer infusions. Infusions of GDNF into the denervated striatum alone had no significant effect on amphetamine-induced rotational behavior or on TH fiber morphology in the lesioned striatum. Thus, a continuous infusion of GDNF can improve the survivability of dopaminergic neurons in transplants of fetal ventral mesencephalic tissue.  相似文献   

15.
Neurons in the geniculate ganglion, like those in other sensory ganglia, are dependent on neurotrophins for survival. Most geniculate ganglion neurons innervate taste buds in two regions of the tongue and two regions of the palate; the rest are cutaneous nerves to the skin of the ear. We investigated the expression of four neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and NT-4, and five neurotrophin receptors, trkA, trkB, trkC, p75, and truncated trkB (Trn-B) in single sensory neurons of the adult rat geniculate ganglion associated with the five innervation fields. For fungiform papillae, a glass pipette containing biotinylated dextran was placed over the target papilla and the tracer was iontophoresed into the target papilla. For the other target fields, Fluoro-Gold was microinjected. After 3 days, geniculate ganglia were harvested, sectioned, and treated histochemically (for biotinylated dextran) or immunohistochemically (for Fluoro-Gold) to reveal the neurons containing the tracer. Single labeled neurons were harvested from the slides and subjected to RNA amplification and RT-PCR to reveal the neurotrophin or neurotrophin receptor genes that were expressed. Neurons projecting from the geniculate ganglion to each of the five target fields had a unique expression profile of neurotrophin and neurotrophic receptor genes. Several individual neurons expressed more than one neurotrophin receptor or more than one neurotrophin gene. Although BDNF is significantly expressed in taste buds, its primary high affinity receptor, trkB, was not prominently expressed in the neurons. The results are consistent with the interpretation that at least some, perhaps most, of the trophic influence on the sensory neurons is derived from the neuronal somata, and the trophic effect is paracrine or autocrine, rather than target derived. The BDNF in the taste bud may also act in a paracrine or autocrine manner on the trkB expressed in taste buds, as shown by others.  相似文献   

16.
Protein levels for brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and glial cell line-derived neurotrophic factor (GDNF) were measured in the striatum and ventral midbrain of young and aged Brown Norway/F344 F1 (F344BNF(1)) hybrid rats following a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. At 2 weeks post-lesion, protein levels of BDNF and GDNF were higher in the denervated striatum when compared to the intact striatum for young (4-5 months old) but not old (31-33 months old) rats. Interestingly, in old rats BDNF protein in the denervated striatum was significantly lower than that measured in the intact striatum. At the same time point BDNF protein levels in the ventral midbrain were higher on the lesioned versus intact side for both young and old rats while no significant side differences were detected for GDNF protein in the ventral midbrain of young or old rats. No significant differences in NT-3 protein levels were detected between the lesioned and intact sides for striatal or ventral midbrain regions in either young or old brain. While no significant age effects were detected for BDNF or NT-3 protein, young rats showed higher GDNF protein levels in both the striatum (lesioned or intact) and ventral midbrain (lesioned or intact) than old rats. These data show that two endogenous neurotrophic factors, BDNF and GDNF, are differentially affected by a 6-OHDA lesion in the aging nigrostriatal system with young brain showing a significant compensatory increase of these two factors in the denervated striatum while no compensatory increase is observed in aged brain.  相似文献   

17.
The mammalian visual cortex contains morphologically diverse populations of interneurons whose neurochemical properties are believed to be regulated by neurotrophic factors. This requires the expression of neurotrophin receptors. We have analysed whether brain-derived neurotrophic factor (BDNF), its receptor trkB and the NT-3 receptor trkC are expressed in interneurons of rat visual cortex in vivo, and in organotypic visual cortex cultures, paying particular attention to the subsets of neuropeptidergic neurons. In situ hybridization in combination with immunofluorescence for calcium-binding proteins and neuropeptides revealed that BDNF is not expressed in interneurons in vivo or in vitro. For the neurotrophin receptors we found in vivo at postnatal day 70 (P70) that approximately 80% of the parvalbumin-immunoreactive (-ir), but only 50% of the intensely calbindin-ir, and only 20% of the calretinin-ir neurons express trkB. Double labelling with neuropeptides revealed that approximately 50% of the neuropeptide Y-ir and approximately 50% of the somatostatin-ir neurons express trkB in a laminar-specific way. Only 25% of the vasoactive intestinal polypeptide (VIP)-ir neurons coexpress trkB. The coexpression of neuropeptide Y with trkB, but not with BDNF or trkC, was confirmed with a double in situ hybridization. In contrast, the percentages differed in the immature cortex; at P14 70% of the NPY-ir neurons and 46% of the calretinin-ir neurons revealed trkB expression, while the ratio for calbindin-ir cells was fairly constant (59%). From the interneuron populations studied, only 12% of the parvalbumin-ir neurons expressed trkC. A triple labelling revealed that some neurons coexpressed both trk mRNAs, while others had only trkC. The analysis of interneurons in organotypic cultures yielded very similar results. The results indicate that trkB ligands synthesized by pyramidal neurons influence neuropeptide or calcium-binding protein expression in a paracrine or transsynaptic manner. However, in contrast to current belief, in the adult only about half of all interneurons appear responsive to trkB ligands. Although the proportion is higher in the immature cortex, not all of the interneurons appear neurotrophin-receptive. With regard to the presence or absence of neurotrophin receptors, the molecular heterogeneity of GABAergic interneurons in the visual cortex is higher than currently assumed, and the responsiveness to neurotrophins changes with development in a cell type-specific way.  相似文献   

18.
After sciatic nerve lesion in the adult rat, motoneurons survive and regenerate, whereas the same lesion in the neonatal animal or an avulsion of ventral roots from the spinal cord in adults induces extensive cell death among lesioned motoneurons with limited or no axon regeneration. A number of substances with neurotrophic effects have been shown to increase survival of motoneurons in vivo and in vitro. Here we have used semiquantitative in situ hybridization histochemistry to detect the regulation in motoneurons of mRNAs for receptors to ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) 1-42 days after the described three types of axon injury. After all types of injury, the mRNAs for GDNF receptors (GFRalpha-1 and c-RET) and the LIF receptor LIFR were distinctly (up to 300%) up-regulated in motoneurons. The CNTF receptor CNTFRalpha mRNA displayed only small changes, whereas the mRNA for membrane glycoprotein 130 (gp130), which is a critical receptor component for LIF and CNTF transduction, was profoundly down-regulated in motoneurons after ventral root avulsion. The BDNF full-length receptor trkB mRNA was up-regulated acutely after adult sciatic nerve lesion, whereas after ventral root avulsion trkB was down-regulated. The NT-3 receptor trkC mRNA was strongly down-regulated after ventral root avulsion. The results demonstrate that removal of peripheral nerve tissue from proximally lesioned motor axons induces profound down-regulations of mRNAs for critical components of receptors for CNTF, LIF, and NT-3 in affected motoneurons, but GDNF receptor mRNAs are up-regulated in the same situation. These results should be considered in relation to the extensive cell death among motoneurons after ventral root avulsion and should also be important for the design of therapeutical approaches in cases of motoneuron death.  相似文献   

19.
OBJECTS: This study was designed to detect possible alterations in the expression of neurotrophins and trks in kaolin-induced hydrocephalus by in situ hybridization. METHODS AND RESULTS: Sixteen rats were treated by injection of 25 mg kaolin suspended in 0.1 ml of physiological saline into the cisterna magna. Four rats were injected with saline and served as controls. The kaolin-treated rats were divided into two groups studied 1 and 4 weeks after treatment. Rats were anesthetized and killed, and their brains were rapidly dissected and frozen. DNA oligonucleotide probes for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and trkA, trkB, and C were labeled with [(35)S]dATP using terminal deoxyribonucleotidyl transferase for in situ hybridization. Hydrocephalic brains were also classified according to the degree of ventricular enlargement. The results observed were as follows. (1) The medial septal and striatal NGF mRNA levels increased with severity in animals. (2) Hippocampal trkB and BDNF mRNA levels increased with time in animals with moderate ventricular enlargement. (3) Expression of hippocampal trkB, trkC, and NT-3 mRNA increased in animals with moderate ventricular enlargement, while it apparently decreased in the large ventricular enlargement group reaching normal ranges. (4) In the corpus callosum there was an apparent increase in NGF, NT-3 and trkC mRNA, but not in trkA, in hydrocephalic animals. NT-3 EIA confirmed the presence of NT-3 protein increases in corpus callosum. It is therefore possible that simultaneous NGF, NT-3, and trkC receptor upregulation occurred in glial elements of the white matter. CONCLUSIONS: These results demonstrate that neurotrophins and their receptors are overexpressed in many damaged structures of the severely hydrocephalic brain. There were discrepancies in the distribution of NGF and trkA mRNA, and we hypothesize that NGF mRNA in the damaged white matter structure might be due to the reduced availability of other receptors, such as the low-affinity NGF receptors.  相似文献   

20.
Prior to the onset of hearing, synchronous cellular, neuronal, and morphogenetic processes participate in the development of a functional cochlea. We have studied the expression of different splice forms of trkB and trkC as well as p75(NGFR) in rat and mouse cochlea within this critical developmental period, using in situ hybridization, PCR, Northern blotting, and immunohistochemical analyses. An antibody to full-length trkB receptors proved to detect full-length trkB receptors as well as truncated trkB.T2 but not trkB. T1 isoforms. Full-length trkB and trkC isoforms as well as trkB.T2 but not trkB.T1 receptors were noted in cochlear neurons. A transient expression of trkB.T1 and trkB.T2 was observed at the epithelial-mesenchymal border of the spiral ligament during this time. A sequential appearance of trkB.T1, the low-affinity neurotrophin receptor p75(NGFR), and trkB.T2 in epithelial cochlear cells correlated with the formation of the inner sulcus of the organ. A differential expression of presumptive trkB.T2 in hair and supporting cells was observed concomitant with the maturation of the distinct innervation pattern of these cells. A gradual shift from p75(NGFR) to truncated trkC receptors in Pillar cells occurred during the formation of the tunnel of Corti. A distinct expression of full-length trkC correlated with the time of differentiation of the stria vascularis. Finally, an expression of trkB.T1 and trkB.T2 in oligodendrocytes, full-length trkB and trkC in nerve fibers, and p75(NGFR) in Schwann cells was noted at the glial interface of the VIIIth nerve during the establishment of the glial transition zone. These various transitory neurotrophin receptor expression patterns, which were related to final maturation processes of the cochlea, may provide new insights into the as yet obscure role of neurotrophin receptors in nonneuronal tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号