首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn’s disease, is a chronic and relapsing inflammatory disorder of the intestine. Although its incidence is increasing globally, the precise etiology remains unclear and a cure for IBD has yet to be discovered. The most accepted hypothesis of IBD pathogenesis is that complex interactions between genetics, environmental factors, and the host immune system lead to aberrant immune responses and chronic intestinal inflammation. The human gut harbors a complex and abundant aggregation of microbes, collectively referred to as the gut microbiota. The gut microbiota has physiological functions associated with nutrition, the immune system, and defense of the host. Recent advances in next-generation sequencing technology have identified alteration of the composition and function of the gut microbiota, which is referred to as dysbiosis, in IBD. Clinical and experimental data suggest dysbiosis may play a pivotal role in the pathogenesis of IBD. This review is focused on the physiological function of the gut microbiota and the association between the gut microbiota and pathogenesis in IBD. In addition, we review the therapeutic options for manipulating the altered gut microbiota, such as probiotics and fecal microbiota transplantation.  相似文献   

2.
The incidence of type 2 diabetes (T2DM) is rapidly increasing worldwide. However, the pathogenesis of T2DM has not yet been well explained. Recent evidence suggests that the intestinal microbiota composition is associated with obesity and T2DM. In this review, we provide an overview about the mechanisms underlying the role of intestinal microbiota in the pathogenesis of T2DM. There is clear evidence that the intestinal microbiota influences the host through its effect on body weight, bile acid metabolism, proinflammatory activity and insulin resistance, and modulation of gut hormones. Modulating gut microbiota with the use of probiotics, prebiotics, antibiotics, and fecal microbiota transplantation may have benefits for improvement in glucose metabolism and insulin resistance in the host. Further studies are required to increase our understanding of the complex interplay between intestinal microbiota and the host with T2DM. Further studies may be able to boost the development of new effective therapeutic approaches for T2DM.  相似文献   

3.
Inflammatory bowel diseases are thought to develop as a result of dysregulation of the relationship that exists between the gut microbiota, host genetics and the immune system. The advent of culture‐independent techniques has revolutionised the ability to characterise the role of the gut microbiota in health and disease based on the microbiota's genetic make‐up. Inflammatory bowel diseases are characterised by dysbiosis which is an imbalance between pro‐ and anti‐inflammatory bacteria and a reduction in bacterial diversity. Emerging data suggest that it is not only the presence of the gut microbiota but the functional activity of the microbiota that appears to play an important role in health and disease. Current strategies to manipulate therapeutically the gut microbiota using dietary modification, prebiotics, probiotics, antibiotics and faecal microbiota transplantation aim to restore the balance to a state of normobiosis. However, the ability of such strategies to correct dysbiosis and thereby achieve therapeutic benefit is yet to be fully characterised.  相似文献   

4.
The gut microbiota composition has been associated with several hallmarks of metabolic syndrome (e.g., obesity, type 2 diabetes, cardiovascular diseases, and non-alcoholic steatohepatitis). Growing evidence suggests that gut microbes contribute to the onset of the low-grade inflammation characterising these metabolic disorders via mechanisms associated with gut barrier dysfunctions. Recently, enteroendocrine cells and the endocannabinoid system have been shown to control gut permeability and metabolic endotoxaemia. Moreover, targeted nutritional interventions using non-digestible carbohydrates with prebiotic properties have shown promising results in pre-clinical studies in this context, although human intervention studies warrant further investigations. Thus, in this review, we discuss putative mechanisms linking gut microbiota and type 2 diabetes. These data underline the advantage of investigating and changing the gut microbiota as a therapeutic target in the context of obesity and type 2 diabetes.  相似文献   

5.
ABSTRACT

Work has shown that increased exposure to air pollutants independently contributes to obesity and type 2 diabetes risk, yet the exact mechanisms underlying these associations have not been fully characterized. The current review summarizes recent findings regarding the impact of inhaled and ingested air pollutants on the gut microbiota. Animal and human studies provide evidence that air pollutants, such as particulate matter, nitrogen oxides, and ozone, have the potential to alter the gut microbiota. Further, studies suggest that such exposure-induced alterations to the gut microbiota may contribute to increased risk for obesity and type 2 diabetes through inflammatory pathways. Future work is needed to fully understand the complex interactions between air pollution, the gut microbiome, and human health. Additionally, advanced sequencing methods for gut microbiome research present unique opportunities to study the underlying pathways that link increased air pollution exposure with obesity and type 2 diabetes risk.  相似文献   

6.
Gut bacteria are involved in a number of host metabolic processes and have been implicated in the development of obesity and type 2 diabetes in humans. The use of antibiotics changes the composition of the gut microbiota and there is accumulating evidence from observational studies for an association between exposure to antibiotics and development of obesity and type 2 diabetes. In the present paper, we review human studies examining the effects of antibiotics on body weight regulation and glucose metabolism and discuss whether the observed findings may relate to alterations in the composition and function of the gut microbiota.  相似文献   

7.
There is convincing evidence from both human and animal studies suggesting that the gut microbiota plays an important role in regulating immune responses associated with the development of asthma. Certain intestinal microbial strains have been demonstrated to suppress or impair immune responsiveness in asthma experimental models, suggesting that specific species among gut commensal microbiota may play either a morbific or phylactic role in the progression of asthma. Evidence to date suggests that the intestinal microbiota represent fertile targets for prevention or management of asthma. The faecal microbiota transplantation (FMT) is a rather straightforward therapy that manipulates the human gastrointestinal (GI) microbiota, by which a healthy donor microbiota is transferred into an existing but disturbed microbial ecosystem. The FMT may therefore represent a therapeutic approach for asthma treatment in the foreseeable future. At present, FMT therapy for asthma is very limited and should be actively studied. Considerable efforts are needed to increase our knowledge in the field of FMT therapy for asthma. In this review, we aimed to provide several insights into the development of FMT therapy for asthma.  相似文献   

8.
Obesity and type 2 diabetes mellitus (T2DM) are attributed to a combination of genetic susceptibility and lifestyle factors. Their increasing prevalence necessitates further studies on modifiable causative factors and novel treatment options. The gut microbiota has emerged as an important contributor to the obesity--and T2DM--epidemic proposed to act by increasing energy harvest from the diet. Although obesity is associated with substantial changes in the composition and metabolic function of the gut microbiota, the pathophysiological processes remain only partly understood. In this review we will describe the development of the adult human microbiome and discuss how the composition of the gut microbiota changes in response to modulating factors. The influence of short-chain fatty acids, bile acids, prebiotics, probiotics, antibiotics and microbial transplantation is discussed from studies using animal and human models. Ultimately, we aim to translate these findings into therapeutic pathways for obesity and T2DM in humans.  相似文献   

9.
10.
Irritable bowel syndrome(IBS)is common gastrointestinal problems.It is characterized by abdominal pain or discomfort,and is associated with changes in stool frequency and/or consistency.The etiopathogenesis of IBS may be multifactorial,as is the pathophysiology,which is attributed to alterations in gastrointestinal motility,visceral hypersensitivity,intestinal microbiota,gut epithelium and immune function,dysfunction of the brain-gut axis or certain psychosocial factors.Current therapeutic strategies are often unsatisfactory.There is now increasing evidence linking alterations in the gastrointestinal microbiota and IBS.Probiotics are living organisms which,when ingested in certain numbers,exert health benefits beyond inherent basic nutrition.Probiotics have numerous positive effects in the gastrointestinal tract.Recently,many studies have suggested that probiotics are effective in the treatment of IBS.The mechanisms of probiotics in IBS are very complex.The purpose of this review is to summarize the evidence and mechanisms for the use of probiotics in the treatment of IBS.  相似文献   

11.
The role of intestinal microbiota in immune-mediated diseases, such as type 1 diabetes, has deservedly received a lot of attention. Evidently, changes in the intestinal microbiota are associated with type 1 diabetes as demonstrated by recent studies. Children with beta-cell autoimmunity have shown low abundance of butyrate-producing bacteria and increase in the abundance of members of the Bacteroidetes phylum in fecal microbiota. These alterations could explain increased gut permeability, subclinical small intestinal inflammation, and dysregulation of oral tolerance in type 1 diabetes. However, these studies do not provide evidence of the causative role of the gut microbiota in the development of beta-cell autoimmunity, yet. In animal models, the composition of gut microbiota modulates the function of both innate and adaptive immunity, and intestinal bacteria are regulators of autoimmune diabetes. Thus, prevention of type 1 diabetes could, in the future, be based on the interventions targeted to the gut microbiota.  相似文献   

12.
Obesity is a global pandemic with immense health consequences for individuals and societies. Multiple factors, including environmental influences and genetic predispositions, are known to affect the development of obesity. Despite an increasing understanding of the factors driving the obesity epidemic, therapeutic interventions to prevent or reverse obesity are limited in their impact. Manipulation of the human gut microbiome provides a new potential therapeutic approach in the fight against obesity. Specific gut bacteria and their metabolites are known to affect host metabolism and feeding behaviour, and dysbiosis of this biosystem may lead to metabolic syndrome. Potential therapies to alter the gut microbiota to treat obesity include dietary changes, supplementation of the diet with probiotic organisms and prebiotic compounds that influence bacterial growth, and the use of faecal microbiota transplant, in which gut microbiota from healthy individuals are introduced into the gut. In this review, we examine the growing scientific evidence supporting the mechanisms by which the human gut microbiota may influence carbohydrate metabolism and obesity, and the various possible therapies that may utilize the gut microbiota to help correct metabolic dysfunction.  相似文献   

13.
Background and aimsHost–microbiota interactions involving metabolic pathways have been linked to the pathogenesis of atherosclerotic disease and type 2 diabetes. As stable coronary artery disease (SCAD) patients combined with type 2 diabetes have significantly increased risk for cardiac event, we focused on elucidating the role of microbiota affecting cardiometabolic disease development.Methods and resultsWe used multi-omics analyses (metagenomics and metabolomics) of fecal and serum samples from a prospective cohort including stable coronary artery disease combined with diabetes mellitus (SCAD + T2DM, n = 38), SCAD (n = 71), and healthy control (HC, n = 55). We linked microbiome features to disease severity in a three-pronged association analysis and identified prognostic bacterial biomarkers. We identified that bacterial and metabolic signatures varied significantly between SCAD and SCAD + T2DM groups. SCAD + T2DM individuals were characterized by increased levels of aromatic amino acids and carbohydrates, which correlate with a gut microbiome with enriched biosynthetic potential. Our study also addressed how metformin may confound gut dysbiosis and increase the potential for nitrogen metabolism. In addition, we found that specific bacterial taxa Ruminococcus torques [HR: 2.363 (08–4.56), P = 0.03] was predictive of cardiac survival outcomes.ConclusionOverall, our study identified relationships between features of the gut microbiota (GM) and circulating metabolites, providing a new direction for future studies aiming to understand the host–GM interplay in atherosclerotic cardiovascular pathogenesis.  相似文献   

14.
The current obesity and type 2 diabetes pandemics have causes beyond changes in eating and exercise habits against a susceptible genetic background. Gut bacteria seem to additionally contribute to the differences in body weight, fat distribution, insulin sensitivity and glucose‐ and lipid‐metabolism. Data, mostly derived from preclinical studies, suggest that gut microbiota play an important role in conditions such as obesity, diabetes, metabolic syndrome and non‐alcoholic fatty liver disease. Regulation of energy uptake from the gut, by digesting otherwise indigestible common polysaccharides in our diet, production or activation of signalling molecules involved in host metabolism, modification of gut permeability, the release of gut hormones and inflammation, are among the mechanisms by which gut microbiota may influence the host cardiometabolic phenotype. Recent evidence suggests that quantitative and qualitative differences in gut microbiota exist between lean and obese, and between diabetic and non‐diabetic individuals. Modification of the gut microbiota composition and/or its biochemical capacity by specific dietary or pharmacological interventions may favourably affect host metabolism. Large‐scale intervention trials, investigating the potential benefit of prebiotics and probiotics in improving cardiometabolic health in high‐risk populations, are eagerly awaited.  相似文献   

15.
16.
The gut microbiota has the capacity to produce a diverse range of compounds that play a major role in regulatingthe activity of distal organs and the liver is strategically positioned downstream of the gut. Gut microbiota linked compounds such as short chain fatty acids, bile acids, choline metabolites, indole derivatives, vitamins, polyamines, lipids, neurotransmitters and neuroactive compounds, and hypothalamic-pituitary-adrenal axis hormones have many biological functions. This review focuses on the gut microbiota and host metabolism in liver cirrhosis. Dysbiosis in liver cirrhosis causes serious complications, such as bacteremia and hepatic encephalopathy, accompanied by small intestinal bacterial overgrowth and increased intestinal permeability. Gut dysbiosis in cirrhosis and intervention with probiotics and synbiotics in a clinical setting is reviewed and evaluated. Recent studies have revealed the relationship between gut microbiota and host metabolism in chronic metabolic liver disease, especially, non-alcoholic fatty liver disease, alcoholic liver disease, and with the gut microbiota metabolic interactions in dysbiosis related metabolic diseases such as diabetes and obesity. Recently, our understanding of the relationship between the gut and liver and how this regulates systemic metabolic changes in liver cirrhosis has increased. The serum lipid levels of phospholipids, free fatty acids, polyunsaturated fatty acids, especially, eicosapentaenoic acid, arachidonic acid, and docosahexaenoic acid have significant correlations with specific fecal flora in liver cirrhosis. Many clinical and experimental reports support the relationship between fatty acid metabolism and gut-microbiota. Various blood metabolome such as cytokines, amino acids, and vitamins are correlated with gut microbiota in probioticstreated liver cirrhosis patients. The future evaluation of the gut-microbiota-liver metabolic network and the intervention of these relationships using probiotics, synbiotics, and prebiotics, with sufficient nutrition could aid the development of treatments and prevention for liver cirrhosis patients.  相似文献   

17.
Several studies revealed that gut microbiota are associated with various human diseases,e.g.,metabolic diseases,allergies,gastroenterological diseases,and liver diseases.The liver can be greatly affected by changes in gut microbiota due to the entry of gut bacteria or their metabolites into the liver through the portal vein,and the liver-gut axis is important to understand the pathophysiology of several liver diseases,especially non-alcoholic fatty liver disease and hepatic encephalopathy.Moreover,gut microbiota play a significant role in the development of alcoholic liver disease and hepatocarcinogenesis.Based on theseprevious findings,trials using probiotics have been performed for the prevention or treatment of liver diseases.In this review,we summarize the current understanding of the changes in gut microbiota associated with various liver diseases,and we describe the therapeutic trials of probiotics for those diseases.  相似文献   

18.
Michael Pollak 《Diabetologia》2017,60(9):1662-1667
Recent studies have revealed that metformin influences gut microbiota and the immune system although neither is a classic target of the drug. This research has revealed complexity not previously appreciated, and opened new research directions. The extent to which immunomodulatory effects and actions on the microbiota are related to each other and account for effects on host energy metabolism remains to be determined. These sites of action may be relevant not only to the efficacy of metformin for its established use in type 2 diabetes, but also to proposed novel indications in oncology and other diseases.  相似文献   

19.
Colorectal cancer (CRC), the third major cause of mortality among various cancer types in United States, has been increasing in developing countries due to varying diet and dietary habits and occupational hazards. Recent evidences showed that composition of gut microbiota could be associated with the development of CRC and other gut dysbiosis. Modulation of gut microbiota by probiotics and prebiotics, either alone or in combination could positively influence the cross-talk between immune system and microbiota, would be beneficial in preventing inflammation and CRC. In this review, role of probiotics and prebiotics in the prevention of CRC has been discussed. Various epidemiological and experimental studies, specifically gut microbiome research has effectively improved the understanding about the role of probiotics and microbial treatment as anticarcinogenic agents. A few human studies support the beneficial effect of probiotics and prebiotics; hence, comprehensive understanding is urgent to realize the clinical applications of probiotics and prebiotics in CRC prevention.  相似文献   

20.
Despite years of appreciating the potential role of environment to influence the pathogenesis of type 1 diabetes, specific agents or mechanisms serving in such a capacity remain ill defined. This is exceedingly disappointing as the identification of factors capable of modulating the disease, either as triggers or regulators of the autoimmune response underlying type 1 diabetes, would not only provide clues as to why the disorder develops but, in addition, afford opportunities for improved biomarkers of disease activity and the potential to design novel therapeutics capable of disease abatement. Recent improvements in sequencing technologies, combined with increasing appreciation of the role of innate and mucosal immunity in human disease, have stirred strong interest in what is commonly referred to as the ‘gut microbiota’. The gut (or intestinal) microbiota is an exceedingly complex microenvironment that is intimately linked with the immune system, including the regulation of immune responses. After evaluating evidence supporting a role for environment in type 1 diabetes, this review will convey current notions for contributions of the gut microbiota to human health and disease, including information gleaned from studies of humans and animal models for this autoimmune disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号