首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recycled aggregate concrete (RAC), due to its high porosity and the residual cement and mortar on its surface, exhibits weaker strength than common concrete. To guarantee the safe use of RAC, a compressive strength prediction model based on artificial neural network (ANN) was built in this paper, which can be applied to predict the RAC compressive strength for 28 days. A data set containing 88 data points was obtained by relative tests with different mix proportion designs. The data set was used to develop an ANN, whose optimal structure was determined using the trial-and-error method by taking cement content (C), sand content (S), natural coarse aggregate content (NCA), recycled coarse aggregate content (RCA), water content (W), water–colloid ratio (WCR), sand content rate (SR), and replacement rate of recycled aggregate (RRCA) as input parameters. On the basis of different numbers of hidden layers, numbers of hidden layer neurons, and transfer functions, a total of 840 different back propagation neural network (BPNN) models were developed using MATLAB software, which were then sorted according to the correlation coefficient R2. In addition, the optimal BPNN structure was finally determined to be 8–12–8–1. For the training set, the correlation coefficient R2 = 0.97233 and RMSE = 2.01, and for the testing set, the correlation coefficient R2 = 0.96650 and RMSE = 2.42. The model prediction deviations of the two were both less than 15%, and the results show that the ANN achieved pretty accurate prediction on the compressive strength of RAC. Finally, a sensitivity analysis was carried out, through which the impact of the input parameters on the predicted compressive strength of the RAC was obtained.  相似文献   

2.
Sodium carbonate (Na2CO3), an environmentally friendly activator, has been shown to have vast potential for the development of sustainable alkali-activated slag mortars. However, Na2CO3-activated slag mortars exhibit a delayed reaction process and limited early-age strength development, restricting their wider application. In this work, the recycled concrete fines were calcined at a temperature of 800 °C for 1 h and then used as an auxiliary activator to improve the reaction kinetics of Na2CO3-activated slag mortars. The impact of the calcined recycled concrete fines (CRCF) dosage and Na2CO3 concentration on the compressive strength, hydration kinetics, and phase assemblage of mortars was evaluated. The results show that CRCF can react directly with Na2CO3 in the early stages, swiftly removing the CO32− in aqueous solution and providing an alkaline environment suitable for the dissolution of slag. This promotes the development of C-(A)-S-H, hydrotalcite, hemicarbonate, and monocarbonate. The hydration process and strength-giving phase of mortars can be improved further, as an increase in Na2CO3 concentration increases the initial alkaline content. Additionally, the most remarkable compressive strength value of 39.2 MPa was observed at 28 days in the mortar with 6% sodium oxide equivalent (Na2O-E) of Na2CO3 and 15% CRCF because of the synergistic effect of CRCF and Na2CO3.  相似文献   

3.
The increased concern about climate change is revolutionising the building materials sector, making sustainability and environmental friendliness increasingly important. This study evaluates the feasibility of incorporating recycled masonry aggregate (construction and demolition waste) in porous cement-based materials using carbonated water in mixing followed (or not) by curing in a CO2 atmosphere. The use of carbonated water can be very revolutionary in cement-based materials, as it allows hydration and carbonation to occur simultaneously. Calcite and portlandite in the recycled masonry aggregate and act as a buffer for the low-pH carbonated water. Carbonated water produced better mechanical properties and increased accessible water porosity and dry bulk density. The same behaviour was observed with natural aggregates. Carbonated water results in an interlaced shape of carbonate ettringite (needles) and fills the microcracks in the recycled masonry aggregate. Curing in CO2 together with the use of carbonated water (concomitantly) is not beneficial. This study provides innovative solutions for a circular economy in the construction sector using carbonated water in mixing (adsorbing CO2), which is very revolutionary as it allows carbonation to be applied to in-situ products.  相似文献   

4.
We studied the fabrication of functionally graded Al2O3–CeO2-stabilized-ZrO2 (CTZ) ceramics by spark plasma sintering. The ceramic composite exhibits a gradual change in terms of composition and porosity in the axial direction. The composition gradient was created by layering starting powders with different Al2O3 to CTZ ratios, whereas the porosity gradient was established with a large temperature difference, which was induced by an asymmetric graphite tool configuration during sintering. SEM investigations confirmed the development of a porosity gradient from the top toward the bottom side of the Al2O3–CTZ ceramic and the relative pore volume distributed in a wide range from 0.02 to 100 µm for the samples sintered in asymmetric configuration (ASY), while for the reference samples (STD), the size of pores was limited in the nanometer scale. The microhardness test exhibited a gradual change along the axis of the ASY samples, reaching 10 GPa difference between the two opposite sides of the Al2O3–CTZ ceramics without any sign of delamination or cracks between the layers. The flexural strength of the samples for both series showed an increasing tendency with higher sintering temperatures. However, the ASY samples achieved higher strength due to their lower total porosity and the newly formed elongated CeAl11O18 particles.  相似文献   

5.
The paper presents the experimental studies on the effect of the water containing micro-nano bubbles of various gases on the physico-mechanical properties of lime-cement mortars. In total, 7 types of mortars were prepared: with water containing the micro-nano bubbles of O2, O3 or CO2 as 50% or 100% substitute of ordinary mixing water (tap water) and the reference mortar prepared using tap water. In order to determine the influence of water with micro-nano bubbles of gases, the consistency of fresh mortar and the physical properties of hardened mortar, i.e., specific and apparent density, total porosity, water absorption by weight and capillary absorption, were established. The mechanical strength of the considered mortars was studied as well by conducting the tests for flexural and compressive strengths following 14, 28 and 56 days. Reduced workability and capillary absorption were observed in the modified mortars within the range of 0.9–8.5%. The mortars indicated an increase in the flexural strength after 28 days ranging from 3.4% to 23.5% and improved compressive strength in 1.2–31%, in comparison to the reference mortar. The conducted studies indicated increased flexural and compressive strengths along with the share of micro-nano bubbles of gases in the mixing water.  相似文献   

6.
The practical use of recycled concrete aggregate produced by crushing concrete waste reduces the consumption of natural aggregate and the amount of concrete waste that ends up in landfills. This study investigated two methods used in the production of fine recycled concrete aggregate: (1) a method that produces fine as well as coarse aggregate, and (2) a method that produces only fine aggregate. Mortar specimens were tested using a variety of mix proportions to determine how the characteristics of fine recycled concrete aggregate affect the physical and mechanical properties of the resulting mortars. Our results demonstrate the superiority of mortar produced using aggregate produced using the second of the two methods. Nonetheless, far more energy is required to render concrete into fine aggregate than is required to produce coarse as well as fine aggregate simultaneously. Thus, the performance benefits of using only fine recycled concrete aggregate must be balanced against the increased impact on the environment.  相似文献   

7.
In recent years, recycled aggregate concrete (RAC) has become a research hotspot in the field of urban construction because of its resource utilization of construction waste. However, compared with original concrete, its strength is still low, which requires additional nano-SiO2 (NS) and fiber. In order to study the mechanism of strength improvement of RAC, this paper takes NS and polyvinyl alcohol (PVA) fiber as variable parameters; uniaxial and triaxial compression tests were carried out on RAC with PVA fiber and NS, and the mechanical properties of RAC were investigated The result shows that within the range of 3% NS content, an increase in the NS substitution rate causes the mechanical properties of RAC to improve significantly. The compressive strength of RAC increases again after adding PVA fiber; through a SEM (scanning electron microscopy) analysis of the specimen, it was found that the NS filled the micro-pores and micro-cracks in the RAC, and the PVA fiber changed the contact range between recycled aggregate and mortar, so the microstructure of the material was more compact. The mechanism of RAC strength improvement is explained in the microcosmic view.  相似文献   

8.
In this research we evaluated the use of recycled fine mortar aggregate (RFMA) as a fine aggregate for new masonry mortar creation. The pre-wetting effect on the aggregate before creating the mixture was analyzed as a method to reduce its absorption potential. A control mixture of conventional mortar and two groups of recycled mortars were designed with a partial replacement of natural sand by RFMA (pre-wetted and not pre-wetted) performed in different proportions. The results established that the pre-wetting process allows a reduction in the amount of water required during the creation of new mixtures, regulating the water/cement (W/C) ratio and improving the properties of recycled mortars such as air content, fresh and hardened densities, and compressive and adhesive strength for all substitution levels. Mortar made with a 20% substitution and pre-wetted until it was at 67% of its absorption capacity displayed adhesive values higher than the ones shown by the reference mortar. The pre-wetting process proves to be an easy performance technique; it is inexpensive, environmentally friendly, and the most valuable fact is that specialized equipment is not necessarily needed. This process is the most profitable option for improving RFMA exploitation and reuse.  相似文献   

9.
This research focused on the modification effects on recycled concrete (RC) prepared with nano-SiO2 and CO2 cured recycled coarse aggregates (RCA) subjected to an aggressive ions environment. For this purpose, RCA was first simply crushed and modified by nano-SiO2 and CO2, respectively, and the compressive strength, ions permeability as well as the macro properties and features of the interface transition zone (ITZ) of RC were investigated after soaking in 3.5% NaCl solution and 5% Na2SO4 solution for 30 days, respectively. The results show that nano-SiO2 modified RC displays higher compressive strength and ions penetration resistance than that treated by carbonation. Besides, we find that ions attack has a significant influence on the microcracks width and micro-hardness of the ITZ between old aggregate and old mortar. The surface topography, elemental distribution and micro-hardness demonstrate that nano-SiO2 curing can significantly decrease the microcracks width as well as Cl and SO42− penetration in ITZ, thus increasing the micro-hardness, compared with CO2 treatment.  相似文献   

10.
To mitigate the global greenhouse effect and the waste of carbon dioxide, a chemical raw material, high-purity γ-phase mesoporous alumina (MA) with excellent CO2 adsorption performance was synthesized by the direct aging method and ammonium salt substitution method. With this process, not only can energy consumption and time be shortened to a large extent but the final waste can also be recycled to the mother liquor by adding calcium hydroxide. Reaction conditions, i.e., pH value, calcination temperature, and desodium agent, were investigated in detail with the aid of X-ray fluorescence spectrum (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) and Barret-Joyner-Hallender (BJH) methods, nonlocal density functional theory (NLDFT), transmission electron microscopy (TEM), temperature-programmed desorption of CO2 (CO2-TPD), and presented CO2 adsorption measurement. The results of this study are summarized as follows: the impurity content of the MA synthesized under optimal conditions is less than 0.01%, and its total removal rate of impurities is 99.299%. It was found that the MA adsorbent has a large specific surface area of 377.8 m2/g, pore volume of 0.55 cm3/g, and its average pore diameter is 3.1 nm. Under the condition of a gas flow rate of 20 cm3/min, its CO2 adsorption capacity is 1.58 mmol/g, and after 8 times of cyclic adsorption, the amount of CO2 adsorption remained basically unchanged, both of which indicate that the material has excellent adsorption properties and can be widely used for the adsorption of carbon dioxide.  相似文献   

11.
Large amounts of waste are derived not only from construction processes, but also the demolition of existing buildings. Such waste occupies large volumes in landfills, which makes its final disposal difficult and expensive. Reusing this waste type is generally limited to being employed as filler material or recycled aggregate in concrete, which limits its valorisation. The present work proposes reusing construction and demolition waste to manufacture alkali-activated cement to improve its sustainability and recovery. Construction and demolition waste (C&DW) from a demolition waste collection plant in Valencia (Spain) was physically and chemically characterised. This residue contained large fractions of concrete, mortar, bricks, and other ceramic materials. X-ray fluorescence (XRF) analysis showed that its chemical composition was mainly CaO, SiO2 and Al2O3. X-ray diffraction (XRD) analysis revealed that it presented some crystalline products, and quartz (SiO2) and calcite (CaCO3) were the main components. Blends of C&DW and blast furnace slag (BFS) were alkali-activated with mixtures of sodium hydroxide and sodium silicate. The corresponding pastes were characterised by techniques such as thermogravimetry and scanning electron microscopy (SEM). The alkali-activated mortars were prepared, and the resulting mortars’ compressive strength was determined, which was as high as 58 MPa with the 50% C&DW-50% BFS mixture. This work concluded that it is possible to make new sustainable binders by the alkali activation of C&DW-BFS without using Portland cement.  相似文献   

12.
The incorporation of a recycled concrete aggregate (RCA) as a replacement of natural aggregates (NA) in road construction has been the subject of recent research. This tendency promotes sustainability, but its use depends mainly on the final product’s properties, such as chemical stability. This study evaluates the physical and chemical properties of RCAs from two different sources in comparison with the performance of NA. One RCA was obtained from the demolition of a building (recycled concrete aggregate of a building—RCAB) and another RCA from the rehabilitation of a Portland cement concrete pavement (recycled concrete aggregate from a pavement—RCAP). Characterization techniques such as X-ray fluorescence (XRF), X-ray diffraction (XRD), UV spectroscopy, and atomic absorption spectrometry were used to evaluate the RCAs’ coarse fractions for chemical potential effects on asphalt mixtures. NA was replaced with RCA at 15%, 30%, and 45% for each size of the coarse fractions (retained 19.0, 12.5, 9.5, and 4.75 sieves in mm). The mineralogical characterization results indicated the presence of quartz (SiO2) and calcite (CaCO3) as the most significant constituents of the aggregates. XFR showed that RCAs have lower levels of CaO and Al2O3 concerning NA. Potential reactions in asphalt mixtures by nitration, sulfonation, amination of organic compounds, and reactions by alkaline activation in the aggregates were discarded due to the minimum concentration of components such as NO2, (–SO3H), (–SO2Cl), and (Na) in the aggregates. Finally, this research concludes that studied RCAs might be used as replacements of coarse aggregate in asphalt mixtures since chemical properties do not affect the overall chemical stability of the asphalt mixture.  相似文献   

13.
Graphene’s outstanding properties make it a potential material for reinforced cementitious composites. However, its shortcomings, such as easy agglomeration and poor dispersion, severely restrict its application in cementitious materials. In this paper, a highly dispersible graphene (TiO2-RGO) with better dispersibility compared with graphene oxide (GO) is obtained through improvement of the graphene preparation method. In this study, both GO and TiO2-RGO can improve the pore size distribution of cement mortars. According to the results of the mercury intrusion porosity (MIP) test, the porosity of cement mortar mixed with GO and TiO2-RGO was reduced by 26% and 40%, respectively, relative to ordinary cement mortar specimens. However, the TiO2-RGO cement mortars showed better pore size distribution and porosity than GO cement mortars. Comparative tests on the strength and durability of ordinary cement mortars, GO cement mortars, and TiO2-RGO cement mortars were conducted, and it was found that with the same amount of TiO2-RGO and GO, the TiO2-RGO cement mortars have nearly twice the strength of GO cement mortars. In addition, it has far higher durability, such as impermeability and chloride ion penetration resistance, than GO cement mortars. These results indicate that TiO2-RGO prepared by titanium dioxide (TiO2) intercalation can better improve the strength and durability performance of cement mortars compared to GO.  相似文献   

14.
Compressive and flexural strength are the crucial properties of a material. The strength of recycled aggregate concrete (RAC) is comparatively lower than that of natural aggregate concrete. Several factors, including the recycled aggregate replacement ratio, parent concrete strength, water–cement ratio, water absorption, density of the recycled aggregate, etc., affect the RAC’s strength. Several studies have been performed to study the impact of these factors individually. However, it is challenging to examine their combined impact on the strength of RAC through experimental investigations. Experimental studies involve casting, curing, and testing samples, for which substantial effort, price, and time are needed. For rapid and cost-effective research, it is critical to apply new methods to the stated purpose. In this research, the compressive and flexural strengths of RAC were predicted using ensemble machine learning methods, including gradient boosting and random forest. Twelve input factors were used in the dataset, and their influence on the strength of RAC was analyzed. The models were validated and compared using correlation coefficients (R2), variance between predicted and experimental results, statistical tests, and k-fold analysis. The random forest approach outperformed gradient boosting in anticipating the strength of RAC, with an R2 of 0.91 and 0.86 for compressive and flexural strength, respectively. The models’ decreased error values, such as mean absolute error (MAE) and root-mean-square error (RMSE), confirmed the higher precision of the random forest models. The MAE values for the random forest models were 4.19 MPa and 0.56 MPa, whereas the MAE values for the gradient boosting models were 4.78 MPa and 0.64 MPa, for compressive and flexural strengths, respectively. Machine learning technologies will benefit the construction sector by facilitating the evaluation of material properties in a quick and cost-effective manner.  相似文献   

15.
Numerous tests are used to determine the performance of concrete, but compressive strength (CS) is usually regarded as the most important. The recycled aggregate concrete (RAC) exhibits lower CS compared to natural aggregate concrete. Several variables, such as the water-cement ratio, the strength of the parent concrete, recycled aggregate replacement ratio, density, and water absorption of recycled aggregate, all impact the RAC’s CS. Many studies have been carried out to ascertain the influence of each of these elements separately. However, it is difficult to investigate their combined effect on the CS of RAC experimentally. Experimental investigations entail casting, curing, and testing samples, which require considerable work, expense, and time. It is vital to adopt novel methods to the stated aim in order to conduct research quickly and efficiently. The CS of RAC was predicted in this research utilizing machine learning techniques like decision tree, gradient boosting, and bagging regressor. The data set included eight input variables, and their effect on the CS of RAC was evaluated. Coefficient correlation (R2), the variance between predicted and experimental outcomes, statistical checks, and k-fold evaluations, were carried out to validate and compare the models. With an R2 of 0.92, the bagging regressor technique surpassed the decision tree and gradient boosting in predicting the strength of RAC. The statistical assessments also validated the superior accuracy of the bagging regressor model, yielding lower error values like mean absolute error (MAE) and root mean square error (RMSE). MAE and RMSE values for the bagging model were 4.258 and 5.693, respectively, which were lower than the other techniques employed, i.e., gradient boosting (MAE = 4.956 and RMSE = 7.046) and decision tree (MAE = 6.389 and RMSE = 8.952). Hence, the bagging regressor is the best suitable technique to predict the CS of RAC.  相似文献   

16.
This work investigates the interplay of carbonization temperature and the chemical composition of carbon microfibers (CMFs), and their impact on the equilibration time and adsorption of three molecules (N2, CO2, and CH4). PAN derived CMFs were synthesized by electrospinning and calcined at three distinct temperatures (600, 700 and 800 °C), which led to samples with different textural and chemical properties assessed by FTIR, TGA/DTA, XRD, Raman, TEM, XPS, and N2 adsorption. We examine why samples calcined at low/moderate temperatures (600 and 700 °C) show an open hysteresis loop in nitrogen adsorption/desorption isotherms at −196.15 °C. The equilibrium time in adsorption measurements is nearly the same for these samples, despite their distinct chemical compositions. Increasing the equilibrium time did not allow for the closure of the hysteresis loop, but by rising the analysis temperature this was achieved. By means of the isosteric enthalpy of adsorption measurements and ab initio calculations, adsorbent/adsorbate interactions for CO2, CH4 and N2 were found to be inversely proportional to the temperature of carbonization of the samples (CMF-600 > CMF-700 > CMF-800). The enhancement of adsorbent/adsorbate interaction at lower carbonization temperatures is directly related to the presence of nitrogen and oxygen functional groups on the surface of CMFs. Nonetheless, a higher concentration of heteroatoms also causes: (i) a reduction in the adsorption capacity of CO2 and CH4 and (ii) open hysteresis loops in N2 adsorption at cryogenic temperatures. Therefore, the calcination of PAN derived microfibers at temperatures above 800 °C is recommended, which results in materials with suitable micropore volume and a low content of surface heteroatoms, leading to high CO2 uptake while keeping acceptable selectivity with regards to CH4 and moderate adsorption enthalpies.  相似文献   

17.
A novel g-C3N4/TiO2/hectorite Z-scheme composites with oxygen vacancy (Vo) defects and Ti3+ were synthesized by so-gel method and high temperature solid phase reaction. This composite exhibited high visible photo-catalytic degradation of rhodamine B (RhB). The apparent rate constant of g-C3N4/TiO2/hectorite was 0.01705 min−1, which is approximately 5.38 and 4.88 times that of P25 and g-C3N4, respectively. The enhancement of photo-catalytic efficiency of the composites can be attributed to the great light harvesting ability, high specific surface area and effective separation of electrons(e) and holes(h+). The F element from Hectorite causes the formation of Vo and Ti3+ in TiO2, making it responsive to visible light. The effective separation of e and h+ mainly results from Z-scheme transfer of photo-produced electrons in g-C3N4/TiO2 interface. The composites can be easily recycled and the degradation rate of the RhB still reached 84% after five cycles, indicating its good reusability.  相似文献   

18.
Cracks in typical mortar constructions enhance water permeability and degrade ions into the structure, resulting in decreased mortar durability and strength. In this study, mortar samples are created that self-healed their cracks by precipitating calcium carbonate into them. Bacillus subtilus bacterium (10−7, 10−9 cells/mL), calcium lactate, fine aggregate, OPC-cement, water, and bagasse ash were used to make self-healing mortar samples. Calcium lactates were prepared from discarded eggshells and lactic acid to reduce the cost of self-healing mortars, and 5% control burnt bagasse ash was also employed as an OPC-cement alternative. In the presence of moisture, the bacterial spores in mortars become active and begin to feed the nutrient (calcium lactate). The calcium carbonate precipitates and plugs the fracture. Our experimental results demonstrated that cracks in self-healing mortars containing bagasse ash were largely healed after 3 days of curing, but this did not occur in conventional mortar samples. Cracks up to 0.6 mm in self-healing mortars were filled with calcite using 10−7 and 10−9 cell/mL bacteria concentrations. Images from an optical microscope, X-ray Diffraction (XRD), and a scanning electron microscope (SEM) were used to confirm the production of calcite in fractures. Furthermore, throughout the pre- and post-crack-development stages, self-healing mortars have higher compressive strength than conventional mortars. The precipitated calcium carbonates were primed to compact the samples by filling the void spaces in hardened mortar samples. When fissures developed in hardened mortars, bacteria became active in the presence of moisture, causing calcite to precipitate and fill the cracks. The compressive strength and flexural strength of self-healing mortar samples are higher than conventional mortars before cracks develop in the samples. After the healing process of the broken mortar parts (due to cracking), self-healing mortars containing 5% bagasse ash withstand a certain load and have greater flexural strength (100 kPa) than conventional mortars (zero kPa) at 28 days of cure. Self-healing mortars absorb less water than typical mortar samples. Mortar samples containing 10−7 bacteria cells/mL exhibit greater compressive strength, flexural strength, and self-healing ability. XRD and SEM were used to analyze mortar samples with healed fractures. XRD, FTIR, and SEM images were also used to validate the produced calcium lactate. Furthermore, the durability of mortars was evaluated using DTA-TGA analysis and water absorption tests.  相似文献   

19.
Porous BN/Si3N4 ceramics carbon-coated by carbon coating were joined with SiCo38 (wt. %) filler. The formation process and strengthening mechanism of silicon carbide nanowires to the joint were analyzed in detail. The outcome manifests that there is no distinct phase change in the porous BN/Si3N4 ceramic without carbon-coated joint. The highest joint strength was obtained at 1320 °C (~38 MPa). However, a larger number of silicon carbide nanowires were generated in the carbon-coated joints. The highest joint strength of the carbon-coated joint was ~89 MPa at 1340 °C. Specifically, silicon carbide nanowires were formed by the reaction of the carbon coated on the porous BN/Si3N4 ceramic with the SiCo38 filler via the Vapor-Liquid-Solid (VLS) method and established a bridge in the joint. It grows on the β-SiC (111) crystal plane and the interplanar spacing is 0.254 nm. It has a bamboo-like shape with a resemblance to alloy balls on the ends, and its surface is coated with SiO2. The improved carbon-coated porous BN/Si3N4 joint strength is possibly ascribed to the bridging of nanowires in the joint.  相似文献   

20.
Recycled aggregate is essential to protect Jeju Island’s natural environment, but waste concrete, including porous basalt, is a factor that lowers the quality of recycled aggregate. Therefore, an experiment was conducted to analyze the properties of concrete application of basalt-based recycled aggregate (B-RA) through quality improvement. The absorption of the B-RA ranged from 3–5%; restricting its absorption to less than 3% was challenging owing to its porosity and irregular shape. However, the increase in the solid volume percentage of the concrete when replacing 25 or 50% of fresh basalt aggregate with recycled basalt aggregate improved the mechanical performance of the concrete, especially at 25%, for which a compressive strength of 55.9 MPa and modulus of elasticity of 25.9 GPa exceeded those of concrete with fresh basalt aggregate. Moreover, increasing the replacement ratio of the fresh basalt with recycled aggregate reduced the slump and decreased the air content, consequently increasing the concrete drying shrinkage. However, the replacement of fresh basalt aggregate with recycled basalt aggregate unaltered the mechanical performance of the concrete. The results indicate that efficient use of recycled aggregates can yield superior performance to that of fresh basalt, irrespective of aggregate quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号